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In the last two decades, fractional calculus has become a subject of great interest in various areas of physics, biology,
economics and other sciences. The idea of such a generalization was mentioned by Leibniz and L’Hospital. Fractional
calculus has been found to be a very useful tool for modeling linear systems. In this paper, a method for computation of
a set of a minimal positive realization of a given transfer function of linear fractional continuous-time descriptor systems
has been presented. The proposed method is based on digraph theory. Also, two cases of a possible input-output digraph
structure are investigated and discussed. It should be noted that a digraph mask is introduced and used for the first time to
solve a minimal positive realization problem. For the presented method, an algorithm was also constructed. The proposed
solution allows minimal digraph construction for any one-dimensional fractional positive system. The proposed method is
discussed and illustrated in detail with some numerical examples.
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Nomenclature

A : matrices denoted in boldface,
A−1 : inverse matrix,
det(A) : determinant of the matrix A,
A ≥ 0 : non-negative matrix,
A : sets denoted by the double line,
i : lower/upper indices and polynomial coefficients,
C
a D

α
t : Caputo fractional derivative,

D : one-dimensional digraph,
vi : vertex of a graph,
(vi, vj) : arc of a digraph,
w(vi, vj) : weight of an arc,
M(D) : digraph mask,⋃

: operation composition relative to vertices,
◦ : operation superposition,
R

n×m : set n×m of real matrices,
R+ : set of non-negative numbers,
Z+ : set of non-negative integers,
In : n× n identity matrix,
L{f(t)} : L-transform of the function f(t),
T (s) : transfer function of one variable s,
p(s) : polynomial of the variable s.

1. Introduction

Descriptor non-positive and positive continuous-time
systems have been considered in many papers and books
(Luenberger, 1979; Lewis, 1984; 1986; Dai, 1989; Farina
and Rinaldi, 2000; Kaczorek, 2001; Dodig and Stoi,
2009; Guang-Ren, 2010; Kaczorek and Sajewski, 2014).
Matrix theory for the descriptor system has been presented
by Luenberger (1979), Kublanovskaya (1983) as well as
Horn and Johnson (1991). There are many problems
associated with the analysis and synthesis of descriptor
systems. One of the very important ones is the positive
realization and minimal positive realization problem. In
many research studies, we can find a constant matrix
form, which satisfies the system described by the transfer
function (Farina and Rinaldi, 2000; Benvenuti and Farina,
2004; Kaczorek, 2007; Guang-Ren, 2010; Sajewski, 2012;
Kaczorek and Sajewski, 2014). In fact, there are many sets
of matrices which fit into the system transfer function.

Integral and differential calculus of fractional order
has become a subject of great interest in various areas
of physics, biology, economics and other sciences.
Fractional calculus is a generalization of traditional
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integer order integration and differentiation actions onto
non-integer order. The idea of such a generalization was
mentioned in 1695 by Leibniz and L’Hospital. The first
definition of the fractional derivative was introduced by
Liouville and Riemann at the end of the 19th century
(Nishimoto, 1984). However, it was only in the late
1960s, that this idea drew the attention of engineers.
Fractional calculus was found to be a very useful tool for
modelling the behaviour of many materials and systems.
Mathematical fundamentals of the fractional calculus are
given by Nishimoto (1984), Miller and Ross (1993),
Podlubny (1999), Das (2011), Ortigueira (2011) as well as
Kaczorek and Sajewski (2014). Some other applications
of fractional-order systems can be found in the works
of Ionescu et al. (2010), Magin et al. (2011), Kaczorek
(2011), Petras et al. (2012), Vandoorn et al. (2013),
Podlubny et al. (2014), Machado and Lopes (2015),
Machado et al. (2015), Muresan et al. (2016a), Sikora
(2016), or Muresan et al. (2016b).

The main purpose of this paper is to present a method
based on one-dimensional digraph theory for computation
of the set of a minimal positive realization. The
problem is related to a one-dimensional continuous-time
fractional positive descriptor system. A digraph structure
corresponding to minimal realizations of the descriptor
system is presented and discussed. In this paper, for the
first time, a digraph mask is introduced and used. It is
very important in the analysis of descriptor systems, with
the use of digraph theory. By using the digraph mask,
we can realize singularity in the system considered. It
should be noted that there are many different possible
structures of masks. Thus, we get a wider set of
possible realizations. As a result of this discussion,
sufficient conditions of digraph structures are established.
Finally, we propose a procedure for determining the set
of positive realizations in the class K1 of the digraph
structure. The digraph classes of two-dimensional
systems were presented by Hryniów and Markowski
(2016a). Based on them, Markowski (2018) defined
and presented in detail classes for one-dimensional
systems. In the publications by Hryniów and Markowski
(2016b), Markowski (2016; 2017a) or Markowski and
Hryniów (2017a; 2017b), minimal realization of the
continuous-time linear fractional system as a set of
matrices (A,B,C,D) was determined. This work is the
next step in the research on the determination of the set
of the realization in the form (E,A,B,C) of positive
continuous-time non-fractional and fractional descriptor
systems by using digraph theory, which was started by
Markowski (2017b; 2017c).

This work is organised as follows. Section 2
presents models and representations of fractional
continuous-time systems, basic properties of the
descriptor continuous-time linear system defined as the
state-space representation, as well as some notation

and basic definitions of digraph theory which will be
used in further. In Section 3, we construct a method
for determination of a minimal positive realization of
the descriptor continuous-time system which consists
of four parts: determination matrix A (Section 3.1) and
matrix E (Section 3.2), choosing sets of the proper pairs
(E,A) (Section 3.3) and determination matrices B and
C (Section 3.4). Sufficient conditions of the digraph
structure are also given. Finally, we demonstrate some
numerical examples (Section 4), present concluding
remarks, open problems and the related bibliography.

2. Background

2.1. Model and representation. The equation for a
continuous-time dynamic system of a fractional order can
be written as follows (Podlubny, 1999):

H(Dα0α1...αr )(y1, y2, . . . , yl)

= G(Dβ0β1...βq )(u1, u2, . . . , uk),

where yi, ui represent functions of time and H(·),
G(·) are combinations of the fractional-order derivative
operators. For the linear time-invariant single-variable
case, we obtain the following equation:
(

r∑

k=0

akD
αk

)

︸ ︷︷ ︸
H(Dα0α1...αr )

(y(t)) =

(
q∑

k=0

bkD
βk

)

︸ ︷︷ ︸
G(Dβ0β1...βq )

(u(t)), (1)

where ak ∈ R and bk ∈ R.

