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This paper analyzes and proposes a solution to the transfer pricing problem from the point of view of the Nash bargain-
ing game theory approach. We consider a firm consisting of several divisions with sequential transfers, in which central
management provides a transfer price decision that enables maximization of operating profits. Price transferring between
divisions is negotiable throughout the bargaining approach. Initially, we consider a disagreement point (status quo) between
the divisions of the firm, which plays the role of a deterrent. We propose a framework and a method based on the Nash equi-
librium approach for computing the disagreement point. Then, we introduce a bargaining solution, which is a single-valued
function that selects an outcome from the feasible pay-offs for each bargaining problem that is a result of cooperation of
the divisions of the firm involved in the transfer pricing problem. The agreement reached by the divisions in the game is
the most preferred alternative within the set of feasible outcomes, which produces a profit-maximizing allocation of the
transfer price between divisions. For computing the bargaining solution, we propose an optimization method. An example
illustrating the usefulness of the method is presented.
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1. Introduction

1.1. Brief overview. Transfer pricing suggests the
setting of the price at which a firm transfers goods and
services between its collaborating (or not) divisions. It
is employed as a profit allocation strategy to attribute
a multinational corporation’s net profit before tax when
crossing international borders. Many firms implement
the strategy of distributed products and services dispersed
through numerous divisions at different locations. These
divisions belong to more than one firm and the
product passes through these different sites during its
manufacturing/servicing stages (see Fig. 1) (Fredrickson,
1986; Ghosh et al., 2004; Karpowicz, 2012; Markides
and Williamson, 1996; Wahab et al., 2016). This
distributed strategy looks for different benefits: lower
taxes, labor facilities regulations, lower costs, etc.
However, for computing a maximum firm-wide profit
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surplus among divisions, several problems arise with
international regulations. The arm-length rule enforces
firms to establish pricing based on similar transactions
done between divisions not of the same related firm
but at an arm’s length (OECD, 2010). Regulations on
transfer pricing determine a ‘fair’ agreement concerning
negotiation of the transfer price among divisions. The
official definition of the arm’s length standard reads: “a
controlled transaction meets the arm’s length standard if
the results of the transaction are consistent with the results
that would have been realized if uncontrolled taxpayers
had engaged in the same transaction under the same
circumstances.”

In a multidivisional firm where divisions are required
to transact with each other, the transfer price is used to
determine costs. Transfer prices have a tendency to not
be significantly different from the price established in the
market for the reason that one of the divisions in such a
transaction suffer the loss of money. The problem is that
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Fig. 1. Multidivisional firm.

if the firms start either buying for more than the prevailing
performance market price or selling below the market
price, this will affect their performance. In consequence,
computing the optimal transfer price is a very interesting
challenge that has attracted the attention of researchers
from a wide range of disciplines, but it is still under debate
among both practitioners and academics (Abdel-Khalik
and Lusk, 1974; Alm, 2012; Beer and Loeprick, 2015;
Devereux, 2007; Grabski, 1982; McAulay et al., 2001;
Watson and Baumler, 1975).

Hirshleifer (1956; 1957) was the first in presenting
analytical approaches to the transfer pricing problem
finding a pricing structure for a mono-product firm
involving a manufacturing and sales division, which
identifies an efficient level of internal trade. Arrow
(1959) as well as Baumol and Fabian (1964) extended
Hirshleifer’s model to settings of multiple products
and divisions. Kanodia (1979) suggested how central
management can construct transfer prices which allow
risk sharing, making all the managers better off. Blois
(1978) improved the model presented by Hirshleifer
(1956; 1957), suggesting that even if the central
management allows decentralization, then a large
customer will be capable to enforce the transfer price rule
of marginal cost upon its suppliers. There is earlier related
literature on transfer pricing, considering a single period
horizon (Enzer, 1975) or temporal stability (Burton et al.,
1974). Enzer (1975) employed a linear programming
method to solve the transfer pricing problem for obtaining
an average price. Continuing Enzer’s work, Jennergren
(1977) proposed a solution for centralized decision
making for the divisions. Thomas (1980) provided a
review of the literature, considering psychological and
empirical evidence for transfer pricing. He suggested

that central management allows decentralization without
scarifying the coordination associated with centralization.
Thomas’s idea coincided with the proposal of Dearden
(1973) or Henderson and Dearden (1966). Amershi and
Cheng (1990), Besanko and Sibley (1991) as well as
Ronen and Balachandran (1988) solved the problem of
transfer pricing considering that divisions are implicitly
or explicitly subcontractors and with divisions paying a
transfer price and incurring production costs. Rosenthal
(2008) developed a cooperative game that provides
transfer prices for the intermediate products (when
valuation is known and when their valuations differ) in
a vertically integrated supply chain, providing a solution
that is fair and acceptable to all divisions. Leng and
Parlarb (2012) extended the work of Rosenthal (2008),
constructing a cooperative game based on computing
the Shapley value-based transfer prices for a vertically
integrated supply chain firm with an upstream division and
multiple downstream divisions, which can independently
determine their retail prices, and decide whether or
not they will purchase from the upstream division at
negotiated transfer prices.

