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In this paper we present a method for the computation of convergence bounds for four classes of multiserver queueing
systems, described by inhomogeneous Markov chains. Specifically, we consider an inhomogeneous M/M/S queueing
system with possible state-dependent arrival and service intensities, and additionally possible batch arrivals and batch
service. A unified approach based on a logarithmic norm of linear operators for obtaining sharp upper and lower bounds on
the rate of convergence and corresponding sharp perturbation bounds is described. As a side effect, we show, by virtue of
numerical examples, that the approach based on a logarithmic norm can also be used to approximate limiting characteristics
(the idle probability and the mean number of customers in the system) of the systems considered with a given approximation
error.
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1. Introduction

In this paper we consider a class of Markov processes,
which may be used to describe the evolution of the
total number of customers in inhomogeneous Markov
queueing systems. Let the system’s state space be X =
{0, 1, 2 . . .}, where the state (i) means that there are a
total of i customers in the system. Throughout the paper it
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is assumed that all possible transition intensities between
states are non-random functions of time and may depend
on the system state.

There are two common problems related to such
systems. The first one constitutes the computation of a
time-dependent distribution of state probabilities and a
limiting distribution (for example, in the case of periodic
intensities). The second one is the computation of the rate
of convergence and perturbation bounds.
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This paper deals with the second problem. Here
we consider the following types of Markovian queueing
systems:

I. possible state-dependent arrival and service
intensities,

II. state-independent batch arrivals and a state-
dependent service intensity,

III. a possible state-dependent arrival intensity and
a state-independent batch service,

IV. state-independent batch arrivals and a batch service.

For these four system types we describe a unified
approach based on a logarithmic norm of linear operators,
which allows us to obtain sharp upper and lower bounds
on the rate of convergence and sharp perturbation bounds.

This unified approach has already been successfully
applied to systems of classes I and IV. Specifically, for
the inhomogeneousM/M/1 system with state-dependent
arrival and service intensities, as well as for the
state-independent inhomogeneous M/M/S system, the
bounds were first obtained by Zeifman (1995b) and Doorn
et al. (2010). Systems belonging to class IV have been
studied in a number of papers (see, for example, Nelson
et al., 1987; Li and Zhang, 2016; Chen et al., 2010) and
the results related to convergence have been also obtained
by Satin et al. (2013) and Zeifman et al. (2014a). Here
we demonstrate that the approach is also suitable for
systems from classes II and III, and thus offers a unified
way toward an analysis of ergodicity properties of such
Markov chains.

The approach is based on the special properties
of linear systems of differential equations with
non-diagonally non-negative matrices. Specifically,
if the column-wise sums of the elements of this matrix are
identical and equal to, say, −α∗(t), then the exact upper
bound of order exp(− ∫ t

0 α
∗(u) du) can be obtained for

the rate of convergence of the solutions of the system in
the corresponding metric. Moreover, if the column-wise
sums of the absolute values of the elements of this matrix
are identical and equal to, say, χ∗(t), then the exact lower
bound of order exp(− ∫ t

0
χ∗(u) du) can be obtained for

the convergence rate as well. The bounds are obtained in
three steps. In the first step we exclude the (0) state from
the forward Kolmogorov system of differential equations
and thus obtain a new system with a new intensity matrix
which is, in general, not non-diagonally non-negative.
The second step is to transform the new intensity matrix in
such a way that non-diagonally elements are non-negative
and which leads to (loosely speaking) the least distance
between specifically defined upper and lower bounds. The
third step uses the logarithmic norm for the estimation of
the convergence rate.

Here the key step is the second one. The
transformation is made using a sequence of positive
numbers {di, i ≥ 1}, which does not have any
probabilistic sense and can be considered an analogue
of Lyapunov functions. For a detailed discussion on
application of the logarithmic norm and related techniques
we can refer the reader to the series of papers by Doorn
et al. (2010), Granovsky and Zeifman (2004), Zeifman
(1995b), Zeifman et al. (2006; 2014a), Zeifman and
Korolev (2015), Mitrophanov (2005b; 2004; 2005a), Kim
et al. (2014), Kamiński (2015), Moiseev and Nazarov
(2016a; 2016b) or Whitt (1991; 2015). The advantage
of this three-step approach is that it allows us to deal with
time-homogeneous and time-inhomogeneous processes
and leads to both upper and lower exact bounds to the
convergence rate. In the time-homogeneous case (of the
four classes of systems introduced above), the approach
allows us to obtain the corresponding bounds to the
decay parameter and gives an explicit bounds in the total
variation norm (see Theorem 2).

