
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 4, 777–783
DOI: 10.1515/amcs-2017-0054

SOFTWARE RELIABILITY GROWTH MODELING FOR AGILE SOFTWARE
DEVELOPMENT

SHUBHAM RAWATa,∗, NUPUR GOYAL b, MANGEY RAM b,a

aDepartment of Computer Science and Engineering
Graphic Era University, Dehradun, Uttarakhand, India

e-mail: geu.shubham@gmail.com

bDepartment of Mathematics
Graphic Era University, Dehradun, Uttarakhand, India

The frequent incremental release of software in agile development impacts the overall reliability of the product. In this
paper, we propose a generic software reliability model for the agile process, taking permanent and transient faults into
consideration. The proposed model is implemented using the NHPP (non-homogenous Poisson process) and the Musa
model. The comparison of the two implementations yields an effective, empirical and reliable model for agile software
development.

Keywords: software reliability, testing, non-homogeneous poison process, transient faults, permanent faults, Musa model.

1. Introduction

Today, software has become indispensable both as a
product and as a driving force for the creation of
new technologies and the refinement of the existing
ones. In the past decades the role of software
has amplified from generating mathematical data to
controlling and monitoring modern systems such as
broadcasting, financial transactions systems, national
defense organizations, medical systems, household
appliances, automobiles, and many more. As software
becomes more requisite and convoluted day-by-day, its
reliability grows into a critical factor in the determination
of software quality (Wilson, 1997).

Software reliability is defined in statistical terms
as the probability of failure-free operation of a com-
puter program in a specified environment for a speci-
fied time (Musa et al., 1987). Calculation and estimation
of software reliability is an essential tool for developing
reliable software systems. Several methods regarding
assessment and investigation through metrics, models and
tools have been introduced in the last four decades (Rawat
et al., 2015).

With the drastic growth of software industry,
competitive pressure, convulsive market forces and

∗Corresponding author

rapidly evolving requirements have become an inevitable
part of any software project. To ensure success,
software systems need to be rapidly developed and
delivered, and must also accommodate the ever changing
requirements. The traditional plan-driven approach
focuses on a complete requirement specification prior to
designing, constructing, and testing the system. It is more
inclined towards planning, designing, and documenting
the system than on the software development process.
Therefore, planning dominates over the actual program
development and testing. In the rapid development and for
delivery to be in place, there is a need for a more flexible
and adaptable development process (Sommerville, 2011).
Therefore, most firms have changed their approach from
traditional plan-driven to agile for software development.
According to a survey by Forrester Research (West
et al., 2010), about half of software engineers use agile
processes for information systems development.

The agile way is a more informal approach to
software development directed by a set of developmental
guidelines. It accentuates customer collaboration,
highly motivated team members, incremental delivery
of software, adaptability to changes and maintaining
development simplicity (Agile Alliance, 2017). The agile
approach follows the philosophy of release early, re-
lease often, which emphasizes the importance of early

geu.shubham@gmail.com

778 S. Rawat et al.

and frequent releases of the system. Early releases of
software deliver a core product with a set of limited
functionalities and each subsequent release incrementally
adds new functionalities, repairs existing faults or adapts
new technologies.

Since every release adds new code to the system,
it is capable of introducing new faults. Although a new
release is meant to improve the system, there is always a
possibility of degeneration due to the adjunct of new bugs.

Essentially, every release adds some fault content to
the existing system. A possible software failure curve
is shown in Fig. 1. In the useful life phase, frequent
releases are made, which soars the overall failure rate,
hence dropping the reliability of the system.

Software reliability modeling (SRM) is one of the
key areas of research in software reliability. An SR model
offers an efficient method of evaluating and forecasting
software reliability based on certain assumptions about
the fault in software and fault exposure in a given usage
environment (Palma et al., 1993).

Jelinski and Moranda (1972) proposed the first
software reliability (SR) model and hundreds of models
have been introduced so far (Rawat et al., 2015). Some
that have received much attention are exponential SRGMs
(software reliability growth models) (Goel and Okumoto,
1979), which assume a constant disaster force of all the
faults. In S-shaped SRGMs (Yamada et al., 1983), failure
intensity varies with time; and in hyper-exponential
SRGMs (Matsumoto et al., 1988), failure intensity of
faults is constant within the same time interval. The
imperfect debugging model of Goel and Okumoto stressed
the fact that not all faults in the system are removed
when they are detected (Goel, 1985). The fault detection
rate, described by a constant (Pham and Pham, 2000)
or by a learning phenomenon of developers (Fang and
Yeh, 2016), is also studied in the literature.