Applying the Laplace transform to (1) with zero
initial conditions, the input-output representation can be
obtained. The fractional-order system as the transfer
function has the following form:

G(s) =
bqs

βq + bq−1s
βq−1 + · · ·+ b0s

β0

arsαr + ar−1sαr−1 + · · ·+ a0sα0
. (2)

In the case of a commensurate-order system, the
continuous-time transfer function (2) is given in the
following form: G(s) =

∑q
k=0 bk(s

α)k/
∑r

k=0 ak(s
α)k,

and can be considered a pseudo-rational function H(λ) of
the variable λ = sα in the form

H(λ) =

q∑

k=0

bkλ
k

r∑

k=0

akλk

=
b0 + b1λ+ · · ·+ bqλ

q

a0 + a1λ+ · · ·+ arλr
. (3)

2.2. Descriptor fractional systems. In this paper
the following Caputo definition (Caputo, 1967) of the
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fractional derivative will be used:

C
a D

α
t =

dα

dtα
=

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α+1−n
dτ, (4)

where α ∈ R is the order of a fractional derivative,
f (n)(τ) = dnf(τ)/dτn and Γ(x) =

∫∞
0

e−ttx−1 dt is
the gamma function.

Consider the fractional descriptor continuous-time
linear system

E 0D
α
t x(t) = Ax(t) +Bu(t), 0 < α < 1, (5)

y(t) = Cx(t),

where x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p are the state,

input and output vectors, respectively, and

E ∈ R
n×n, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n.

It is assumed that detE = 0 and the pencil of the system
(5) is regular, that is,

det [Esα −A] �= 0

for some z ∈ C (where C is the field of complex
numbers).

Definition 1. The system (5) is called a descriptor system
if and only if detE = 0 (rank E = r < n).

Definition 2. The fractional descriptor linear system (5)
is called internally positive if and only if x(t) ∈ R

n
+ and

y(t) ∈ R
p
+ for t ≥ 0 for any admissible initial conditions

x0 ∈ R
n
+ and all inputs u(t) ∈ R

m
+ for t ≥ 0.

2.3. Digraphs. A directed graph (or just a digraph) D
consists of a non-empty finite set V(D) of elements called
vertices and a finite set A(D) of ordered pairs of distinct
vertices called arcs (Bang-Jensen and Gutin, 2009). We
call V(D) the vertex set and A(D) the arc set of digraph
D. We will often write D = (V,A), which means that V
and A are the vertex set and the arc set of D, respectively.
The order of D is the number of vertices in D. The size of
D is the number of arcs in D. For an arc (v1, v2), the first
vertex v1 is its tail and the second vertex v2 is its head.

There are two well-known methods of representation
of a digraph: a list and an incidence matrix. In this
paper we are using the incidence matrix to represent all
digraphs. The manner of constructing digraphs with this
method is presented, for example, by Godsil and Royle
(2001) or Bang-Jensen and Gutin (2009).

Assume that the following matrices are given:

(A,B)

=

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎣

vi
\vj v1 v2 v3

v1 0 0 1
v2 1 0 1
v3 0 1 1

⎤

⎦,

⎡

⎣

vi
\sm s1

v1 1
v2 1
v3 0

⎤

⎦

⎞

⎟
⎟
⎟
⎟
⎠

. (6)

There exists an arc from vertex vj to vertex vi
(or from vertex sm to vertex vi) if and only if
the (i, j)-th (or (i,m)-th) entry of the matrix is
non-zero. A one-dimensional digraph corresponding to
the matrices (6) is presented in Fig. 1.

s1 v1 v2 v3

Fig. 1. One-dimensional digraph of (6).

We present below some basic notions from graph
theory which are used in our further discussion. A walk
in a digraph D is a finite sequence of arcs in which every
two vertices vi and vj are adjacent or identical. A walk
in which all of the arcs are distinct is called a path. The
path that goes through all vertices is called a finite path. If
the initial and terminal vertices of the path are the same,
then the path is called a cycle. One of the very important
operations on digraphs is composition relative to vertices.

Definition 3. (Composition relative to vertices) Let
G1,G2, . . . ,Gn be digraphs with vertex sets V(Gn) =
{vi(n) : i ∈ N}. The composition relative to
vertices D[G1,G2, . . . ,Gn] is the digraphL with the vertex
set V(G1) ∪ V(G2) ∪ · · · ∪ V(Gn) = {vj : j =
1, . . . ,max{i(n)}, i ∈ N} and arc set A′ = A(G1) ∪
A(G2) ∪ · · · ∪ A(Gn), where A′ denotes the operation of
deleting multiple arcs.

More information on the use of digraph theory in
analysis of positive and non-positive system is given by
Fornasini and Valcher (1997; 2005), Godsil and Royle
(2001) or Bang-Jensen and Gutin (2009).

2.4. Problem formulation.

Theorem 1. (Podlubny, 1999) The Laplace transform of
the derivative-integral (4) has the form

L [ C
0 D

α
t

]
= sαF (s)−

n∑

k=1

sα−kf (k−1)(0+).

After using the Laplace transform in (5), Theorem 1
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and taking into account that

X(s) = L [x(t)] =

∫ ∞

0

x(t)e−st dt,

L [Dαx(t)] = sαX(s)− sα−1x0,

we obtain

X(s) = [Esα −A]
−1 [

sα−1x0 +BU(s)
]
, (7)

Y (s) = CX(s), U(s) = L [u(t)] .

From (7) we can determine the transfer matrix of the
system in the following form:

T(s) = C [Esα −A]
−1

B ∈ R
p×m(s). (8)

Definition 4. (Berman and Plemmons, 1979) A matrix
M = [mi,j ] ∈ R

n×n is called a Metzler matrix if its
off-diagonal entries are non-negative, mij ≥ 0.

As has been shown by Mitkowski (2008), every
non-negative matrix is a Metzler matrix. For every
Metzler matrix there exists a real number η ≥ minimij

such that ηI+M = A is a non-negative matrix.

The descriptor continuous-time linear system (5) is
positive if and only if

E ∈ R
n×n
+ , A ∈ Mn, B ∈ R

n×m
+ , C ∈ R

p×n
+ . (9)

The matrices (9) are called a realization of a given
transfer matrix T(s) ∈ R

p×m(s) if they satisfy the
equality (8). The realization (E,A,B,C) is called a
minimal realization if the dimension of the state matrix
A is minimal among all possible realizations of T(s).