The proposed approach also allows us to address
the problem of computation of the limiting distribution
of inhomogeneous Markov chains from a different
perspective. In general, there are several approaches,
which allow us to obtain more or less accurate solutions.
These are the exact and approximate numerical solutions
of the system of differential equations, approaches
assuming piecewise constant parameters, and those based
on modified system characteristics. For a review of
many results, we can refer the reader to Schwarz et al.
(2016). Although using the proposed approach we
cannot determine the state probabilities as functions
of time t, it is possible to compute approximately
the limiting distribution while having analytically
computable expressions for the approximation errors.
Using truncation techniques, which were developed by
Zeifman et al. (2006; 2014b), we present the results
of the computation of the limiting characteristics in
inhomogeneous M/M/S systems of each of the four
classes described above. The most interesting insight from
the experiments is the following: Choose the arrival and
service intensities in inhomogeneous M/M/S systems
(class I). Then, if we use these intensities (after a certain
modification allowing bulk arrivals and group services)
in inhomogeneous M/M/S systems from class II, III or
IV, the limiting mean numbers of customers for both the
systems coincide, while idle probabilities do not.

The paper is structured as follows. In the next section
a general description of the system under consideration is
given and the necessary notation is introduced. Section 3
contains the main result of the paper, i.e., the theorem
which specifies the convergence bounds. Section 4
provides explicit expressions for functions needed to
compute convergence bounds. In the last two sections
we provide extensive numerical examples and give some
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directions of further research.

2. System description and definitions

Consider an integer-valued time-dependent random
variable X(t) which signifies the total number
of customers at time t in a Markovian queueing
system. Then the process {X(t), t ≥ 0} is
a (possibly inhomogeneous) continuous-time
Markov chain with state space X = {0, 1, 2 . . .}.
Denote by pij(s, t) = P {X(t) = j |X(s) = i},
i, j ≥ 0, 0 ≤ s ≤ t, the transition probabilities of X(t)
and by pi(t) = P {X(t) = i} the probability that the
Markov chain {X(t), t ≥ 0} is in state i at time t. Let
p(t) = (p0(t), p1(t), . . . )

T be a probability distribution
vector at instant t. Throughout the paper we assume that
in each time interval of length h the possible transitions
and their associated probabilities are

pij(t, t+ h) =

{
qij(t)h+αij (t, h) if j �= i,

1+qii(t)h+αi (t, h) if j = i,
(1)

where all αi(t, h) are o(h) uniformly in i, that is to say,
supi |αi(t, h)| = o(h) and

qii(t) = −
∑

k∈X ,k �=i

qik(t).

Applying the standard approach developed by
Granovsky and Zeifman (2004), Zeifman (1995b) and
Zeifman et al. (2006), it is assumed that all the intensity
functions qij(t) are locally integrable on [0,∞).

The matrix Q(t) = (qij(t))
∞
i,j=0 is the intensity

matrix of the Markov chain {X(t), t ≥ 0}. Henceforth
it is assumed that Q(t) is essentially bounded, i.e.,

sup
i

|qii(t)| = L(t) ≤ L < ∞, (2)

for almost all t ≥ 0.
Probabilistic dynamics of the process {X(t), t ≥ 0}

are given by the forward Kolmogorov system

d

dt
p(t) = A(t)p(t), (3)

where A(t) = QT (t) is the transposed intensity matrix.
Throughout the paper by ‖ · ‖ we denote the

l1-norm, i.e., ‖p(t)‖ =
∑

k∈X |pk(t)|, and ‖Q(t)‖ =
supj∈X

∑
i∈X |qij |. Let Ω be a set all stochastic vectors,

i.e., l1 vectors with non-negative coordinates and a unit
norm. Hence we have ‖A(t)‖ = 2 supk∈X |qkk(t)| ≤ 2L
for almost all t ≥ 0. Thus the operator function A(t)
from l1 into itself is bounded for almost all t ≥ 0 and
locally integrable on [0;∞). Therefore we can consider
(3) a differential equation in the space l1 with a bounded
operator.

It is well known (see Daleckij and Krein, 1974) that
the Cauchy problem for the differential equation (3) has
a unique solution for an arbitrary initial condition, and
p(s) ∈ Ω implies p(t) ∈ Ω for t ≥ s ≥ 0.

Denote by E(t, k) = E(X(t)|X(0) = k) the
conditional expected number of customers in the system
at instant t, provided that initially (at instant t =
0) k customers were present in the system. Then∑

k≥0 E(t, k)pk(0) is the unconditional expected number
of customers in the system at instant t, given that the initial
distribution of the total number of customers was p(0).

In order to obtain perturbation bounds, we consider
a class of perturbed Markov chains {X̄(t), t ≥ 0} defined
on the same state space X as the original Markov chain
{X(t), t ≥ 0}, with the intensity matrix Ā(t) and the
same restrictions as those imposed on A(t). It is assumed
that ‖Â(t)‖ = ‖A(t) − Ā(t)‖ ≤ ε, for almost all t ≥ 0,
which means the perturbations are assumed to be small.

Before proceeding to the derivation of the main
results of the paper, we recall two definitions. Note
that a Markov chain {X(t), t ≥ 0} is called weakly
ergodic if ‖p∗(t) − p∗∗(t)‖ → 0 as t → ∞ for
any initial conditions p∗(0) and p∗∗(0), where p∗(t)
and p∗∗(t) are the corresponding solutions of (3). A
Markov chain {X(t), t ≥ 0} has the limiting mean ϕ(t)
if limt→∞ (ϕ(t)− E(t, k)) = 0 for any k.