Many NHPP based SRGMs have been proposed
earlier. Yamada et al. (1984) suggested an exponential
SRGM that considered two types of faults. The SRGM
proposed by Pham and Zhang (2003) assumed multiple

Fig. 1. Software failure curve.

failure characteristics. Singh et al. (2014) classified
faults subjected to the time of detection of a fault. The
model due to Kapur et al. (1995) and Singh et al. (2008)
categorized software faults as simple, hard and complex
faults. Research has established that faults differ in testing
effort and hence should be examined as a distinct entity.

In agile software development, the incremental
delivery is coupled with continuous testing. In every
release, existing faults are eliminated and potentially
valuable features are delivered to the customer (Dingsøyr
and Lassenius, 2016). The interaction between new
implementation and the existing one usually soars the
fault content of the system, hence dwindling the system
reliability. In practice, when software is released, it
contains some hidden faults which are reported post
deployment and rectified in future releases.

In this paper, we propose a model to analyze
software reliability through two different predefined
models namely, the NHPP (non-homogenous Poisson
process) and the Musa model. The enhancement in
software reliability is obtained by a comparative study of
the estimated results of both models.

In our model, we consider two types of faults:
long-lasting (or permanent) faults and temporary (or
transient) faults. The former exist in the system until
they are eliminated by coding effort. On the other hand,
they remain in the system for a short period of time and
then disappear. Both types of faults are removed with
varying testing effort and latter treated separately. The
models in earlier research have ignored these two types
of faults, their testing effort and potential to affect the
overall reliability of the end product from the stance of
agile development. In our model, permanent faults from
the i-th release might be identified and removed in the
(i+1)-th release or the (i+2)-th release or the (i+3)-th
release, and so on. Transient faults, which can be removed
by minimal testing effort, are removed in the release they
arise. Also in the i-th release, we consider the remaining
permanent faults of all the releases prior to it, i.e., the
(i − 1)-th, the (i− 2)-th, . . . , second, first. Any software
which is a final product of a series of releases is vulnerable
to critical reliability consequences. For such software,
modeling becomes essential to estimate its reliability.

2. Model details

2.1. Model description. An SRGM provides a
systematic way of assessing and predicting softwares
reliability based on certain assumptions about the fault
in the software and fault exposure in a given usage
environment (Rawat et al., 2015). An SRGM for the
agile approach must accommodate the release wise fault
content of the software. The NHPP and the Musa
model have inherent fault counting behavior and allow
an expected number of faults to vary with time. Hence,

Software reliability growth modeling for agile software development 779

we use the NHPP and the Musa model to formulate the
SRGM.

2.1.1. NHPP model. NHPP based modeling has been
extensively studied in the literature for its worthwhile
detection of software faults and easy implementation of
software reliability analysis (Lai and Garg, 2012). Hence,
we formulate our model using the NHPP. Let us assume
that faults can exist in software coding arbitrarily and their
emergence is a function of time. The number of faults
at any instant t in software coding is N(t) which is a
counting process and it denotes the increasing number of
software disasters or faults at any instant t. N(t) can be
defined as a non-homogeneous Poison process (NHPP) if
the following conditions are met:

(i) N(0) = 0.

(ii) Only one fault can occur in the time interval
(t, t+ dt).

(iii) The occurrence of faults does not depend on the
previous faults.

For the software reliability growth model, N(t) is
exposed to be an NHPP with a mean value function m(t),
where m(t) is the total number of faults in each release.
The NHPP gives

P [N(t)] = n =
[m(t)]n

n!
e(−m)(t), n ≥ 0. (1)

Based on the definition of the mean value function,
m(t) is the average quantity of errors occurring in the
time interval (0, t) and can be expressed in terms of failure
rates, i.e.,

m(t) =

∫ t

0

λ(s) ds (2)

and
dm(t)

dt
=

f(t)

1− F (t)
(a−m(t)) (3)

with the initial condition

m(0) = 0.