The task is as follows: For the given transfer
matrix (8), determine a minimal positive realization of
the fractional descriptor continuous-time system (5) using
one-dimensional D digraph theory. The dimension of the
system must be minimal among all possible ones.

3. Problem solution

The solution to the minimal positive realization problem
will be presented for a one-dimensional single-input
single-output (SISO) system for m = p = 1. The
proposed method will be based on one-dimensional
digraph theory, and it will determine solutions in class
K1. The classes of the digraph structure are considered
in detail by Markowski (2018).

Consider the irreducible transfer function

T (s) =
n(s)

d(s)
(10)

with

n(s) = bq(s
α)q + bq−1(s

α)(q−1) + bq−2(s
α)(q−2)

+ · · ·+ b1s
α + b0,

d(s) = ar(s
α)r + ar−1(s

α)(r−1) + ar−2(s
α)(r−2)

+ · · ·+ a1s
α + a0,

where bi, i = 0, 1, . . . , q and aj , j = 0, 1, . . . , r are given
real coefficients, and r < q. We can rewrite the transfer
function (10) in the form (3). In this case, the transferred
function can be considered a pseudo-rational function of
the variable λ = sα in the form

T (λ) =
n(λ)

d(λ)
(11)

with

n(λ) = bqλ
q + bq−1λ

q−1 + bq−2λ
q−2

+ · · ·+ b1λ+ b0,

d(λ) = arλ
r + ar−1λ

r−1ar−2λ
r−2

+ · · ·+ a1λ+ a0.

The proposed method consists of four parts:

• In Section 3.1, we determine state matrices A
with the use of digraph theory. The characteristic
polynomial d(λ) is considered in the temporary
form d̃(λ) which is needed to determine a digraph
structure. It should be noted that this temporary
form does not change coefficients and powers of the
characteristic polynomial d(λ).

• In Section 3.2, we determine matrix E using digraph
mask M(D).

• Using the digraph structure determined in Section 3.1
and the digraph mask determined in Section 3.2,
we can create (Section 3.3) all possible realizations
as combinations of the characteristic polynomial
realizations and a digraph mask. After this operation,
we obtain the set of matrix pairs (E,A). It should be
noted that after using the digraph mask we obtain the
characteristic polynomial in the desired form d(λ).

• Finally, in Section 3.4, we should determine matrices
B and C by extending the digraphs obtained in
Section 3.3. Here we will consider two possible
cases (Sections 3.4.1 and 3.4.2) of the digraph
structure.

3.1. Determination of state matrix A. In the first
step, we must find matrix A. After multiplying the
denominator of a transfer matrix (11) by λ−(q+1), we
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obtain the following characteristic polynomial:

d(λ) = arλ
r−q−1 + ar−1λ

r−q−2 (12)

+ ar−2λ
r−q−3 + · · ·+ a1λ

−q + a0λ
−q−1.

In order to determine the digraph structure corresponding
to the characteristic polynomial (12), we must present
them in the following temporary form, which is needed
to draw the digraphs:

d̃(λ) = 1 + d(λ)

= 1 + arλ
r−q−1 + ar−1λ

r−q−2

+ ar−2λ
r−q−3 + · · ·+ a1λ

−q + a0λ
−q−1.

(13)

Remark 1. It should be noted that after this operation we
can consider a characteristic polynomial of the descriptor
system in the same way as a characteristic polynomial of
the standard system thus E ⇒ I (Layer 1 in Fig. 2).
In the next steps (Section 3.2), we introduce a digraph
mask M(D) (Layer 2 in Fig. 2), which guarantees the
singularity of the characteristic polynomial thus I ⇒ E
(Layer 3 in Fig. 2).

Then we turn the decomposition polynomial (13) into
a set of binomials:

d̃(λ)

= (1− arλ
r−q−1)

︸ ︷︷ ︸
Br

∪ (1 − ar−1λ
r−q−2)

︸ ︷︷ ︸
Br−1

∪ (1− ar−2λ
r−q−3)

︸ ︷︷ ︸
Br−2

∪ . . . ∪ (1− a1λ
−q)

︸ ︷︷ ︸
B1

(14)

∪ (1− a0λ
−q−1)

︸ ︷︷ ︸
B0

=

r⋃

i=0

(
1− arλ

i−q−1
)
=

r⋃

i=0

Bi,

where r is a number of binomials in the characteristic
polynomial and

⋃
is the operation called a composition

relative to vertices in digraphs presented in Definition 3.
For each binomial (14), using the following result,

we create digraph representations.

Proposition 1. (Binomial digraph representation) Di-
graph D corresponding to binomial 1− arλ

r−q−1, where
r = 0, 1, . . . . . . , q − 1, consists of one cycle, and it con-
tains |r − q − 1|–vertices.

Proof. Suppose that the digraph consists of the vertices
v1, v2, . . . , vq , vq+1. Assume that each of the arcs in the
digraph we assigned weights in the form of w(vi, vj)λ−1

for i, j ∈ Z+ = {1, 2, . . . , q + 1}, where vi is the tail and
vj is the head, and i �= j. Consider the boundary points in
the set:

Temp
orary

chara
cteris

tic po
lynom

ialLaye
r 1

d̃(λ
) =

1 +
d(λ

)

Digr
aph-M

askLaye
r 2

M(D)

Char
acter

istic
polyn

omia
l

Laye
r 3

d(λ
)

Fig. 2. Relation between d(λ), ˜d(λ) and M(D).

• r = q − 1 ⇒ power of the binomial 1 − arλ
r−q−1

is equal to aq−1λ
−2. The cycle can be written

as w(vi, vj)λ
−1 · w(vj , vi)λ

−1. Therefore, the
maximum weight in a digraph is equal to [w(vi, vj) ·
w(vj , vi)]λ

−2 = aq−1λ
−2.

• r = 0 ⇒ power of the binomial 1 − arλ
r−q−1

is equal to a0λ
−(q+1). In this case the cycle can

be written as w(v1, v2)λ
−1 · w(v2, :)λ−1 · · · · · w(:

, vi)λ
−1w(vi, vj)λ

−1 ·w(vj , v1)λ−1, where ‘:’ is the
next vertex in the cycle. Because i, j = q + 1 and
i �= j, the maximum weight in a digraph is equal
to [w(v1, v2) · w(v2, :) · . . . · w(:, vi) · w(vi, vj) ·
w(vj , v1)]λ

−(q+1) = a0λ
−(q+1).