3. Main results

Recall that we have introduced A(t) as the transposed
intensity matrix Q(t). Thus it has the form

A(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a00(t) a01(t) · · · a0r(t) · · ·
a10(t) a11(t) · · · a1r(t) · · ·
a20(t) a21(t) · · · a2r(t) · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar0(t) ar1(t) · · · arr(t) · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4)

where aii(t) = −∑k∈X ,k �=i aki(t). Since p0(t) =

1 − ∑∞
i=1 pi(t) due to the normalization condition, we

can rewrite the system (3) as follows:

d

dt
z(t) = B(t)z(t) + f(t), (5)

where

f(t) = (a10(t), a20(t), . . . )
T ,

z(t) = (p1(t), p2(t), . . . )
T ,
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B(t)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a11−a10 a12−a10 · · · a1r−a10 · · ·
a21−a20 a22−a20 · · · a2r−a20 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar1−ar0 ar2−ar0 · · · arr−ar0 · · ·

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(6)

Each entry of B(t) depends on t; see a detailed discussion
of this transformation by Granovsky and Zeifman (2004),
Zeifman (1995b) and Zeifman et al. (2006). Let {di, i ≥
1} with d1 = 1 be an increasing sequence of positive
numbers. Set

W = inf
i≥1

di
i
, (7)

and denote by D the upper triangular matrix of the
following form:

D =

⎛

⎜
⎜
⎜
⎝

d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠

. (8)

Let l1D be the corresponding space of sequences,

l1D =
{
z(t) = (p1(t), p2(t), · · · )T |

‖z(t)‖1D ≡ ‖Dz(t)‖1 < ∞
}
,

and introduce also the auxiliary norm ‖ · ‖1E defined as
‖z(t)‖1E =

∑∞
k=1 k|pk(t)|. Then in the ‖ · ‖1D norm the

following two inequalities hold:

‖z(t)‖1D

= d1

∣
∣
∣

∞∑

i=1

pi(t)
∣
∣
∣+ d2

∣
∣
∣

∞∑

i=2

pi(t)
∣
∣
∣

+ d3

∣
∣
∣

∞∑

i=3

pi(t)
∣
∣
∣+ . . .

≥
(∣
∣
∣

∞∑

i=1

pi(t)
∣
∣
∣+
∣
∣
∣

∞∑

i=2

pi(t)
∣
∣
∣+
∣
∣
∣

∞∑

i=3

pi(t)
∣
∣
∣+ . . .

)

≥ 1

2

((∣
∣
∣

∞∑

i=1

pi(t)
∣
∣
∣+
∣
∣
∣

∞∑

i=2

pi(t)
∣
∣
∣

)

+

(
∣
∣
∣

∞∑

i=2

pi(t)
∣
∣
∣+
∣
∣
∣

∞∑

i=3

pi(t)
∣
∣
∣

)

+ . . .

≥ 1

2

∞∑

i=1

|pi(t)| = 1

2
‖z(t)‖1,

(9)

‖z(t)‖1E =

∞∑

k=1

k|pk(t)|

=

∞∑

k=1

k

dk
dk|pk(t)| ≤ W−1

∞∑

k=1

dk|pk(t)|

= W−1
∞∑

k=1

dk

∣
∣
∣

∞∑

i=k

pi(t)−
∞∑

i=k−1

pi(t)
∣
∣
∣

≤ W−1
∞∑

k=1

dk

(∣
∣
∣

∞∑

i=k

pi(t)
∣
∣
∣ +
∣
∣
∣

∞∑

i=k−1

pi(t)
∣
∣
∣

)

≤ 2

W

∞∑

k=1

dk

∣
∣
∣

∞∑

i=k

pi(t)
∣
∣
∣ ≤ 2

W
‖z(t)‖1D.

(10)

Consider Eqn. (5) in the space l1D, where B(t) and
f(t) are locally integrable on [0,+∞). Let us compute
the logarithmic norm of the operator function B(t). The
motivation behind this can be found in the work of Doorn
et al. (2010), and detailed proofs are provided by Zeifman
(1995a). Recall that the logarithmic norm of the operator
function B(t) is defined as

γ(B(t)) = lim
h→+0

h−1 (‖I + hB(t)‖ − 1) .

Denote by V (t, s) = V (t)V −1(s) the Cauchy operator of
Eqn. (5). Then the following important inequality holds:

e−
∫ t
s
γ(−B(u)) du ≤ ‖V (t, s)‖ ≤ e

∫ t
s
γ(B(u)) du.

Further, for an operator function from l1 to itself, we have
the simple formula

γ(B(t)) = sup
j

(
bjj(t) +

∑

i�=j

|bij(t)|
)
.

Moreover, for the logarithmic norm of the operator
function B(t) in the ‖ · ‖1D norm, we have

γ(B(t))1D = γ(DB(t)D−1)1.