Related work which solves transfer-price bargaining
problems has been reported in the literature. Chalos
and Haka (1990) suggested a bilateral bargaining
methodology to study negotiated transfer-pricing
outcomes between a buying and a selling division where
each division had private profit information. Edlin and
Reichelstein (1995) examined transfer price negotiations
for solving a bilateral holdup problem in a multinational
enterprise based on bargaining theory. They showed
that information asymmetry will result in a transfer
price outcome that is unfair and inefficient. Vaysman
(1998) developed a bargaining model of negotiated
transfer pricing incorporating private divisional
information where the firm designs a compensation
system employing divisional performance evaluation
and negotiated transfer pricing. Haake and Martini
(2013) analyzed two transfer-pricing schemes and their
corresponding bargaining problems (Nash, 1950; Kalai
and Smorodinsky, 1975) restricted to two divisions. In
general, cooperative and noncooperative game theory
solutions focusing on negotiations have been presented
in the literature (Baldenius et al., 1999; Chwolka
et al., 2010; Johnson, 2006; Wielenberg, 2000).

1.2. Main results. This paper analyzes and proposes
a solution to the computational transfer pricing problem
considering a firm consisting of several divisions. The
main results are the following:

• We propose a solution for computing the transfer
pricing problem from the point of view of the Nash
bargaining game theory approach.

• In this negotiation process, divisions cooperate and
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all necessarily improve their position at the end of
the process.

• Divisions operate over sequential transfers in which
central management provides the transfer price
decision that enables maximization of operating
profits.

• The transfer pricing model involves costs and taxes.

• The division’s unit production cost is dependent on
the production quantity.

• The negotiation starts at the time that a division
considers a disagreement point (status quo) which
plays the role of a deterrent.

• We propose a framework and a method based on
the Nash equilibrium approach for computing the
disagreement point.

• The bargaining solution, which is a single-valued
function, is the result of cooperation by the divisions.

• The final agreement is the most preferred alternative
within the set of feasible outcomes which produces
a profit-maximizing allocation of the transfer price
between divisions.

• We propose an optimization for computing the
bargaining solution method.

• The result of the optimization method is a
simultaneous adjustment of quantity and the transfer
price.

1.3. Organization of the paper. The paper is
structured as follows. The next section presents the
preliminaries, including Nash’s bargaining game, and
outlines the transfer pricing model. Section 3 describes
the solution approach for the transfer pricing bargaining
model. Section 4 suggests the transfer price bargaining
solver. A numerical example showing the usefulness of
the proposed approach is presented in Section 5. Finally,
we close the paper in Section 6 with conclusions and an
outline of future work.

2. Preliminaries

2.1. Bargaining. Nash’s bargaining game (see Fig. 2)
is based on a model in which players are assumed to
negotiate on a set of feasible pay-offs (Trejo et al., 2017;
Trejo and Clempner, 2018). A fundamental element of
the game is the disagreement point (status quo) which
plays the role of a deterrent. A bargaining solution is a
single-valued function that selects an outcome from the
feasible pay-offs for each bargaining problem, which is
the result of cooperation by the players involved in the

x2

x1

Fig. 2. Nash bargaining.

game. The agreement reached in the game is the most
preferred alternative within the set of feasible outcomes.

The bargaining problem is described by the pair
(L, d̃), where L ⊂ R

n is a set of feasible payoffs, d̃ ∈
R

n is a fixed disagreement vector and l = 1, . . . ,n is
the number of players. We will call this the condensed
form of the bargaining problem (see Forgó et al., 1999;
Nash, 1950). It can be derived from the normal form of
an n-person game G =

{
X1, . . . , Xn; f1, . . . , fn

}
in a

natural way. The set of all feasible payoffs (outcomes)
is defined as F = {f : f = (f1(x), . . . , fn(x))} , x ∈ X
where X = X1 × · · · × Xn. Given a disagreement
vector d̃ ∈ R

n, the pair (F, d̃) is a bargaining problem
in condensed form. We can derive another bargaining
problem (L, d̃) from G by extending the set of feasible
outcomes F to its convex hull L. Notice that any element
f ∈ L can be represented as f =

∑n
l=1 λlfl, where

λf = (f1(x(λ)), . . . , fn(x(λ)))), x ∈ X , λl ≥ 0 for
all l, and

∑n
l=1 λl = 1.