�
Using Proposition 1, Theorem 1 presented by

Hryniów and Markowski (2014; 2015) and Definition 3,
we can create all digraph realizations of the characteristic
polynomials in a temporary form (13). Each digraph
corresponding to a characteristic polynomial must satisfy
two conditions. The first condition (C1) is related to
the existence of the common part of the digraph (vertex
in dark gray), the second condition (C2) is related to
the non-existence of additional cycles in the digraph.
To the vertices belonging to the common part of the
digraph we assigned weight equal to 1 and to the other
vertices—weight equal to 0. Then we must determine
arc weights which appear in the obtained digraphs
corresponding to the temporary polynomial (13).

One of the possible digraph structures, for the
power of the nominator equal to q and the power of the
denominator equal to r = q− 1, is presented in Fig. 3(a).

Remark 2. Other realizations can be obtained from the
digraph presented in Fig. 3(a) by the following actions:

• Renumbering vertices in the digraph. This operation
is similar to circle, rotation and synonymous with
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v1

1

v2

1

vq−1

0

vq

0

vq+1

0

w(v1, v2)λ
−1 w(vq−1, vq)λ

−1 w(vq, vq+1)λ
−1

w(v2, v1)λ
−1

w(vq−1, v1)λ
−1

w(vq, v1)λ
−1

w(vq+1, v1)λ
−1

(a)

v1

1

v2

1

vq−1

0

vq

0

vq+1

0

w(v2, v1)λ
−1 w(vq, vq−1)λ

−1 w(vq+1, vq)λ
−1

w(v1, v2)λ
−1

w(v1, vq−1)λ
−1

w(v1, vq)λ
−1

w(v1, vq+1)λ
−1

(b)

Fig. 3. Possible realization of the characteristic polynomial (13).

swapping columns / rows of a matrix used in matrix
theory. The result of this operation is presented in
Fig. 4.

v1 v2 vq−1 vq vq+1

(a)

vq+1 v1 v2 vq−1 vq

(b)

vq vq+1 v1 v2 vq−1

(c)

vq−1 vq vq+1 v1 v2

(d)

v2 vq−1 vq vq+1 v1

(e)

Fig. 4. Possible realization of the characteristic polynomial (13)
obtained by renumbering vertices.

• Change of the direction of the arcs in the graph.
This operation is similar to a transposition matrix
used in matrix theory. The result of this operation
is presented in Fig. 3(b).

Let us consider the following simple example.

Example 1. (Determination of a digraph structure
corresponding to the characteristic polynomial) The

characteristic polynomial d(λ) = ±λ−2±λ−3 is rewritten
in the temporary form d̃(λ) = 1+d(λ) = 1±λ−2±λ−3,
consisting of two binomials: B1 = 1±λ−2 and B0 = 1±
λ−3. Possible realizations of the binomials are presented
in Fig. 5.

(a) (b)

Fig. 5. Realization of the binomial: B1 = 1 ± λ−2 (a), B0 =
1± λ−3 (b).

Then, we can determine all possible realizations
(Fig. 6) of the polynomial d̃(λ) which satisfy conditions
(C1) and (C2). Additionally, to the vertices belonging to
the common part of the digraph we assigned weight equal
to 1 (marked in dark gray) and 0 for other vertices.

v1

1

v2

1

v3

0

(a)

v1

0

v2

1

v3

1

(b)

v1

1

v2

0

v3

1

(c)

Fig. 6. All possible realizations of the characteristic polyno-
mial ˜d(λ).

In the last step, we determine weights of the arcs by
solving a set of equations. For example, from the digraph
presented in Fig. 6(b), we obtain

{
w(v1, v2)·w(v2, v3)·w(v3, v1) = ∓1,

w(v2, v3)·w(v3, v2) = ∓1,



Minimal positive realizations of linear continuous-time fractional descriptor systems . . . 15

with the constraints w(v1, v2) > 0, w(v2, v3) > 0,
w(v3, v2) > 0 and w(v3, v1) > 0 which must be satisfied
if the realization is positive. �

3.2. Determination of matrix E. In the second step,
we must find matrix E. The weight of the vertices in
a digraph is associated with the digraph mask. If the
characteristic polynomial is in the form of (13), then
we can determine the digraph mask with the following
proposition.

Proposition 2. (Digraph mask) A digraph mask M(D)
corresponding to the characteristic polynomial (13) con-
sists of q+1 vertices, and at least one vertex in the digraph
must have zero weight.

Proof. If a digraph mask M(D) consists of all
vertices with non-zero weights, this means that matrix E
is diagonal with all non-zero entries, so that E = I. In
this case, the condition detE = 0 is not satisfied and
the system is not a descriptor. There appears at least one
zero entry guaranteeing that the condition detE = 0 is
satisfied and the system (5) is a descriptor. �

All possible digraph masks of the characteristic
polynomial (13) are presented in Fig. 7. It should be noted
that vertices with weights equal to 1 are marked in dark
gray and the other vertices have zero weights.

v1

0

v2

1
. . . . . . . . .

vq−1

1

vq

1

vq+1

1

v1

1

v2

0
. . . . . . . . .

vq−1

1

vq

1

vq+1

1

...
v1

1

v2

1
. . . . . . . . .

vq−1

1

vq

1

vq+1

0

Fig. 7. All possible digraph masks of the characteristic polyno-
mial (13).

Example 2. (Determination of a digraph mask—Example
1 continued) After using Proposition 2, we obtain the set
of digraph masks (presented in Fig. 8) consisting of two
vertices with weight equal to 1. �

v1

1

v2

1

v3

0

(a)

v1

0

v2

1

v3

1

(b)

v1

1

v2

0

v3

1

(c)

Fig. 8. All possible digraph masks of the characteristic polyno-
mial ˜d(λ) = 1± λ−2 ± λ−3.

3.3. Choosing the proper pairs (E,A). With the
use of Definition 3 and a digraph mask determined
by Proposition 2, we can create all possible
digraph realizations as combinations of the binomial
representations and a digraph mask:

d(λ)
k |D = Mj(G) ◦ (GBr ∪ GBr−1 . . .GB1 ∪ GB0

)

= Mj(G) ◦
(

r⋃

i=0

GBi

)

, (15)

where d(λ)
k |D means that we consider the k-th realization

of the one-dimensional digraph D corresponding to
the characteristic polynomial d(λ), Mj(G) is the j-th
possible digraph masks, ◦ is the operation of the
superposition of the digraph mask and one of the
possible digraph realizations. It should be noted that
the superposition ◦ on digraph vertices corresponds to
the logical operation OR. We choose a digraph structure
in which all vertices have weights equal to 1. Other
solutions are rejected. Let us consider the following
simple example.