Denote by b∗ij(t) the elements of the matrix DB(t)D−1,

i.e., DB(t)D−1 =
(
b∗ij(t)

)∞
i,j=1

. Assume that

b∗ij(t) ≥ 0, i �= j, t ≥ 0. (11)

Set

αi (t) =

∞∑

j=0

b∗ji(t), χi (t) = −
∞∑

j=0

|b∗ji(t)|, i ≥ 1,

(12)
and let α(t) and β(t) denote respectively the least lower
and the least upper bound of the sequence of functions
{αi(t), i ≥ 1}, and let χ denote the least upper bound of
{χi(t), i ≥ 1}, i.e.,

α (t) = inf
i≥1

αi (t) , β (t) = sup
i≥1

αi (t) , (13)
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χ (t) = sup
i≥1

χi (t) . (14)

Then the logarithmic norms of B(t) and (−B(t)) are

γ (B (t))1D = sup
i

αi(t) = −α (t) ,

γ (−B (t))1D = supχi (t) = χ (t) .

If now we define v (t) = D (p∗ (t)− p∗∗ (t)), then

d

dt
v(t) = DB (t)D−1v(t). (15)

Notice that, due to (11), the inequality v (s) ≥ 0 implies
that v (t) ≥ 0 for any t ≥ s. Hence

d

dt

∞∑

i=1

vi(t) ≥ −β (t)

∞∑

i=1

vi(t), (16)

and we can establish the following theorem.

Theorem 1. Let there exist an increasing sequence
{dj, j ≥ 1} of positive numbers with d1 = 1, such that
(11) holds, and α(t) defined by (13) satisfies

∫ ∞

0

α(t) dt = +∞. (17)

Then the Markov chain {X(t), t ≥ 0} is weakly ergodic
and the following bounds hold:

e−
∫ t
s
χ(u)du‖p∗ (s)− p∗∗ (s) ‖1D
≤ ‖p∗ (t)− p∗∗ (t) ‖1D
≤ e−

∫ t
s
α(u)du‖p∗ (s)− p∗∗ (s) ‖1D, (18)

‖p∗(t)− p∗∗(t)‖
≤ 4e−

∫ t
s
α(u)du‖z∗(s)− z∗∗(s)‖1D, (19)

‖p∗(t)− p∗∗(t)‖1E
≤ 2

W
e−

∫
t
s
α(u)du‖z∗(s)− z∗∗(s)‖1D, (20)

for any initial conditions s ≥ 0, p∗(s), p∗∗(s) and any
t ≥ s.

If in addition D (p∗ (s)− p∗∗ (s)) ≥ 0, then

‖p∗ (t)− p∗∗ (t) ‖1D
≥ e−

∫ t
s
β(u)du‖p∗ (s)− p∗∗ (s) ‖1D, (21)

for any 0 ≤ s ≤ t.

We can also obtain the corresponding perturbation
bounds. The first results in this direction are given by
Kartashov (1985; 1996), stronger results are stated by
Mitrophanov (2003), and for the general approach one

can refer to Zeifman and Korolev (2014). The respective
uniform-in-time truncation bounds can be obtained via
techniques proposed by Zeifman et al. (2014b; 2016a).

If the Markov chain is homogeneous, then no
elements b∗ij(t) of the matrix DB(t)D−1 depend on t, i.e.,
the quantities in (13) are constants. Thus, instead of the
general bounds given by Theorem 1, we can specify and
obtain the following theorem.

Theorem 2. Assume that there exists an increasing se-
quence {dj, j ≥ 1} of positive numbers with d1 = 1,
such that (11) holds, and α(t) = α defined by (13) is pos-
itive, i.e., α > 0. Then the Markov chain {X(t), t ≥ 0} is
strongly ergodic and the following bounds hold:

e−χt‖p∗ (0)− p∗∗ (0) ‖1D
≤ ‖p∗ (t)− p∗∗ (t) ‖1D
≤ e−αt‖p∗ (0)− p∗∗ (0) ‖1D, (22)

‖p∗(t)− p∗∗(t)‖ ≤ 4e−αt‖z∗(0)− z∗∗(0)‖1D, (23)

‖p∗(t)− p∗∗(t)‖1E ≤ 2

W
e−αt‖z∗(0)− z∗∗(0)‖1D,

(24)
for any initial conditions s ≥ 0, p∗(0), p∗∗(0) and any
t ≥ 0. If, in addition, D (p∗ (0)− p∗∗ (0)) ≥ 0, then

‖p∗ (t)− p∗∗ (t) ‖1D ≥ e−βt‖p∗ (0)− p∗∗ (0) ‖1D,
(25)

for any t ≥ 0.
For the decay parameter α∗ defined as

lim
t→∞(pij(t)− πj) = O(e−α∗t),

where {πj, j ≥ 0} are the stationary probabilities of the
chain, we have α∗ ≥ α.