The payoff vector f can be realized by playing the
strategies xl with probability λl, and so f is the expected
payoff of the players. Thus, when the players face
the bargaining problem, the question is which point of
L should be selected taking into account the different
positions and strength of the players reflected in the set
L of extended payoffs and the disagreement point d̃.

Let B denote the set of all pairs (L, d̃) such that (a)
L ⊂ R

n is compact and convex, (b) there exists at least
one f ∈ L such that f > d̃. A Nash solution to the
bargaining problem is a function b : B → R

n such that
b(L, d̃) ∈ L.

Proposition 1. There is a unique function b such that
for all (L, d̃) ∈ B the vector b(L, d̃) = (b1, . . . , bn) is a
unique solution to the optimization problem
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maximize g(b) =
n∏

l=1

(bl − d̃l)

subject to b ∈ L, b ≥ d̃.

(1)

The objective function of problem in Eqn. (1) is usually
called the Nash product.

2.2. Transfer pricing model. The proposed model
is as follows (Rosenthal, 2008). We consider a
multidivisional firm, which is a vertically integrated
supply chain. We consider n divisions and each division,
is indexed by l = 1, 2, . . . , n. Divisions jointly make their
decisions to maximize the global profits of the firm. Along
the supply chain, division l sells ql units of intermediate
goods on the market at price Δl

p. The utility given by
ϕ = qlΔl

p is to be allocated among the n divisions in the
supply chain. In addition, the model takes into account
the fact that intermediate goods involve acquisition and
production costs K . Then, the profit of the n-th division
is given by Δl

p−K l. The transfer pricing process involves
divisions selling goods either externally at positive market
price p or internally to divisions at transfer price P such
that the divisions’ profit Δp is given by Δp = p− P .

We consider the case in which each level of the
multidivisional firm consists of a single division. For
l = 1, . . . , n−1, intermediate goods are shipped from
level l to level l+ 1, i.e., along the supply chain. Division
l sells intermediate goods to division l + 1 at price pl.
Division l+1 sells intermediate goods to division l+2 at
price pl+1, and so on. Division l makes its market pricing
decision pl and sells ql(pl) units of its intermediate goods
to a given division l.

For l = 1, . . . , n− 1, intermediate goods are shipped
from level l to level l + 1, i.e., along the supply chain
(see Fig. 1). Division l makes its market pricing decision
pl and sells ql(pl) units of its intermediate goods to a
given division l. Following Baldenius et al. (1999) as
well as Leng and Parlarb (2012), division l sales quantity
ql, which is determined by a linear demand function, i.e.,
ql(pl) = αl−βlpl, where αl, βl > 0 and pl ≤ αl/βl. The
model takes into account the fact that divisions are placed
in different areas so that they have independent demands
ql(pl). Then, the division profit is given by

ϕ1(p1, q1) = p1q1(p1) =
(
p1 −K1

) (
α1 − β1p1

)
, (2)

where K1 denotes acquisition and production costs, and

ϕl(pl, ql) = plql(pl)

=
(
pl − P l

) (
αl − βlpl

)
, l ≥ 2,

(3)

where P l corresponds to the transfer price that division l
pays to division l − 1 for l ≥ 2. Thus Eqn. (3) can be

written as

ϕl(pl, pl−1, ql) =
(
pl − pl−1

)
ql(pl)

=
(
pl − pl−1

) (
αl − βlpl

)
, l ≥ 2.

(4)

Owing of the existence of economies of scale, we assume
that the division’s unit production cost is dependent on
the amount of production. Then, the unit production
cost, which is incurred by division l when the division
sells ql(pl) units of intermediate goods, is represented
by cl(ql). The amount of the division’s total sales is
Q(q) ≡ ∑

l q
l, where q =

(
q1(p1), . . . , qn(pn)

)
. Then,

the production cost can be written as c(Q(q)). The
corresponding effect on the divisions’ costs is given by
κl
cc

l(ql)ql, where κl
c ∈ [0, 1].

In addition, we represent the taxes that a division l
has to pay as a function depending on the good and the
amount represented by τ l(plql). We do not consider any
specific function for the costs and the taxes, and we use
the general form cl(ql) and τ l(plql) for our analysis. The
corresponding effect on the divisions’ costs is given by
ωl
τp

lql, where ωl
τ ∈ [0, 1].