After solving Eqns. (2) and (3) with the help of the
initial condition, we have

m(t) = aF (t),

where a is constant and F (t) is a probability distribution
function.

2.1.2. Musa model. The Musa model uses program
execution time as the independent variable. This model
has had the widest distribution among software reliability
models and applicability (Farr, 1996). A simplified
version of the Musa model is

n = N0

[
1− exp

(−Ct

N0T0

)]
, (4)

where N 0 is the inherent number of errors, T0 the mean
time to failure (MTTF) at the start of testing and C is
the testing compression factor equal to the ratio of the
equivalent operating time to the testing time.

The present MTTF,

T = T0 exp
(Ct

N0T0

)
, (5)

yields

R(t) = exp
(−t

T

)
. (6)

2.2. Assumptions and nomenclature. This model has
the following assumptions:

(i) Fault removal in any release depends upon the faults
from all previous releases.

(ii) The number of faults at the start of testing is finite.

(iii) The only source of software failure is a coding fault.

(iv) Every release adds new features to the system which
remove some existing faults, but also add some new
faults.

(v) The system is under imperfect debugging.

(vi) The failure rates for permanent and transient
faults follow exponential and Weibull distributions,
respectively.

The notation used throughout this work is shown in
Table 1.

3. Formulation of the SRGM

3.1. Using the NHPP model. In the proposed model,
the NHPP is used to describe the time dependent nature
of N(t) detected by specific testing. Since two types of
fault have been considered, the total number of faults in
the n-th release becomes

mn(t) = mn1(t) +mn2(t), (7)

where 1 and 2 represent the permanent and transient
faults, respectively, and n denotes the release number. We
assume that the mean value function of permanent faults
follows the exponential distribution given by Goel and
Okumoto (1980), and the mean value function of transient

780 S. Rawat et al.

Table 1. Notation.

m(t) Total number of faults
f(t) Probability density function
F (t) Probability distribution function (pdf)
tn−1 Time for n-th release
an Initial fault content
bn1 Detection rate for permanent fault
bn2 Detection rate for transient fault
RLn n-th release
λ Failure rate for n-th release
P Probability of fault occurrence
F n1 Pdf for permanent faults in n-th release
F n2 Pdf for transient faults in n-th release
R Reliability
C Testing compression factor
T MTTF

faults follows a Weibull distribution (Yamada, 1994).
Thus, the mean value function of the software reliability
growth model can be written as (Kapur et al., 2014)

mn(t) = λaFn1(t) + (1− λ)aFn2(t), (8)

where
Fn1(t) = 1− exp(−bn1t), (9)

Fn2(t) = 1− (1 + bn2t) exp(−bn2t). (10)

Additionally, we assume that the software has some
permanent faults that get propagated to future releases.
Thus, the generalized equation for the total number of
expected faults in the n-th release can be expressed as

mn(t)

= λnanFn1(t− tn−1) + (1− λ)nanFn2(t− tn−1)

+

n−1∑
i=1

λiai(1− Fi1(tn−1 − tn−2))Fn1(t− tn−1).

(11)

To examine the influence of errors on reliability
owing to add-ons at a different instant, a multi-release
software reliability model has been established. Software
reliability is an attribute of any software that consistently
performs the required tasks according to its specifications
(Goyal and Ram, 2014). In other words, software
reliability is the probability, or quantity, of faults existing
in the software (Pandey and Goyal, 2015). Thus, software
reliability can be described as

R(t) = exp(−m(t)t). (12)

The generalized expression of software reliability in
the n-th release is

Rn(t) = exp(−mn(t)t). (13)

3.2. Using the Musa model. For modeling the
software developed using the agile approach, the
reliability of different software releases can be evaluated
using the Musa model. The generalized formula of
software reliability in the n-th release is

R(t) = exp
(−t

T

)
. (14)

4. Numerical computations

4.1. NHPP based SRGM. For the practical utility of
the SRGM, we analyze the software reliability trend for
four successive releases, taking n = 1, 2, 3, 4 in Eqn. (11).
Setting the other parameters as a1 = 100, a2 = 80, a3 =
60, a4 = 40, b11 = 0.1, b12 = 0.12, b21 = 0.01, b22 =
0.14, b31 = 0.001, b32 = 0.16, b41 = 0.0001, b42 =
0.18, λ1 = 0.47690, λ2 = 0.17920, λ3 = 0.01420, λ4 =
0.09057 (Aggarwal et al., 2011; Singh et al., 2014),
software reliability for four releases is summarized in
Table 2. Figure 2 depicts the boost in reliability with
advancing releases.