Notice that some additional results related to
Theorem 2 can also be found in the works of Doorn
et al. (2010) or Granovsky and Zeifman (2000). If
we assume that the intensities qij(t) are 1-periodic in
t, i.e., qij(t) are periodic functions and the length of
the period is equal to one, then the Markov chain
{X(t), t ≥ 0} has the limiting 1-periodic limiting regime.
Under the assumptions of Theorem 1, the Markov chain
{X(t), t ≥ 0} is exponentially weakly ergodic. A detailed
discussion of these results is provided by Zeifman et al.
(2006).

In this section we present a slightly detailed analysis
of two special cases: a homogeneous case and the case
with periodic intensities. Firstly note that in both the cases
there exist positive R and a such that

e−
∫

t
s
α(u) du ≤ Re−a(t−s) (26)

for any 0 ≤ s ≤ t. Hence the Markov chain {X(t), t ≥ 0}
is exponentially weakly ergodic. Indeed, if {X(t), t ≥ 0}
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is a homogeneous Markov chain, then we may set R = 1,
a = α given by (13). If all the intensity functions qij(t)
are 1-periodic in t, then we may set

a =

∫ 1

0

α(t) dt,

R = eK ,

K = sup
|t−s|≤1

∫ t

s

α(u) du.

By doing so, for any solution of (5), the following bound
holds:

‖z(t)‖1D ≤ ‖V (t)‖1D‖z(0)‖1D
+

∫ t

0

‖V (t, τ)‖1D‖f(τ)‖1D dτ

≤ Re−at‖z(0)‖1D +
FR

a
,

(27)

where F is such that ‖f(t)‖1D ≤ F for almost all t ∈
[0, 1]. Hence we have the upper bound for the limit

lim sup
t→∞

‖z(t)‖1D ≤ FR

a
(28)

for any initial condition and

‖p(0)− e0‖1D = ‖p(0)‖1D
= ‖z(0)‖1D ≤ lim sup

t→∞
‖z(t)‖1D, (29)

where ei denotes the unit vector of zeros with one in the
i-th place. If the initial distribution is p∗∗(0) = e0, then
z∗∗(0) = 0, z(t) ≥ 0 for any p∗(0) and any t ≥ 0.
Therefore

‖z(t)‖1D
= d1p1 + (d1 + d2)p2

+ (d1 + d2 + d3)p3 + . . .

= d1p1 +
d1 + d2

2
2p2 +

d1 + d2 + d3
3

3p3 + . . .

≥ inf
k

d1 + · · ·+ dk
k

‖z(t)‖1E ,

and we can use

W ∗ = inf
k

d1 + · · ·+ dk
k

instead of

W = inf
k

dk
k
,

given by (7) in all the bounds on the rate of convergence.
Finally, for the two special cases considered we have the
following two corollaries.

Corollary 1. Let {X(t), t ≥ 0} be a homogeneous
Markov chain and let there exist an increasing sequence
{dj , j ≥ 1} of positive numbers with d1 = 1 such that
(11) holds and, in addition, α > 0. Then {X(t), t ≥ 0} is
exponentially ergodic and the following bounds hold:

‖π − p(t, 0)‖ ≤ 4F

α
e−αt, (30)

|ϕ− E(t, 0)| ≤ F

αW ∗ e
−αt, (31)

where π = (π0, π1, . . . )
T denotes the vector of stationary

probabilities of {X(t), t ≥ 0} and ϕ =
∑∞

j=0 jπj and
p(0, 0) = e0.

Corollary 2. Assume that all the intensity functions of the
Markov chain {X(t), t ≥ 0} are 1-periodic in t. Suppose
that there exists an increasing sequence {dj, j ≥ 1} of
positive numbers with d1 = 1 such that (11) holds and,
in addition,

∫ 1

0
α(t) dt = a > 0. Then {X(t), t ≥ 0}

is exponentially weakly ergodic and the following bounds
hold:

‖π(t)− p(t, 0)‖ ≤ 4FR

a
e−at, (32)

|ϕ(t)− E(t, 0)| ≤ FR

aW ∗ e
−at, (33)

where π(t) = (π0(t), π1(t), . . . )
T denotes the vector

of limiting probabilities of {X(t), t ≥ 0} and ϕ(t) =∑∞
j=0 jπj(t) and p(0, 0) = e0.

If the state space of a Markov chain is finite, there
are a number of special results (see Doorn et al., 2010;
Granovsky and Zeifman, 2000; Zeifman et al., 2013).

Before moving to the next section, we briefly
describe one possible procedure for finding π(t) and
ϕ(t) in the case of 1-periodic in t intensities. Firstly,
we estimate the instant t = t∗ (using the ergodicity
bounds), starting from which the solution of the forward
Kolmogorov system (3) with the initial condition X(0)
is within a fixed ε > 0 from the limiting periodic
probabilities. Then we estimate the size n∗ of the
state space {0, 1, . . . , n∗}, which guarantees the desired
approximation error on the interval [0, t∗ + 1]. Then we
find the solution of the truncated system on the interval
[0, t∗ + 1], and eventually the values for π(t) and ϕ(t) on
the interval [t∗, t∗ + 1].