The model involves the following variables:

• market prices pl for one intermediate good (sold from
l to l + 1);

• amounts ql of intermediate good l shipped from l to
l + 1 for l = 1, . . . , n− 1;

• production costs,

cl(Q(q)) := κl
cc

l(ql)ql, κl
c ∈ [0, 1] (5)

(e.g., transactional costs, raw materials, components,
and their per period inventory costs in dollars) at each
level l = 1, n;

• taxes,

τ l(plql) := ωl
τp

lql, ωl
τ ∈ [0, 1], (6)

at each level l = 1, n.

Remark 1. The taxes τ l(plql) can be eliminated from the
computation process taking ωl

τ = 0 if it is the case that a
multidivisional firm does not use transfer pricing as a tool
for reducing the firm’s total tax payment.

We suppose that all divisions are located in different
marketing areas. Therefore, they face independent
demands ql, costs cl(ql) and taxes τ l(plql). Then, the
division’s utility Πl for each level l = 1, n is given by

ϕ1(p1, q1) =
(
p1 −K1

)
q1 − cl(Q(q)) − τ1(p1q1),

ϕl(pl, pl−1, ql) =
(
pl − pl−1

)
ql − cl(Q(q))

− τ l(plql),
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Fig. 3. Bounds of price.

where l = 1 represents the first division and l = 2, . . . , n
the rest of the divisions on the vertically integrated supply
chain.

Our model considers a centralized structure allowing
divisions to act necessarily cooperatively. The Pareto set
can be defined as (Clempner and Poznyak, 2015; 2017;
Clempner, 2016)

P :=
{
x∗ (λ) := arg max

x∈Xadm=Padm⊗Qadm

J (x|λ) ,

λ ∈ Sn
}
,

(7)

where

J (x|λ) := λ1ϕ
1
(
p1, q1

)
+

n∑

l=2

λlϕ
l
(
pl, pl−1, ql

)
,

x =
{
(p, q) : p = (p1, . . . , pn)� and
q = (q1(p1), . . . , qn(pn))�

}
,

Sn :=

{
λ ∈ R

n : λl ∈ [0, 1] ,
n∑

l=1

λl = 1

}
,

with the Pareto front given by

Ψ(x∗ (λ)) =
(
ϕ1 (x∗ (λ)) , ϕ2 (x∗ (λ)) , . . . ,

ϕn (x∗ (λ))
)
.

Bounds to pl and ql determine the maximum and
minimum transfer prices legally authorized. Bounds
are established by the arm’s length price as well as the
quantity of goods traded. The bounds (Figs. 3 and 4)
determine a specific decision area where the optimal
strategies can be selected,

pl ∈ [
pl−, pl+

]
, ql ∈ [

ql−, ql+
]
,

Padm :=
n⋂

l=1

[
pl−, p

l
+

]
, Qadm :=

n⋂

l=1

[
ql−, q

l
+

]
.

P

1

2

q+1

q-1

q+2q-2

Qadm

Fig. 4. Bounds of quantity.

3. Transfer pricing Nash bargaining
solution

We start with some notation (Clempner and Poznyak,
2011; 2016; Trejo et al., 2015). For a finite set of
divisions (players) N with n elements, let Rn denote the
n-dimensional Euclidean space with coordinates indexed
by l = 1, . . . , n. Any point in X ⊆ R

n, called the joint
strategy of the divisions, is denoted by x =

(
xl
)
l∈N , and

also by x =
(
x1, . . . , xn

)
, l = 1, n. The set X is a convex

and compact set. For l ∈ N and x =
(
xl
)
l∈N ∈ X , x̂

denotes the (n − 1)-dimensional vector constructed from
x by deleting the l-th coordinate xl. Here xl̂ is a strategy
of the rest of the players adjoint to xl, namely,

xl̂ :=
(
x1, . . . , xl−1, xl+1, . . . , xn

)�

∈ X l̂ :=

n⊗

m=1, m �=l

Xm.