Table 2. Reliability of software developed using an agile pro-
cess under the NHPP.

Time (t) Reliability R(t)

RL1 RL2 RL3 RL4

0 1.00000 1.00000 1.00000 1.00000
0.1 0.95330 0.99618 0.99987 0.99998
0.2 0.82545 0.97751 0.99648 0.99924
0.3 0.64871 0.94136 0.98548 0.99436
0.4 0.46240 0.88654 0.96301 0.98218
0.5 0.29874 0.81372 0.92612 0.95996
0.6 0.17484 0.72556 0.87309 0.92565
0.7 0.09264 0.62649 0.80389 0.87809
0.8 0.04441 0.52227 0.72035 0.81730
0.9 0.01926 0.41913 0.62608 0.74449
1 0.00755 0.32291 0.52608 0.66212

4.2. Musa based SRGM. Using the formulations of
the Musa model, we derive the reliability values for the
agile process model. Setting T1 = 2.09687, C1 =
0.041666, N1 = 100, t1 = 0.041666, T2 =
2.09687, C2 = 0.083333, N2 = 80, t2 = 0.083333, T3 =
70.42253, C3 = 0.012500, N3 = 60.79, t3 =
0.012500, T4 = 110.41183, C4 = 0.166666, N4 =
40, t4 = 0.166666 in Eqn. (14), we determine software
reliability for four releases. The values are indicated in
Table 3.

Figure 3 shows reliability trends in different releases
of the software using the Musa model. It is evident from
the graph that the reliability strengthens in consecutive
releases.

Software reliability growth modeling for agile software development 781

Fig. 2. Reliability trends through the NHPP model.

Fig. 3. Reliability trends through the Musa model.

Fig. 4. Comparison of reliability through NHPP and Musa
model based SRGMs in Release 1.

5. Comparative study

The results of the NHPP based SRGM and the Musa
model based SRGM were analyzed and compared. The
release wise reliability trend of releases 1, 2, 3 and 4 for
the two models is shown in Figs. 4–7, respectively. We
observe that the reliability growth in every release in the

Fig. 5. Comparison of reliability through NHPP and Musa
model based SRGMs in Release 2.

Table 3. Reliability of software developed using an agile pro-
cess under the Musa model.

Time (t) Reliability R(t)

RL1 RL2 RL3 RL4

0 1.00000 1.00000 1.00000 1.00000
0.1 0.95388 0.95399 0.99858 0.99912
0.2 0.90989 0.91010 0.99717 0.99823
0.3 0.86793 0.86823 0.99576 0.99735
0.4 0.82790 0.82829 0.99434 0.99647
0.5 0.78972 0.79018 0.99294 0.99559
0.6 0.75330 0.75383 0.99153 0.99471
0.7 0.71856 0.71915 0.99012 0.99383
0.8 0.68542 0.68606 0.98872 0.99296
0.9 0.65381 0.65450 0.98732 0.99208
1 0.62366 0.62439 0.98592 0.99120

Musa model is higher than that in the NHPP based model.
Also, in the former the reliability attains constancy in the
consecutive releases.

The graphs outline the contrast in reliability through
NHPP and Musa based SRGMs, respectively, in various
releases of the software. The pictorial representation of
the reliability trend makes it apparent that the Musa model
based SRGM has more promising reliability out-turn than
the NHPP based SRGM.

6. Conclusions

In anticipation of a better market position and customer
satisfaction, many software development firms are
adopting agile practices. In this paper, we have proposed
an SRGM for software under agile development using the
NHPP and the Musa model. Two types of faults, i.e.,
permanent and transient, have been treated independently
for each release. Our comparison of the reliability of
the two SRGMs indicates that the Musa model based

782 S. Rawat et al.

Fig. 6. Comparison of reliability through NHPP and Musa
model based SRGMs in Release 3.

Fig. 7. Comparison of reliability through NHPP and Musa
model based SRGMs in Release 4.

SRGM yields better reliability results than the NHPP
based SRGM. The capability of the Musa model to attune
substantial changes in software over time as faults are
observed makes it perform better. In the future, we
will study the reliability of various other agile practices,
extending the ideas discussed in this paper.