Example 3. (Determined pairs (E,A)—Example 2 con-
tinued) Using all possible realizations of the temporary
polynomial d̃(λ) = 1 ± λ−2 ± λ−3 presented in Fig. 6,
a digraph mask presented in Fig. 8 and (15), we can
create all possible digraph realizations which satisfy a
characteristic polynomial d(λ) = ±λ−2 ± λ−3. In
Fig. 9 we present a realization for a digraph structure from
Fig. 6(a). It should be noted that the digraphs presented in
Figs. 9(f) and 9(i) have all vertices with weights equal to 1
and these digraph structures are correct. In the same way,
we proceed with other structures from Figs. 6(b) and (c).
Finally, we obtain six possible realizations.

v1

1

v2

1

v3

0

(a)

⋃
v1

1

v2

1

v3

0

(b)
= v1

1

v2

1

v3

0

(c)

v1

1

v2

1

v3

0

(d)

⋃
v1

0

v2

1

v3

1

(e)
= v1

1

v2

1

v3

1

(f)

v1

1

v2

1

v3

0

(g)

⋃
v1

1

v2

0

v3

1

(h)
= v1

1

v2

1

v3

1

(i)

Fig. 9. All possible realizations of the characteristic polynomial
d(λ) = ±λ−2 ± λ−3.

Now we can write a matrix pair (E1,A) and (E2,A)
corresponding to the digraph from Figs. 9(f) and (i),
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vi
\vj v1 v2 ··· vq−1 vq vq+1

v1 0 w(v2, v1) · · · w(vq−1, v1) w(vq , v1) w(vq+1, v1)
v2 w(v1, v2) 0 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

vq−1 0 0
. . . 0 0 0

vq 0 0 · · · w(vq−1, vq) 0 0
vq+1 0 0 · · · 0 w(vq , vq+1) 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(q+1)×(q+1) (16)

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vi
\vj v1 v2 ··· vq−1 vq vq+1

v1 0 w(v2, v1) · · · 0 0 0
v2 w(v1, v2) 0 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

vq−1 w(v1, vq−1) 0
. . . 0 w(vq , vq−1) 0

vq w(v1, vq) 0 · · · 0 0 w(vq+1, vq)
vq+1 w(v1, vq+1) 0 · · · 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(q+1)×(q+1) (17)

E1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vi
\vj v1 v2 ··· vq−1 vq vq+1

v1 0 0 · · · 0 0 0
v2 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

vq−1 0 0 · · · 1 0 0
vq 0 0 · · · 0 1 0

vq+1 0 0 · · · 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(q+1)×(q+1) or E2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vi
\vj v1 v2 ··· vq−1 vq vq+1

v1 1 0 · · · 0 0 0
v2 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

vq−1 0 0 · · · 1 0 0
vq 0 0 · · · 0 1 0

vq+1 0 0 · · · 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
(q+1)×(q+1) (18)

respectively, in the following form:

(E1,A) =

⎛

⎜
⎝

⎡

⎢
⎣

0 0 0

0 1 0

0 0 1

⎤

⎥
⎦ ,

⎡

⎢
⎣

0 1 1

1 0 0

0 1 0

⎤

⎥
⎦

⎞

⎟
⎠ ,

(E2,A) =

⎛

⎜
⎝

⎡

⎢
⎣

1 0 0

0 0 0

0 0 1

⎤

⎥
⎦ ,

⎡

⎢
⎣

0 1 1

1 0 0

0 1 0

⎤

⎥
⎦

⎞

⎟
⎠ .

In the general form, one of the possible digraph
structures corresponds to the temporary polynomial (13)
presented in Fig. 3(a). With the use of the digraph
mask presented in Fig. 7 we can create all possible
realizations which satisfy the characteristic polynomial
(12). It should be noted that we always have minimum
two possible realizations because two vertices belong to
digraph common parts. Now we can write the set of
matrices (E1,A) and (E2,A) in the form (16) and (18).

�

Remark 3. If we change the direction of the arcs in
the digraph presented in Fig. 3(a), we obtain the digraph
presented in Fig. 3(b). This operation is similar to the

transposition of the matrix A. Then, we can write the set
of the matrices (E1, Ã) and (E2, Ã) in the form of (17)
and (18).

From the above discussion we can write the
following proposition.

Proposition 3. (State matrix entries) The system (5) with
matrices of the form (16) (or (17)) is positive if and
only if the arc weight in a digraph satisfy the condition
w(vi, vj) ≥ 0 for i, j ∈ Z+ = {1, 2, . . . , q + 1} and
i �= j.

3.4. Determination of matrices B and C. In the last
step, we must find matrices B and C. After multiplying
the numerator of the transfer function (11) by λ−q , we
obtain the following polynomial:

n(λ) = bq + bq−1λ
−1 + bq−2λ

−2 (19)

+ · · ·+ b1λ
1−q + b0λ

−q.

We can determine two possible digraph structures
corresponding to the polynomial (19). Below we discuss
this in detail. It should be noted that these cases are
discussed in terms of a digraph structure resulting from
the input and output connection.
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v1 v2 vq−1 vq vq+1s1

y1

w(v1, y1) w(v2, y1) w(vq−1, y1) w(vq, y1) w(vq+1, y1)

w(v1, v2)λ
−1 w(vq−1, vq)λ

−1 w(vq, vq+1)λ
−1w(v2, vq−1)λ

−1

w(s1, v1)

(a)

v1 v2 vq−1 vq vq+1

y1

s1

w(s1, v1) w(s1, v2) w(s1, vq−1) w(s1, vq)
w(s1, vq+1)

w(vq, vq−1)λ
−1 w(vq+1, vq)λ

−1w(v2, v1)λ
−1

w(v1, y1)

w(vq−1, v2)λ
−1

(b)

Fig. 10. Digraph corresponding to polynomial (19): Case 1 (a), Case 2 (b).

3.4.1. Case 1. For this purpose, we are expanding
the digraph (see Fig. 3(a)) created in the first part of the
algorithm. We add the source vertex s1 corresponding
to matrix B and the output vertex y1 corresponding to
matrix C. We connect the source vertex s1 with vertices
v1 or v2 which belong to the common part of the digraph,
and vertices v1, v2, . . . , vq, vq+1 with the output vertex y1.
Then we determine all paths p from the source vertex s1
to the output vertex y1. It should be noted that paths have
length 2 ≤ p ≤ q + 2.