The point x is written as (xl, xl̂).
An n-division game is defined by a triplet Γ =

(N , {Al}l∈N , {ϕl}
l∈N ), where N is the set of divisions

and each Al (l ∈ N ) is finite set of division l’s actions.
The Cartesian product A =

⊗n
l=1 A

l is the set of action
profiles a =

(
a1, . . . , an

)
for n players. The utility

function ϕl of division l is a real-valued function on A.
Each player l ∈ N , for a given a strategy xl, gets the
utility

ϕl (x) =
∑

x1∈X1

· · ·
∑

xn∈Xn

ϕl

(
a1, . . . , an

) n∏

l=1

xl(al),

where xl(al) is the strategy of the action al.
Divisions try to reach one of the Nash equilibria,

that is, each division l tries to find a joint strategy x∗ =
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(
x1∗, . . . , xn∗) ∈ X satisfying, for any admissible xl ∈
X l and any l = 1, n,

ϕl(x
l, xl̂)− max

xl∈Xl
ϕl(x

l, xl̂) ≤ 0

for any xl ∈ X l and all l = 1, n, (8)

where x̂(x) = (x1̂�, . . . , xn̂�)� ∈ X̂ ⊆ R
n(n−1) and

p ≥ 1 (Tanaka and Yokoyama, 1991; Tanaka, 1989). Here
ϕl(x

l, xl̂) is the utility function of player l, who plays
strategy xl ∈ X l while the rest of the players strategy
xl̂ ∈ X l̂.

Consider

GLp (x, x̂(x))

:=

[
n∑

l=1

∣
∣∣
∣

(
max
xl∈Xl

ϕl(x
l, xl̂)

)
− ϕl(x

l, xl̂)

∣
∣∣
∣

p
]1/p

.
(9)

If we define the utopia point

x̄l := arg max
xl∈Xl

ϕl(x
l, xl̂), (10)

then, substituting (10) in (9), the original problem given
can be rewritten as

GLp (x, x̂(x))

:=

[
n∑

l=1

∣
∣ϕl(x̄

l, xl̂)− ϕl(x
l, xl̂)

∣
∣p
]1/p

. (11)

The functions ϕl(x
l, xl̂) (l = 1, n) are assumed to be

concave in all their arguments.

Remark 2. The function GLp(x, x̂(x)) satisfies the Nash
property

ϕl(x
l, xl̂)− ϕl(x̄

l, xl̂) ≤ 0 (12)

for any xl ∈ X l and all l = 1, n.

If the function GLp(x, x̂(x)) is strictly concave
and the Hessian matrix is negative semi-definite, then
GLp(x, x̂(x)) attains a maximum at (x, x̂(x)) and satisfies
(Trejo et al., 2015)

∇2GLp (x, x̂(x))

=

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2

(∂x1)
2GLp (x, x̂(x)) . . .

∂2

∂x2∂x1
GLp (x, x̂(x)) . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
∂2

∂xn∂x1
GLp (x, x̂(x)) . . .

∂2

∂x1∂xn
GLp (x, x̂(x))

∂2

∂x2∂xn
GLp,δ (x, x̂(x))

. . . . . . . . . . . . . . . . . . . . . .
∂2

(∂xn)
2GLp (x, x̂(x))

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

δIn1×n1 DG1,2(û1,2)

DG2,1(û2,1) δIn2×n2

. . . . . . . . . . . . . . . . . . . . . . . . .
DG3,1(û3,1) DG3,2(û3,2)

. . . DG1,N (û1,N )

. . . DG3,2(û3,2)

. . . . . . . . . . . . . . . . . .

. . . δInn×nn

⎤

⎥
⎥
⎦

< 0

or, equivalently, δ should provide the inequality

δ > max
x∈X

[
Λmax

(∇2GLp (x, x̂(x))
)]

, (13)

where Λmax is the maximum eigenvalue.

The bargaining game Γ is based on a model in which
players are assumed to negotiate on a set of feasible
pay-offs Φ. A fundamental element of the game is the
disagreement point f∗

l (status quo), which plays the role
of a deterrent. A bargaining solution is a single-valued
function that selects an outcome from the feasible pay-offs
for each bargaining problem. The agreement reached
in the game is the most preferred alternative within the
set of feasible outcomes Φ. Nash (1950) proposed this
approach by presenting four axioms and showing that they
characterize the Nash bargaining solution.

Definition 1. Nash bargaining transfer pricing. For a
finite set of divisions N with n elements of a game Γ, a
strategy x∗ is called a Nash bargaining solution for the
transfer price of Γ if x∗ is an optimal solution of the
maximization problem

n∏

l=1

(ϕl(x
l, xl̂)− f̃l(x̃

l, x̃l̂)) → max
x∈X

subject to

x ∈ Φ,

ϕl(x) ≥ f̃l(x̃) for all l = 1, . . . , n,

(14)

where ϕ is the payoff and f̃l is the disagreement
point. The pay-off Φ(x∗) = (ϕl(x

∗))l=1,n of divisions
generated by the Nash bargaining solution x∗ is the bar-
gaining solution payoff.
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Let αn = (αl)l=1,n. Then, we rewrite the problem
(14) as follows:

g(x) =

n∑

l=1

αl log
(
ϕl

(
xl, xl̂

)− f̃l
(
x̃l, x̃l̂

)) → max
x∈X

subject to

ϕl (x, x̂(x)) > f∗
l ,

where αl is called the individual weight of each division
such that

∑n
l=1 αl = 1, f̃l is the disagreement point (l =

1, n) or the status-quo and x̃ = (x̃l∗, x̃l̂) is the status-quo
strategy.