References

Aggarwal, A.G., Kapur, P. and Garmabaki, A. (2011). Imperfect
debugging software reliability growth model for multiple
releases, Proceedings of the 5th National Conference
on Computing for Nation Development-INDIACOM, New
Delhi, India, pp. 337–344.

Agile Alliance (2017). http://www.agilealliance.
org/.

Dingsøyr, T. and Lassenius, C. (2016). Emerging themes in agile
software development: Introduction to the special section

on continuous value delivery, Information and Software
Technology 77(1): 56–60.

Fang, C.-C. and Yeh, C.-W. (2016). Effective confidence interval
estimation of fault-detection process of software reliability
growth models, International Journal of Systems Science
47(12): 2878–2892.

Farr, W. (1996). Software reliability modeling survey, in M.R.
Lyu (Eds.), Handbook of Software Reliability Engineering,
McGraw-Hill, Inc. Hightstown, NJ, pp. 71–117.

Goel, A.L. (1985). Software reliability models: Assumptions,
limitations, and applicability, IEEE Transactions on Soft-
ware Engineering 11(12): 1411–1423.

Goel, A.L. and Okumoto, K. (1979). Time-dependent
error-detection rate model for software reliability and other
performance measures, IEEE Transactions on Reliability
28(3): 206–211.

Goel, A.L. and Okumoto, K. (1980). A time dependent error
detection rate model for software performance assessment
with applications, Technical report, DTIC Document,
http://www.dtic.mil/docs/citations/
ADA088186.

Goyal, N. and Ram, M. (2014). Software development life cycle
testing analysis: A reliability approach, Mathematics in
Engineering, Science & Aerospace 5(3): 313–329.

Jelinski, Z. and Moranda, P. (1972). Software reliability
research, in W. Freiberger (Ed.), Statistical Computer Per-
formance Evaluation, Academic Press, New York, NY, pp.
465–484.

Kapur, P., Sachdeva, N. and Singh, J.N. (2014). Optimal cost: A
criterion to release multiple versions of software, Interna-
tional Journal of System Assurance Engineering and Man-
agement 5(2): 174–180.

Kapur, P., Younes, S. and Agarwala, S. (1995). Generalised
Erlang model with n types of faults, ASOR Bulletin
14(1): 5–11.

Lai, R. and Garg, M. (2012). A detailed study of NHPP software
reliability models, Journal of Software 7(6): 1296–1306.

Matsumoto, K.I., Inoue, K., Kikuno, T. and Torii, K. (1988).
Experimental evaluation of software reliability growth
models, 11th International Symposium FTCS-18, Tokyo,
Japan, pp. 148–153.

Musa, J.D., Iannino, A. and Okumoto, K. (1987). Soft-
ware Reliability: Measurement, Prediction, Application,
McGraw-Hill, Inc., New York, NY.

Palma, J., Tian, J. and Lu, P. (1993). Collecting data for software
reliability analysis and modeling, Proceedings of the 1993
Conference of the Centre for Advanced Studies on Collab-
orative Research: Software Engineering, Toronto, Canada,
Vol. 1, pp. 483–494.

Pandey, A.K.and Goyal, N.K. (2015). Background: Software
quality and reliability prediction, in A.K. Pandey and
N.K. Goyal (Eds.), Early Software Reliability Predic-
tion, Studies in Fuzziness and Soft Computing, Vol. 303,
Springer, New Delhi, pp. 17–33.

http://www.agilealliance.org/
http://www.agilealliance.org/
http://www.dtic.mil/docs/citations/ADA088186
http://www.dtic.mil/docs/citations/ADA088186

Software reliability growth modeling for agile software development 783

Pham, H. and Zhang, X. (2003). NHPP software reliability and
cost models with testing coverage, European Journal of
Operational Research 145(2): 443–454.

Pham, L. and Pham, H. (2000). Software reliability models
with time-dependent hazard function based on Bayesian
approach, IEEE Transactions on Systems, Man, and Cy-
bernetics A: Systems and Humans 30(1): 25–35.

Rawat, S., Rawat, R.S. and Ram, M. (2015). A review on
software reliability: Metrics, models and tools, Mathemat-
ics in Engineering, Science & Aerospace 6(2): 135–156.