4. Convergence bounds

In order to apply the results of Theorems 1 and 2 and to
obtain the convergence bounds for the system from classes
I–IV, we have to know exact expressions for the functions
αi(t) and χi (t), given by (13) and (14). In this section we
provide such expressions for αi(t) and χi (t) in the case
of a single server. Then we show how these expressions
are changed when we switch to the multiple server case.
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4.1. Inhomogeneous M/M/S queueing system
with batch arrivals and state-dependent service in-
tensities. Consider a queueing system M/M/1 with
time-dependent arrival and service intensities. The service
discipline for this queue (and all other queues in the
following subsections) can be FIFO, LIFO or random. Let
λk(t) be the arrival intensity of the batch, containing k
customers, at instant t, and μk(t) be the service intensity
at instant t if the total number of customers in the system
is equal to k. Then the transposed intensity matrix has the
form

A(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a00 (t) μ1 (t) 0 0
λ1 (t) a11 (t) μ2 (t) 0
λ2 (t) λ1 (t) a22 (t) μ3 (t)
λ3 (t) λ2 (t) λ1 (t) a33 (t)
λ4 (t) λ3 (t) λ2 (t) λ1 (t)

· · · ...
...

...

0 · · ·
0 · · ·
0 · · ·

μ4 (t) · · ·
a44 (t) · · ·

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (34)

where diagonal elements of A(t) are such that all column
sums are equal to zero for any t ≥ 0. As the assumption
(11) is fulfilled, we have

αj(t) = μj (t)− dj−1

dj
μj−1 (t)

+

∞∑

i=1

(

1− di+j

dj

)

λi (t)

(35)

and

χj (t) = μj (t) +
dj−1

dj
μj−1 (t)

+

∞∑

i=1

(

1 +
di+j

dj

)

λi (t) .

(36)

Therefore, Theorems 1 and 2 hold for the specified αi(t)
and χi(t).

Consider now a queueing system M/M/S with S >
1 servers, as well as time-dependent arrival and service
intensities. Customers arrive at the system in batches of a
size no greater than S. Assume that the arrival intensity
of a batch, containing k customers, at instant t is equal
to λk(t) = λ(t)/Sk if 1 ≤ k ≤ S and λk(t) = 0 if
k > S. Denote by μk(t) the service intensity at instant t
and assume that μk(t) = min (k, S)μ(t). For the assumed
values of λk(t) and μk(t), and the expressions for αi(t)
and χi(t) given above, Theorems 1 and 2 hold.

4.2. Inhomogeneous M/M/S queueing system
with batch service and state-dependent arrival in-
tensities. Consider a queueing system M/M/1 with
time-dependent arrival and service intensities. But now
let λk(t) be the arrival intensity of k customers at instant
t if the total number of customers in the system is equal to
k, and μk(t) be the service intensity at instant t of a group
of k customers. Then the transposed intensity matrix has
the form

A(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a00(t) μ1(t) μ2(t) μ3(t)
λ0(t) a11(t) μ1(t) μ2(t)
0 λ1(t) a22(t) μ1(t)
0 0 λ2(t) a33(t)
...

...
...

...

μ4(t) · · ·
μ3(t) · · ·
μ2(t) · · ·
μ1(t) · · ·

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (37)

where aii (t) = −∑i
k=1 μk (t)−λi (t). Then Theorems 1

and 2 hold for

αi (t) = μi (t)−
i−1∑

k=1

(μi−k (t)− μi (t))
dk
di

+ λi−1 (t)− di+1

di
λi (t) ,

(38)

χi (t) = μi (t) +

i−1∑

k=1

(μi−k (t)− μi (t))
dk
di

+ λi−1 (t) +
di+1

di
λi (t) .

(39)

Consider again a queueing system M/M/S with
S > 1 servers and time-dependent arrival and service
intensities. The customers are served in batches of a size
no greater than S. Assume that the service intensity is
μk(t) = μ(t)/k if 1 ≤ k ≤ S and μk(t) = 0 if k > S.
Denote by λ(t) the arrival intensity. For the assumed
values of λk(t) and μk(t), and the expressions for αi(t)
and χi(t) given above, Theorems 1 and 2 remain valid.

4.3. Inhomogeneous M/M/S queueing system
with batch arrivals and service. Consider a queueing
system M/M/1 with time-dependent arrival and service
intensities. Customers arrive in batches and are served
in batches as well. Let λk(t) and μk(t) be the arrival and
service intensity of a group of k customers. This queueing
system has been extensively studied with respect to the
rate of convergence, truncation and perturbation bounds
by Satin et al. (2013) and Zeifman et al. (2014a). The
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transposed intensity matrix in this case has the following
form:

A (t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a00 (t) μ1 (t) μ2 (t) μ3 (t) · · ·
λ1 (t) a11 (t) μ1 (t) μ2 (t) · · ·
λ2 (t) λ1 (t) a22 (t) μ1 (t) · · ·
λ3 (t) λ2 (t) λ1 (t) a33 (t) · · ·

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(40)
where

aii (t) = −
i∑

k=1

μk (t)−
∞∑

k=1

λk (t) .