Specifically, we will consider the disagreement point
as a division trying to reach one of the Lp-Nash equilibria,

f̃l

(
x̃l∗, x̃l̂

)
=

[
n∑

l=1

∣∣ϕl(x̃
l∗
, x̃l̂)− ϕl(x

l, xl̂)
∣∣p
]1/p

.

4. Transfer price bargaining solver with
additional constraints

Let us introduce the “slack” vectors c ∈ R
n with

nonnegative components, that is, cj ≥ 0 for all j =
1, . . . , n. The original problem (9) can be rewritten as

{g (x, x̂(x))} → max
x∈Xadm,c≥0

(15a)

Xadm := {x ∈ X : x ≥ 0, Aeqx = beq,

Aineqx− bineq + c = 0} (15b)

Notice that this problem may have a non-unique solution
and det (Aᵀ

eqAeq) = 0. Define by X∗ ⊆ Xadm the set of
all solutions of the problem (15b).

Consider the penalty function given by

Ṽk (x, c) := μ{g (x, x̂(x))}

− k

[
1

2
‖Aeqx−beq‖2

+
1

2
‖Aineqx− bineq + c‖2

]
,

(16)

where the parameters k and c are positive. Notice also that

arg max
x∈Xadm,c≥0

Ṽk,δ (x, c)

= arg max
x∈Xadm,c≥0

Vμ,δ (x, c) ,

where μ := k−1 > 0 and

Vμ,δ (x, c)

:= μ{g (x, x̂(x))} − 1

2
‖Aeqx− beq‖2

− 1

2
‖Aineqx− bineq + c‖2

− δ

2

(
‖x‖2 + ‖x̂‖2 + ‖c‖2

)
.

(17)

Obviously, the optimization problem

Ṽμ,δ (x, c) → max
x∈Xadm,c≥0

(18)

has a unique solution since the optimized function (16) is
strongly convex (Poznyak, 2008) if δ > 0. The idea of the
penalty functions method (PFM) consists in the following
idea: If the penalty parameter μ and the regularizing
parameter δ tend to zero in a particular manner, then we
may expect that x∗ (μ, δ) and c∗ (μ, δ), which are the
solutions to the optimization problem

Vμ,δ (x, c) → max
x∈Xadm,c≥0

,

tend to the set V ∗ of all solutions of the original
optimization problem (15b), that is,

ρ {x∗ (μ, δ) , c∗ (μ, δ) ;X∗} −→
μ,δ↓0

0, (19)

where ρ {a;X∗} is the Hausdorff distance defined as

ρ {a;X∗} = min
x∈X∗

‖a− x∗‖2 .

Below we define exactly how the parameters μ and δ
should tend to zero to provide the property (19).

Then, if we assume that

(a) the bounded set X∗ of all solutions of the original
optimization problem (15b) is not empty and Slater’s
condition holds, that is, there exists a point x̊ ∈ Xadm

such that
Aineqx̊ < b1, (20)

(b) the parameters μ and δ are time-varying, i.e.,

μ = μn, δ = δn (n = 0, 1, 2, . . . , )

such that

0 < μn ↓ 0,
μn

δn
↓ 0 as n → ∞, (21)

then

x∗
n := x∗ (μn, δn) −→

n→∞ x∗∗, (22a)

c∗n := c∗ (μn, δn) −→
n→∞ c∗∗, (22b)

where x∗∗ ∈ X∗ is the solution to the original problem
(15b) with the minimal weighted norm, i.e.,

‖x∗∗‖ ≤ ‖x∗‖ for all x∗ ∈ X∗ (23)

and
c∗∗ = b1 −A1x

∗∗. (24)
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The format version (n = 0, 1, . . . ) of the proximal
method with some fixed admissible initial values (x0 ∈
X, x̂0(x) ∈ X̂ , c0 ≥ 0) is as follows:

xn+1 = argmax
x∈X

{
− 1

2
‖x− xn‖2

+ γVμn,δn(x, x̂n(x), cn)
}
,

x̂n+1(x) = argmax
x̂∈X̂

{
− 1

2
‖x̂(x)− x̂n(x)‖2

+ γVμn,δn(xn, x̂(x),cn)
}
,

(25)

where Vμn,δn(x, x̂(x), c) is given by

Vμn,δn(x, x̂n(x), c)

:= μg (x, x̂n(x))

− 1

2
(Aineqx− bineq + c)

− δ
2

(
‖x‖2 + ‖x̂‖2 + ‖c‖2

)

= μg (x, x̂n(x))− 1

2
(Aineqx− bineq + c)

− δ
2

(
‖x‖2 + ‖x̂‖2 + ‖c‖2

)
.