Singh, O., Anand, A., Aggrawal, D. and Singh, J. (2014).
Modeling multi up-gradations of software with fault
severity and measuring reliability for each release, Interna-
tional Journal of System Assurance Engineering and Man-
agement 5(2): 195–203.

Singh, V., Kapur, P. and Mashaallh, B. (2008). Considering
errors of different severity in software reliability growth
modeling using fault dependency and various debugging
time lag functions, in A.K. Verma et al. (Eds.), Proceed-
ings of Advances in Performance and Safety of Complex
Systems, MacMillan India, New Delhi, pp. 839–849.

Sommerville, I. (2011). Software Engineering, Addison-Wesley,
Boston, MA.

West, D., Grant, T., Gerush, M. and Dsilva, D. (2010). Agile
development: Mainstream adoption has changed agility,
Forrester Research 2(1): 41.

Wilson, T. (1997). Software failure: Management failure.
Amazing stories and cautionary tales, International Jour-
nal of Information Management 17(5): 387.

Yamada, S. (1994). Optimal release problems with warranty
period based on a software maintenance cost model, Trans-
actions of the Information Processing Society of Japan
35(9): 2197–2202.

Yamada, S., Ohba, M. and Osaki, S. (1983). S-shaped reliability
growth modeling for software error detection, IEEE Trans-
actions on Reliability 32(5): 475–484.

Yamada, S., Ohba, M. and Osaki, S. (1984). S-shaped software
reliability growth models and their applications, IEEE
Transactions on Reliability 33(4): 289–292.

Shubham Rawat received his BTech degree
(with honors) in computer science and engineer-
ing from Graphic Era University, India, in 2016.
He is a software professional and has strong in-
terests in software engineering, focusing on soft-
ware process, requirement engineering and soft-
ware quality.

Nupur Goyal received her BSc degree in com-
puter science in 2009 from Kurukshetra Uni-
versity, Haryana, India. She received her MSc
in mathematics in 2011 from H.N.B. Garhwal
University, Srinagar, Uttarakhand, India, and
the PhD degree from Graphic Era University,
Dehradun, Uttarakhand, India, in 2016. Her re-
search interests are in reliability theory. She has
also been a faculty member of the Mathematics
Department of the Suraj Degree College, Mahen-

dergarh, Haryana.

Mangey Ram received the PhD degree (major
in mathematics and minor in computer science)
from the G.B. Pant University of Agriculture and
Technology, Pantnagar, India, in 2008. He has
been a faculty member for around nine years and
has taught several core courses in pure and ap-
plied mathematics at undergraduate, postgradu-
ate, and doctorate levels. He is currently a pro-
fessor at Graphic Era University, Dehradun, In-
dia. Before joining the Graphic Era University,

he was a deputy manager (probationary officer) with Syndicate Bank
for a short period. He is the editor-in-chief of the International Journal
of Mathematical, Engineering and Management Sciences, the executive
editor of the Journal of Graphic Era University, an associate executive
editor of the Journal of Reliability and Statistical Studies, and a guest
editor or member of the editorial board of many journals. He is a reg-
ular reviewer for international journals. He has published 118 research
works in many highly reputed national and international journals, and
has also presented his contributions at national and international confer-
ences. His fields of research are reliability theory and applied mathemat-
ics. Dr. Ram is a senior member of the IEEE, a member of the Opera-
tional Research Society of India, the Society for Reliability Engineering,
Quality and Operations Management in India, the International Associ-
ation of Engineers in Hong Kong, and the Emerald Literati Network in
the UK. He has been a member of the organizing committee of a number
of international and national conferences, seminars, and workshops. He
has been granted the Young Scientist Award by the Uttarakhand State
Council for Science and Technology, Dehradun, in 2009, the Best Fac-
ulty Award in 2011 and recently the Research Excellence Award for his
significant contribution to research at Graphic Era University.

Received: 10 July 2016
Revised: 24 December 2016
Re-revised: 9 April 2017
Accepted: 27 April 2017

	Introduction
	Model details
	Model description
	NHPP model
	Musa model

	Assumptions and nomenclature

	Formulation of the SRGM
	Using the NHPP model
	Using the Musa model

	Numerical computations
	NHPP based SRGM
	Musa based SRGM

	Comparative study
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