We obtain the digraph structure presented in
Fig. 10(a) from which we can write the set of equations
(20). After solving them we can write B ∈ R

(q+1)×1 and
C ∈ R

1×(q+1) in the form (22a).
The positive realization (E1,A,B,C) of (11) is

given by (16), (18) and (22a) if Proposition 3 applies and
w(s1, v1) > 0.

Remark 4. If we connect source s1 with vertex v2,

then we must determine a new digraph structure, write
the corresponding set of equations and solve them.
Afterwards we can write matrices B̃ and C̃. In this case,
the positive realization is given by (E2,A, B̃, C̃).

3.4.2. Case 2. For this purpose, we are expanding the
digraph presented in Fig. 3(b). We add the source vertex
s1 corresponding to matrix B and the output vertex y1
corresponding to matrix C. We connect the source vertex
s1 with vertices v1, v2, . . . , vq, vq+1, and vertices v1, v2
which belong to the common part of the digraph with the
output vertex y1. Then we determine all paths p from the
source vertex s1 to the output vertex y1. It should be noted
that paths have length 2 ≤ p ≤ q + 2.

We obtain the digraph structure presented in
Fig. 10(b), from which we can write the set of the
equations (21) and after solving them we can write B ∈
R

(q+1)×1, and C ∈ R
1×(q+1) in the form of (22b).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(s1, v1)·w(v1, y1) = bq,

λ−1 w(s1, v1)·w(v1, v2)·w(v2, y1) = bq−1,

...
...

...
...

λ1−q w(s1, v1)·w(v1, v2)·. . .·w(vq−1, vq)·w(vq, y1) = b1,

λ−q w(s1, v1)·w(v1, v2)·. . .·w(vq−1, vq)·w(vq, vq+1) · w(vq+1, y1) = b0.

(20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(s1, v1)·w(v1, y1) = bq,

λ−1 w(s1, v2)·w(v2, v1)·w(v1, y1) = bq−1,

...
...

...
...

λ1−q w(s1, vq)·w(vq, vq−1)·. . .·w(v2, v1)·w(v1, y1) = b1,

λ−q w(s1, vq+1)·w(vq+1, vq)·w(vq , vq−1)·. . .·w(v2, v1)·w(v1, y1) = b0.

(21)
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B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

vi
\sm s1

v1 w(s1, v1)

v2 0
...

...
vq 0

vq+1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, C =

[yp\vj v1 v2 ... vq vq+1

y1

bq
w(s1, v1)

bq−1

w(s1, v1)·w(v1, v2) · · ·
b1

w(s1, v1)·k1
b0

w(s1, v1)·k2
]

, (22a)

k1 = w(v1, v2)·. . .·w(vq−1, vq), k2 = w(v1, v2)·. . .·w(vq−1, vq)·w(vq, vq+1)

B̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vi
\sm s1

v1
bq

w(v1, y1)

v2
bq−1

w(v1, y1)·w(v2, v1)
...

...

vq
b1

w(v1, y1)·w(vq, vq−1)·. . .·w(v2, v1)
vq+1

b0

w(v1, y1)·w(vq+1, vq)·w(vq , vq−1)·. . .·w(v2, v1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C̃ =
[yp\vj v1 v2 ··· vq vq+1

y1 w(v1, y1) 0 · · · 0 0
]
, (22b)

The positive realization (E1, Ã, B̃, C̃) of (11) is
given by (17), (18) and (22b) if Proposition 3 applies and
w(v1, y1) > 0. As in Case 1, Remark 4 is correct as well.

From the above discussion (Cases 1 and 2), we can
formulate the following result.

Proposition 4. (Input and output matrix entries) The sys-
tem (5) with matrices of the form (22a) (or (22b)) is pos-
itive if and only if the arc weights in the digraph satisfy
the condition w(s1, vi) > 0 and/or w(vi, y1) > 0 for
i ∈ Z+ = {1, 2, . . . , q + 1}.

Remark 5. It should be noted here that the digraphs
presented in Cases 1 and 2 have simple structures and
we have almost immediately to write a set of matrices
(E,A,B,C). In other digraph structures this is not that
immediate and additional conditions must be satisfied (see
Section 4).

From the discussion led in Sections 3.1–3.4, we can
write down the following sufficient conditions for digraph
structures.

Proposition 5. There exists a digraph structure in class
K1, which corresponds to a realization of a transfer func-
tion, if the following conditions are satisfied:

(C1) in the digraph corresponding to the characteristic
polynomial there exists a non-empty common part;

(C2) the digraph corresponding to the characteristic poly-
nomial does not have additional cycles;

(C3) there exists a digraph mask corresponding to the
characteristic polynomial;

(C4) there exists a digraph as a superposition operation
on the digraph corresponding to the characteristic
polynomial and a digraph mask in which all vertices
have weights equal to 1;

(C5) in an extended digraph there are all paths from the
source s to the output y, which have the length p =
2, 3, . . . , q + 2.

Proof. If conditions (C1) and (C2) are satisfied, then
we can determine a digraph structure corresponding to
a characteristic polynomial d̃(λ) in the form of (13).
Otherwise, the realization does not exist. Conditions (C1)
and (C2) are presented in detail in Section 3.1. Then,
if condition (C3) holds, then we can determine (by
Proposition 2) q + 1 possible digraph masks which
guarantees the singularity of the solution. Condition (C3)
is presented in detail in Section 3.2.

If conditions (C1)–(C3) are met, then by using a
superposition operation on a digraph and the digraph mask
we can determine all possible digraph structures. Then
we choose digraphs in which all vertices have weights
equal to 1. Other solutions are rejected. Condition (C4) is
presented in detail in Section 3.3. Finally, to the digraph
structures which met conditions (C1)–(C4) we add the
source vertex s and the output vertex y. By connecting
the source vertex s with vertices v1, v2, . . . , vq+1 and
vertices v1, v2, . . . , vq+1 with the output vertex y, we can
determine all paths from a source to an output. This type
of connection guarantees that all polynomial coefficients
bq appear in (19). Condition (C5) is presented in detail in
Section 3.4. If conditions (C1)–(C5) are satisfied, then
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there exists a digraph structure which corresponds to a
transfer function in the form of (11). �

It should be noted that in Section 3.4 only two types of
connection between the source vertex s and the output
vertex y are shown. This type of connection guarantees
that we will always be able to determine a digraph
structure that corresponds to the transfer function (11). In
general, there are many ways to connect the source s with
the output y. Occasionally, there is a digraph structure
corresponding to the transfer function (11), but we cannot
calculate the weight values. In this case, we must reject
this structure.