Then, developing, we have

xn+1 = −1

2
‖x− xn‖2 + γVμn,δn(x, x̂n(x), cn)

= −1

2
‖x− xn‖2 + γ

[
μg (x, x̂n(x))

− 1

2
(Aineqx− bineq + c)

− δ
2

(
‖x‖2 + ‖x̂‖2 + ‖c‖2

) ]
.

x̂n+1(x) = −1

2
‖x̂(x) − x̂n(x)‖2

+ γVμn,δn(xn, x̂(x),cn)

= −1

2
‖x̂(x) − x̂n(x)‖2 + γ

[
μg (xn, x̂(x)

− 1

2
(Aineqx− bineq + c)

− δ
2

(
‖x‖2 + ‖x̂‖2 + ‖c‖2

) ]
.

5. Numerical example

5.1. Problem description. Jemae is a fictional large
multi-divisional corporation which manufactures parts
of vehicles in three different countries and ensembles
the cars in the USA, spending money on distribution
and marketing costs. Each divisions is responsible for
its own profits. The firm considers this situation a
disagreement point because divisions often transact with
each other as if transacting with an outside customer,

impacting significantly the global profits of the company.
In order to solve the problem, the company is looking
to coordinate the transfer pricing of the divisions. The
profit maximization of the multinational group will look
at where the tax rates are lower and seek to put more
profit there. In this example, we are considering different
production costs and tax rates for each division. The goal
is to establish the transfer prices for each division based
on the bargaining Nash solution, providing incentives
for divisional managers to act in the best interest of the
corporation as a whole.

For solving the problem, we employ the proposed
computational solver approach to find the bargaining
equilibrium point. Finally, we perform an analysis to
study the economic variables for the price and quantity.

The rest of this section is divided into two parts.
In the first one, we describe the solution method. In
the second, we present the parameters used for our
computations and discuss the numerical results.

5.2. Solution method. For solving the problem, we
employ the proximal method given by

xn+1=arg max
x∈Xadm

{− 1
2‖x− xn‖2 + γg(x)

}
,

where γ is a positive scalar. We will assume that
each f(x) :Rn → R is a convex function and Xadm

is a nonempty closed convex set. We introduce a
regularization method as follows:

Vμ,δ (x, c)

:= μ{g (x, x̂(x))} − 1

2
‖Aineqx− bineq + c‖2

− δ

2

(
‖x‖2 + ‖x̂‖2 + ‖c‖2

)
.

Tikhonov’s regularization is one of the most popular
approaches to solve discrete ill-posed minimization
problems. The method aims at establishing an
approximation of x by replacing the minimization of an
ill-posed problem.

For the transfer pricing bargaining problem, we have

g(x) =

n∑

l=1

αl log
(
ϕl

(
xl, xl̂

)

− f∗
l

(
xl∗, xl̂∗)

)
→ max

x∈X

subject to

ϕl (x, x̂(x)) > f∗
l ,

(26)

where

ϕ1 =
[(
p1 −K1

)
q1 − κ1

cc
1q1 − ω1

τp
1q1

]
,

ϕ2 =
[(
p2 − p1

)
q2 − κ2

cc
2q2 − ω2

τp
2q2

]
,

ϕ3 =
[(
p3 − p2

)
q3 − κ3

cc
3q3 − ω3

τp
3q3

]
,

ϕ4 =
[(
p4 − p3

)
q4 − κ4

cc
4q4 − ω4

τp
4q4

]
.
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and

Aineq =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 · · 0 0 0
· · 1 · · · · ·
· · 1 · · · ·
· · 1 0 · ·
0 · · · 0 1 0 ·
0 · · · · · 1 0
0 · · · · · 0 1
−1 0 · · · 0 0 0
0 −1 · · · · 0 0
· · −1 · · · · ·
· · · −1 · · · ·
· · · · −1 · · ·
0 · · · 0 −1 0 0
0 · · · · 0 −1 0
0 0 · · · · · −1

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

,

bineq =
(
p1+, p

2
+, p

3
+, p

4
+, q

1
+, q

2
+, q

3
+, q

4
+,

−p1−,−p2−,−p3−,−p4−,

−q1−,−q2−,−q3−,−q4−
)�

.