Therefore, Theorems 1 and 2 hold for

αi (t) = −aii (t)−
i−1∑

k=1

(μi−k (t)− μi (t))
dk
di

−
∑

k≥1

λk (t)
dk+i

di
,

(41)

and

χi (t) = −aii (t) +

i−1∑

k=1

(μi−k (t)− μi (t))
dk
di

+
∑

k≥1

λk (t)
dk+i

di
.

(42)

Consider again a queueing system M/M/S with
S > 1 servers, as well as time-dependent arrival and
service intensities. Assume that the size of an arrival batch
and a service batch does exceedS. Let the arrival intensity
of k customers at instant t be equal to λk(t) = λ(t)/Sk
if 1 ≤ k ≤ S and λk(t) = 0 if k > S; let the service
intensity be equal to μk(t) = μ(t)/k if 1 ≤ k ≤ S and
μk(t) = 0 if k > S. For the assumed values of λk(t)
and μk(t), and the above expressions for αi(t) and χi(t),
Theorems 1 and 2 remain valid.

4.4. Inhomogeneous M/M/S queueing system
with state-dependent arrival and service intensi-
ties. If in the queueing system M/M/1 the arrival
intensities λn(t) and the service intensities μn(t) are
time-dependent and also depend on the total number of
customers n in the system, then the queue-length process
for a general Markovian queue is an inhomogeneous
birth-death process with birth and death intensities equal
to λn(t) and μn(t), respectively. Thus Theorems 1 and 2
hold with

αj(t) = μj (t)− dj−1

dj
μj−1 (t)

+ λj−1 (t)− dj+1

dj
λj (t)

(43)

and

χj(t) = μj (t) +
dj−1

dj
μj−1 (t)

+ λj−1 (t) +
dj+1

dj
λj (t) .

(44)

Consider again an ordinary queueing system
M/M/S with S > 1 servers, and time-dependent arrival
and service intensities λ(t) and μn(t) = min(n, S)μ(t),
respectively. For the assumed values of λk(t), μk(t), and
the expressions forαi(t) andχi(t) given above, Theorems
1 and 2 remain valid.

5. Numerical examples

The purposes of the numerical section are two-fold.
Firstly, we demonstrate that the convergence bounds
obtained in the previous section can indeed be computed.
Having fixed the arrival and service intensities in
the inhomogeneous M/M/S queueing system with
state-independent arrival and service intensities (class I),
we specify the sequence {di, i ≥ 1} and provide the
corresponding bounds using Corollary 2. Secondly, we
show that the approach proposed in this paper can be used
to compute approximations for the limiting characteristics
of the systems with a given approximation error. The
characteristics under consideration are the limiting idle
probability and the limiting mean number of customers
in the system.

The systems considered in this numerical section are
as follows:

(i) inhomogeneous M/M/100 queueing system with
state-independent arrival and service intensities,

(ii) inhomogeneous M/M/100 queueing system with
state-independent batch arrivals,

(iii) inhomogeneous M/M/100 queueing system with
state-independent batch service,

(iv) inhomogeneous M/M/100 queueing system with
state-independent batch arrivals and batch service.

All transition intensities are assumed to be periodic
functions of time. Customers in all four cases are
served in FCFS order. The inhomogeneous M/M/100
system consists of a single infinite capacity queue and 100
servers. We assume that the arrivals occur according to the
inhomogeneous Poisson process with the intensity λ∗(t; i)
equal to

λ∗(t; i) = i(1 + sin 2πt), i > 0, t > 0.

Whenever the server becomes free, the first customer from
the queue (if there is any) enters the server. We will
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model the service times to be interarrival times of an
inhomogeneous Poisson process with the intensity

μ∗(t) = 3 + cos 2πt.

This is a time-varying counterpart to the exponential
distribution. The departure process will behave like this
Poisson process when the queue length is non-zero.

In the inhomogeneous M/M/100 queueing system
with batch arrivals it is assumed that customers arrive in
batches in accordance with an inhomogeneous Poisson
process of intensity λ∗(t; i)

∑S
i=1(Si)

−1. The size of
the arriving group is a random variable with discrete
probability distribution (Sk)−1/

∑S
i=1(Si)

−1, 1 ≤ k ≤
S. The sizes and interarrival times of successive arriving
groups are stochastically independent. Thus the total
arrival intensity is λk(t, i) = (Sk)−1λ∗(t, i) if 1 ≤ k ≤ S
and λk(t, i) = 0 if k > S. Whenever the server becomes
free, a customer from the queue (if there is any) enters
the server and gets served according to the exponential
distribution with intensity μk(t) = min (k, S)μ∗(t).

In the inhomogeneous M/M/100 queueing system
with a batch service customers arrive in accordance with
the inhomogeneous Poisson process of the same intensity
λ∗(t, i) = i(1 + sin 2πt). But the service takes place in
batches of a size no greater than S, and the service times
are exponentially distributed with the service intensity
equal to μk(t) = μ∗(t)/k if 1 ≤ k ≤ S and μk(t) = 0 if
k > S.