4. Numerical examples

Find a minimal realization of the transfer function

T (s) =
b3s

1.8 + b2s
1.2 + b1s

0.6 + b0
−a2s1.2 − a1s0.6 − a0

. (23)

Solution: Assuming that λ = s0.6, we can rewrite the
transfer function (23) in the following form:

T (λ) =
b3λ

3 + b2λ
2 + b1λ+ b0

−a2λ2 − a1λ− a0
. (24)

After multiplying the denominator of (24) by λ−q+1 =
λ−4, we obtain the following characteristic polynomial:

d(λ) = −a2λ
−2 − a1λ

−3 − a0λ
−4, (25)

and present it in a temporary form,

d̃(λ) = 1 + d(λ) (26)

= 1− a2λ
−2 − a1λ

−3 − a0λ
−4

= (1− a2λ
−2)

︸ ︷︷ ︸
B2

∪ (1 − a1λ
−3)

︸ ︷︷ ︸
B1

∪ (1 − a0λ
−4)

︸ ︷︷ ︸
B0

,

which is needed to draw the digraph.
For each simple binomial B0, B1 and B2,

using Proposition 1, we create digraph representations
(Figs. 11(a)–11(c)).

(a)

(b)

(c)

Fig. 11. Digraph corresponding to binomial: B2 (a), B1 (b),
B0 (c).

Now we can create all digraph realizations of the

characteristic polynomial (26). One of the possible
digraph structures is presented in Fig. 12.

v1

1

v2
1

v3

0

v4

0

w(v1, v2)λ
−1

w(v2, v1)λ
−1

w(v2, v3)λ
−1 w(v3, v4)λ

−1

w(v3, v1)λ
−1

w(v4, v1)λ
−1

Fig. 12. One of the possible digraph structures corresponding to
(26).

From the digraph we can write the following set of
equations:
⎧
⎪⎨

⎪⎩

λ−2 w(v1, v2)·w(v2, v1) = a2,

λ−3 w(v1, v2)·w(v2, v3)·w(v3, v1) = a1,

λ−4 w(v1, v2)·w(v2, v3)·w(v3, v4)·w(v4, v1) = a0.

After solving them, we obtain the following arc weights:

w(v1, v2) = 1, w(v2, v3) = 1,

w(v3, v4) = 1, w(v2, v1) = a2,

w(v3, v1) = a1, w(v4, v1) = a0.

(27)

We can write the state matrix in the following form:

A =

⎡

⎢
⎢
⎢
⎣

0 w(v2, v1) w(v3, v1) w(v4, v1)

w(v1, v2) 0 0 0

0 w(v2, v3) 0 0

0 0 w(v3, v4) 0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0 a2 a1 a0

1 0 0 0

0 1 0 0

0 0 1 0

⎤

⎥
⎥
⎥
⎦
. (28)

It should be noted that the set of equations has many
possible solutions. The proposed solution (27) is only one
of them.

In the next step, using Proposition 2, we must
determine (see Fig. 13) a set of digraph masks consisting
of four vertices. Three of them have weights equal to 1
and one of them has zero weight.

v1

0

v2

1

v3

1

v4

1

(a)

v1

1

v2

0

v3

1

v4

1

(b)

v1

1

v2

1

v3

0

v4

1

(c)

v1

1

v2

1

v3

1

v4

0

(d)

Fig. 13. All possible digraph masks.
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Then, using (15), we can determine all possible
realizations of the characteristic polynomial (25) as a
combination of the digraph representation presented, for
example, in Fig. 12 and the digraph mask presented in
Fig. 13. After this, we obtain four possible realizations

v1|1 v2|1 v3|1 v4|1
(a)

v1|1 v2|1 v3|1 v4|1
(b)

v1|1 v2|1 v3|0 v4|1
(c)

v1|1 v2|1 v3|1 v4|0
(d)

Fig. 14. All possible digraphs corresponding to (25).

(Fig. 14). It should be note that only two digraph
structures presented in Figs. 14(a) and (b) satisfy the
characteristic polynomial (25).

By using the digraph structure presented in
Figs. 14(a) and (b), we can write the singular matrix in
the following form:

E1 =

⎡

⎢
⎢
⎢
⎣

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦
, E2 =

⎡

⎢
⎢
⎢
⎣

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎦
. (29)

In the second step, we should determine matrices B and
C. For this purpose, we must multiply the numerator of
the transfer function (24) by λ−3. Then we obtain the
following polynomial:

n(λ) = b3 + b2λ
−1 + b1λ

−2 + b0λ
−3, (30)

and we expand the digraph created in the first step
(Figs. 14(a) and 14(b)). We have two possible structures,
which are considered in Sections 4.1 and 4.2.

4.1. Case 1. In this case, we connect the source
vertex s1 corresponding to matrix B with the vertex v1
or v2 belonging to a set of common parts of the digraph
presented in Fig. 12, and the vertex v1, v2, v3, v4 with
the output vertex y1 corresponding to matrix C. Then we
determine all paths from the source vertex s1 to the output
vertex y1. We obtain two possible digraph structures.

Digraph 1—connect vertex s1 with vertex v1: After this

connection, we obtain a digraph presented in Fig. 15(a).
Then, using the created digraph, we can write a set of
equations in the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w(s1, v1)·w(v1, y1) = b3,

λ−1 w(s1, v1)·w(v2, y1) = b2,

λ−2 w(s1, v1)·w(v3, y1) = b1,

λ−3 w(s1, v1)·w(v4, y1) = b0.

Solving them, we can write an input and output matrix in
the following form:

B =

⎡

⎢
⎢
⎢
⎣

w(s1, v1)

0

0

0

⎤

⎥
⎥
⎥
⎦
, (31)

C =

[
b3

w(s1, v1)

b2
w(s1, v1)

b1
w(s1, v1)

b0
w(s1, v1)

]

.

The desired realization (E1,A,B,C) of (23) is
given by (29), (28) and (31). It should be noted that
realization is positive if w(s1, v1) ∈ R+.

Digraph 2—connect vertex s1 with vertex v2: After
this connection, we obtain the digraph presented in Fig.
15(b). Then, using the created digraph, we can write the
following set of equations:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w(s1, v2)·w(v2, y1) = b3,

λ−1 w(s1, v2)·
(
w(v3, y1) + a2 ·w(v1, y1)

)
= b2,

λ−2 w(s1, v2)·
(
w(v4, y1) + a1 ·w(v1, y1)

)
= b1,

λ−3 a0 ·w(s1, v2)·w(v1, y1) = b0.