5.3. Solution of the transfer price problem. The
bounds are defined as follows: pl ∈ Padm :=

[
pl−, pl+

]
,

ql ∈ Qadm :=
[
ql−, q

l
+

]
. For each player l = 1, . . . , 4, we

have p1 ∈ [85000, 140000], p2 ∈ [70000, 150000], p3 ∈
[90000, 160000], p4 ∈ [80000, 190000], q1 ∈ [650, 800],
q2 ∈ [800, 1100], q3 ∈ [650, 1200], q4 ∈ [700, 1600].

Production costs (e.g., transactional costs, raw
materials, components, and their per period inventory
costs in dollars) are determined by cl(ql) := κl

cq
l, κl

c ≥ 0.
For each player l = 1, . . . , 4, we have κ1

c = 0.1, κ2
c =

0.02, κ3
c = 0.3, κ4

c = 0.2.
The taxes are defined by rl(plql) := ωl

τp
lql, l =

1, . . . , 4, where ω1
τ = 0.03, ω2

τ = 0.2, ω3
τ = 0.01, ω4

τ =
0.1.

To analyze the usefulness of negotiated transfer
pricing in the context of a decentralized multidivisional
firm, we first employ the procedure presented in Section 3
for computing the disagreement point. This procedure
entails the two divisions initially disagree on a fixed-price
p̃ specifying a transfer quantity q̃ .

Fixing p = 1, γ = 5 × 10−8, μ = 1 × 10−3 and
δ = 8× 10−1, and applying

f̃l
(
x̃l∗, x̃l̂

)
=

n∑

l=1

∣
∣ϕl

(
x̃
l∗
, x̃l̂

)− ϕl

(
xl, xl̂

)∣∣

for computing the disagreement point, we have that

p̃ = [93500, 77000, 99000, 88000],
q̃ = [760, 880, 1140, 770].

Fig. 5. Disagreement point price p̃.

Fig. 6. Disagreement point quantity q̃.

Figures 5 and 6 show the convergence process for the
disagreement point.

Then, the initial transfer pricing is renegotiated, and
a new trade quantity for q and a new price p are specified.

Now, fixing γ = 3.8 × 10−4, μ = 1 × 10−1 and
δ = 2.01× 10−1, and applying Eqn. (26), we obtain

p = [93500, 81870, 99000, 100260],
q = [760, 880.1, 1140, 855.3].

Figures 7 and 8 show the new agreement point where
all the players improve their positions or remain the
same. The resulting process is a simultaneous adjustment
of quantity and the transfer price. The renegotiation
procedure itself is cooperative in the sense that the
divisions jointly maximize the operating profit. The
renegotiation utility is defined as the difference between
the maximum operating profit and the profit resulting from
the initial quantity q̃ as well as the initial transfer price
p̃. The conditions ensure that for all the divisions the
operating profit under the new equilibrium point improves
the payoffs resulting from the renegotiation. Then, it
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Fig. 7. Agreement point price p.

Fig. 8. Agreement point quantity q.

may be beneficial for all divisions to adjust price and
the transfer quantity in order to find a Pareto improving
solution.

6. Conclusion

We presented a new solution approach to negotiating the
transfer price using the Nash bargaining game theory
model for multidivisional firms. We provided a solution
model where divisions cooperatively make their decisions
to maximize the global profits of the firm. To the best
of our knowledge, there are few solutions presented in
the literature able to solve the price transfer problem for
multidivisional firms employing cooperative game theory,
specifically, Nash’s bargaining approach for multiple
divisions. We proposed a framework and a method
based on the Nash equilibrium approach for computing
the disagreement point. We introduced the bargaining
solution, which is a single-valued function that selects
the most preferred alternative within the set of feasible
outcomes that produces a profit-maximizing allocation
of the transfer price between divisions. We proposed

an optimization method for computing the bargaining
solution.

In future work, there are many challenging issues
remaining to be addressed. Given that in the bargaining
game all players improve their positions, we are planning
to extend the bargaining concept to a more realistic
approach where in negotiations some players need to
be better off and others worse off. We will also
propose an alternative and improved optimization method
for computing the bargaining solution (Clempner and
Poznyak, 2011; Shtessel, 1996; Trejo et al., 2015). In
addition, we are going to develop an extension of this
work applying Stackelberg games.
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