Finally, in the inhomogeneous M/M/100 queueing
system with batch arrivals and batch service, the total
arrival intensity is λk(t, i) = λ∗(t, i)/Sk if 1 ≤ k ≤ S
and λk(t, i) = 0 if k > S, and the service intensity is
μk(t) = μ∗(t)/k if 1 ≤ k ≤ S and μk(t) = 0 if k > S.

Such a choice of the system parameters is made only
for the purpose of illustration.

Let us find the convergence bounds in the case (i),
i.e., for the inhomogeneous M/M/100 queueing system
with state-independent arrival and service intensities. Let
i = 50, i.e., let the arrival intensity be equal to

λ∗(t; 50) = 50(1 + sin 2πt), t > 0.

Specify the sequence {di, i ≥ 1} as follows:

• di = 1, if 1 ≤ i ≤ 100;

• d101 = 1.05d100, d102 = 1.1d101, d103 = 1.3d102,
d104 = 1.6d103, d105 = 2d104;

• di = 2.3i−105d105, if i ≥ 106.

Such a sequence {di, i ≥ 1} guarantees that the
assumptions of Corollary 2 are fulfilled and we have
bounds on the rate of convergence to the limiting
characteristics given by (32) and (33) with a = 1.7,
R = 2, F = 100. In order to approximate the
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Fig. 1. Case (i): the arrival intensity is λ∗(t; 20); approximation
of the limiting mean number ϕ(t) of customers in the
system for t ∈ [5, 6].
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Fig. 2. Case (i): the arrival intensity is λ∗(t; 20); approximation
of the limiting probability p0(t) of the empty queue for
t ∈ [5, 6].
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Fig. 3. Case (i): the arrival intensity is λ∗(t; 50); approximation
of the limiting mean number ϕ(t) of customers in the
system for t ∈ [5, 6].

limiting characteristics for all four cases (i)–(iv), we can
apply Theorems 5 and 8 from Zeifman et al. (2014b).
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Fig. 4. Case (ii): the arrival intensity is λ∗(t; 10); approxima-
tion of the limiting mean number ϕ(t) of customers in
the system for t ∈ [5, 6].
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Fig. 5. Case (ii): the arrival intensity is λ∗(t; 10); approxima-
tion of the limiting probability p0(t) of the empty queue
for t ∈ [5, 6].

But firstly we have to specify the value i in the arrival
intensity λ∗(t; i), because as the arrival intensity (and thus
load) grows, a bigger state space is needed. Assume that
i ≤ 50, i.e., the maximum arrival intensity allowed is
λ∗(t; 50) = 50(1 + sin 2πt). Then we can compute the
solution of the forward Kolmogorov system (3) for the
truncated process on the state space {0, 1, . . . , 155} on the
interval [0, t∗ + 1] with the initial condition X(0) = 0.
Hence we find the limiting idle probability and limiting
mean value on the interval [t∗, t∗ + 1] with an error less
than 10−4, where t∗ = 5 or t∗ = 7.

Figures 1–15 display the plots of the limiting
probability of the empty queue p0(t) and the limiting
mean number ϕ(t) of customers in the system for each
of the cases (i)–(iv).

Note from Figs. 1 and 2 that in the case of a high
arrival intensity the limiting probability p0(t) of the empty
queue here equals zero for most of the time.
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Fig. 6. Case (ii): the arrival intensity is λ∗(t; 50); approxima-
tion of the limiting mean number ϕ(t) of customers in
the system for t ∈ [5, 6].
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Fig. 7. Case (ii): the arrival intensity is λ∗(t; 50); approxima-
tion of the limiting probability p0(t) of the empty queue
for t ∈ [5, 6].

6. Conclusion

From the presented figures we can see that the limiting
mean number of customers in the system apparently does
not depend on the system type, i.e., for all four different
systems considered there is numerical evidence that the
limiting means coincide. With respect to the probability
of the empty queue, we observe clear dependence on the
system type.

These numerical evidences show one of the
directions of further research: explanation of these effects
from an analytical point of view. Another direction is the
generalization of the proposed method for non-Markovian
systems and other types of inhomogeneous queueing
systems (e.g., Almasi et al., 2005; Gudkova et al., 2016).
One of the appealing candidates are queueing systems
with balking, in which arrival intensities decrease with the
growth of the total number of customers in the system.
Yet another direction of research follows from the work
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Fig. 8. Case (iii): the arrival intensity is λ∗(t; 20); approxima-
tion of the limiting mean number ϕ(t) of customers in
the system for t ∈ [5, 6].
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Fig. 9. Case (iii): the arrival intensity is λ∗(t; 20); approxima-
tion of the limiting probability p0(t) of the empty queue
for t ∈ [5, 6].

of Zeifman et al. (2016b) and is related to optimization of
“no-wait” probabilities.
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