Solving them, we can write an input and output matrix in
the following form:

B̃ =

⎡

⎢
⎢
⎢
⎣

0

w(s1, v2)

0

0

⎤

⎥
⎥
⎥
⎦
, (32)

C̃ =
[
w(v1, y1) w(v2, y1) w(v3, y1) w(v4, y1)

]
,

where

w(v1, y1) =
b0

a0 ·w(s1, v2) ,

w(v2, y1) =
b3

w(s1, v2)
,

w(v3, y1) =
a0 ·b2 − a2 ·b0
a0 ·w(s1, v2) ,
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v1 v2 v3 v4s1

y1

w(s1, v1)
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λ−1 λ−1λ−1

(a)

v1 v2 v3 v4s1

y1

w(s1, v2)

w(v1, y1) w(v2, y1)
w(v3, y1) w(v4, y1)

λ−1 λ−1
a2λ

−1
a1λ

−1

a0λ
−1

(b)

Fig. 15. Realization of (30) in Case 1: Digraph 1 (a), Digraph 2 (b).

w(v4, y1) =
a0 ·b1 − a1 ·b0
a0 ·w(s1, v2) .

The desired realization (E2,A, B̃, C̃) of (23) is
given by (29), (28) and (32). It should be noted that
the realization is positive if w(s1, v2) ∈ R+ and the
coefficients of the polynomials (25) and (30) satisfy the
following conditions:

a0 ·b2 − a2 ·b0 > 0,

a0 ·b1 − a1 ·b0 > 0.

4.2. Case 2. In this case, we connect the source vertex
s1 corresponding to matrix B with the vertex v1, v2, v3
and v4, and the vertex v1 or v2 belonging to the set of
common parts of the digraph presented in Fig. 12 with
the output vertex y1 corresponding to matrix C. Then, we
determine all paths from the source vertex s1 to the output
vertex y1. We obtain two possible digraph structures.

Digraph 1—connect vertex v1 with vertex y1: After
this connection, we obtain the digraph presented in Fig.
16(a). Then, using the created digraph, we can write the
following set of equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(s1, v1)·w(v1, y1) =b3,

λ−1 w(v1, y1)·
[
a0 ·w(s1, v4) + a1 ·w(s1, v3)

+a2 ·w(s1v2)
]

=b2,

λ−2 w(v1, y1)·
[
a1 ·w(s1, v2) + a0 ·w(s1, v3)

]
=b1,

λ−3 a0 ·w(s1, v2)·w(v1, y1) =b0.

Solving them, we can write an input and output matrix in
the following form:

B̄ =

⎡

⎢
⎢
⎢
⎣

w(s1, v1)

w(s1, v2)

w(s1, v3)

w(s1, v4)

⎤

⎥
⎥
⎥
⎦
,

C̄ =
[
w(v1, y1) 0 0 0

]
, (33)

where

w(s1, v1) =
b3

w(v1, y1)
,

w(s1, v2) =
b0

a0 ·w(v1, y1)
,

w(s1, v3) =
a0 ·b1 − a1 ·b0
a20 ·w(v1, y1)

,

w(s1, v4) =
a0 ·(a0 ·b2 − a2 ·b0)− a1 ·(a0 ·b1 − a1 ·b0)

a30 ·w(v1, y1)
.

The desired realization (E1,A, B̄, C̄) of (23) is given by
(29), (28) and (33). It should be noted that the realization
is positive if w(v1, y1) ∈ R+ and the coefficients of the
polynomial (25) and (30) satisfy the following conditions:

a0 ·b1 − a1 ·b0 > 0,

a0 ·(a0 ·b2 − a2 ·b0)− a1 ·(a0 ·b1 − a1 ·b0) > 0.

Digraph 2—connect vertex v2 with vertex y1: After this
connection, we obtain the digraph presented in Fig. 16(b).
Then, using the created digraph, we can write a set of
equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w(s1, v2)·w(v2, y1) = b3,

λ−1 w(s1, v1)·w(v2, y1) = b2,

λ−2 w(v2, y1)·
[
a1 ·w(s1, v3) + a0 ·w(s1, v4)

]
= b1,

λ−3 a0 ·w(s1, v3)·w(v2, y1) = b0.

Solving them, we can write an input and output matrix in
the following form:

B̌ =

⎡

⎢
⎢
⎢
⎣

w(s1, v1)

w(s1, v2)

w(s1, v3)

w(s1, v4)

⎤

⎥
⎥
⎥
⎦
,

Č =
[
0 w(v2, y1) 0 0

]
, (34)
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(a)
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w(v2, y1)

w(s1, v1) w(s1, v2)
w(s1, v3)
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−1

λ−1
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−1

a0λ
−1
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Fig. 16. Realization of (30) in Case 2: Digraph 1 (a), Digraph 2 (b).

where

w(s1, v1) =
b2

w(v2, y1)
,

w(s1, v2) =
b3

w(v2, y1)
,

w(s1, v3) =
b0

a0 ·w(v2, y1)
,

w(s1, v4) =
a0 ·b1 − a1 ·b0
a20 ·w(v2, y1)

.

The desired realization (E2,A, B̌, Č) of (23) is
given by (29), (28) and (34). It should be noted that
the realization is positive if w(v2, y1) ∈ R+ and the
coefficients of the polynomials (25) and (30) satisfy the
following conditions:

a0 ·b1 − a1 ·b0 > 0.

5. Concluding remarks

A method for computation of a minimal realization of
a given proper transfer function of fractional positive
descriptor one-dimensional continuous-time linear
systems has been proposed. Sufficient conditions for the
existence of a minimal set of realizations of a given proper
transfer function have been established. A method based
on one-dimensional digraph theory for the computation
of minimal realizations has been proposed. It should
be noted that in many research studies we can find a
canonical form of the system, i.e., a constant matrix
form, which satisfies the system described by the transfer
function. With the use of this form, we are able to write
only one realization of the system, while there exists a set
of solutions. In this paper a solution to the problem of
finding a set of possible minimal positive realizations has
been proposed. Additionally, the possibility of an easy
implementation in the form of a computer algorithm using
CPU and/or GPU processors is the strength of this digraph
method. The effectiveness of the algorithm has been
illustrated with some numerical examples. An extension
of this study to fractional descriptor discrete-time linear

systems and to a fractional descriptor hybrid model is
possible.

Further work includes extension of the proposed
method to find all possible solutions for other structures of
matrix E and extension of the algorithm to find the class
of electrical circuits corresponding to the transmission
matrix.
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