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This paper provides a complete characterization of solvability of the problem of structural model matching by output
feedback in linear impulsive systems with nonuniformly spaced state jumps. Namely, given a linear impulsive plant and a
linear impulsive model, both subject to sequences of state jumps which are assumed to be simultaneous and measurable,
the problem consists in finding a linear impulsive compensator that achieves exact matching between the respective forced
responses of the linear impulsive plant and of the linear impulsive model, by means of a dynamic feedback of the plant
output, for all the admissible input functions and for all the admissible sequences of jump times. The solution of the stated
problem is achieved by reducing it to an equivalent problem of structural disturbance decoupling by dynamic feedforward.
Indeed, this latter problem is formulated for the so-called extended linear impulsive system, which consists of a suitable
connection between the given plant and a modified model. A necessary and sufficient condition for the solution of the
structural disturbance decoupling problem is first shown. The proof of sufficiency is constructive, since it is based on the
synthesis of the compensator that solves the problem. The proof of necessity is based on the definition and the geometric
properties of the unobservable subspace of a linear impulsive system subject to unequally spaced state jumps. Finally, the
equivalence between the two structural problems is formally established and proven.
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structural properties.

1. Introduction

Linear impulsive systems are a special class of
hybrid dynamical systems—also known as hybrid
dynamical systems with state jumps—characterized by
a continuous-time linear behavior interlaced with abrupt
state changes which occur at isolated time instants.
The continuous-time linear dynamics is called flow dy-
namics, while the state discontinuities give rise to the
so-called jump dynamics. Hybrid systems, in general,
and linear impulsive systems, in particular, have drawn
a considerable amount of research effort during the last
decades, as is documented by the broad literature on
the subject—see, e.g., the books by Van der Schaft and
Schumacher (2000), Savkin and Evans (2002), Li et al.
(2005), Haddad et al. (2006) and Goebel et al. (2012), as
well as the collections edited by Engell et al. (2002) and
Djemai and Deefort (2015).

Concerning linear impulsive systems, these have

proven to be very effective especially in modeling
complex phenomena—like, for instance, collisions—as
well as composite systems, such as, e.g., mechatronic
systems including both analog and digital components.
The reader may again refer to the above-mentioned
monographs for more details about specific applications
and case studies. Concerning the state of the art of
the methodologies developed to handle this class of
dynamical systems, it has to be acknowledged that,
nowadays, several control and observation problems have
already been formulated and studied in the context of
linear impulsive systems. More specifically, problems
that have recently been tackled concern state estimation
(Medina and Lawrence, 2009; Conte et al., 2017), linear
quadratic control (Kouhi et al., 2013; Carnevale et al.,
2014b), disturbance decoupling (Conte et al., 2015a;
Perdon et al., 2016b), output regulation (Medina and
Lawrence, 2006; Zattoni et al., 2015; 2017b; 2017a;
Carnevale et al., 2016), and model matching (Zattoni,
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2016b). Nevertheless, the analysis of several aspects of
the problems mentioned above remains to be deepened
further and, therefore, the research in the field is still truly
active.

As to model matching, this is a classical problem of
control theory. In fact, the problem of compensating a
given plant in such a way that its forced response matches
that of a given model for all the admissible input signals
was first stated and solved by state feedback for linear
time-invariant systems in the early 1970s (Wolovich,
1972; Morse, 1973). More recently, a solution to the
model matching problem by output dynamic feedback in
multivariable linear systems has been obtained by means
of the geometric approach (Marro and Zattoni, 2002;
2005). As a counterpart of the geometric approach to
model matching in multivariable linear systems, it is
worth mentioning the polynomial approach (Kaczorek,
1982).

Since the earlier works, the model matching problem
has been reformulated for more general classes of
dynamical systems like, e.g., nonlinear systems (Noldus,
1987; Moog et al., 1991; Lin and Tsai, 1999), descriptor
systems (Kučera, 1992), time-delay and uncertain systems
(Shyu and Chen, 1995; Ni et al., 2001; Wu, 2004; Wang
et al., 2009), periodic systems (Colaneri and Kučera,
1997), large-scale systems (Shioemaru and Wu, 2001;
Hua and Ding, 2011), Markovian jump linear systems
(Wang et al., 2012), switching systems (Zattoni et al.,
2014b; Conte et al., 2014; Perdon et al., 2016a; 2016c),
and, as previously mentioned, linear impulsive systems
(Zattoni, 2016b). At this point, it is worth to emphasize
that the wide and long lasting interest in model matching
problems is motivated not only by the impact that the
solution of this kind of problems has on applications,
but also by the fact that model matching represents a
basic methodological tool to master more complex control
problems (see, e.g., Choe and Kim, 2002; Pascual et al.,
2008; Rajasekaran et al., 2009; Zakharov et al., 2013;
2015).

In this framework, the contribution of the present
work consists in providing a necessary and sufficient
condition for the existence of a solution to the problem
of structural model matching in linear impulsive systems.
In particular, the linear impulsive systems dealt with are
assumed to be subject to jump time sequences whose
elements are not equally spaced. Such jump time
sequences are assumed not to be known a-priori, but to
be measurable. A standing assumption throughout the
discussion is also that any finite time interval contains
only a finite number of jump times, which ensures
that Zeno behaviors are excluded. The control scheme
considered is based on output feedback, through a
compensator which is itself a linear impulsive system
subject to a jump time sequence which is the same as that
of the linear impulsive plant and model.

With respect to the earlier paper (Zattoni, 2016b),
a major difference concerns the structure of the linear
impulsive plant. In the work of Zattoni (2016b),
the linear impulsive plant exhibits a feedthrough term
from the control input to the output, while here that
term is absent. This implies that different geometric
tools are used to handle the problem. In particular,
output-nulling controlled invariant subspaces for linear
impulsive systems with the feedthrough term are replaced
by controlled invariant subspaces contained in the null
space of the output map for linear impulsive systems
without the feedthrough term. Leaving output-nulling
controlled invariant subspaces out of consideration
implies, on the one hand, that some heavy technicalities
are not required anymore. On the other hand, this fact
leaves space for a deeper treatment of some theoretical
aspects. In particular, in this work, the proof of the
necessary and sufficient condition for solvability of the
equivalent structural disturbance decoupling problem is
based on the concept of unobservable subspace for a linear
impulsive system.

As to the methodological background, this hinges
on the geometric approach (Wonham, 1985; Basile and
Marro, 1992), which has been extended to cope with
linear impulsive systems by various authors (Medina and
Lawrence, 2006; Lawrence, 2014; 2015; Carnevale et al.,
2014a). However, since linear impulsive systems may
exhibit a different structure (e.g., jump dynamics may
be either free or controlled, the output equation may be
either only one, valid for both the flow and the jump
dynamics, or may be twofold, so as to separately consider
the outputs for the flow and the jump dynamics, etc.), it
is preferred herein to refer to the notions introduced in
some of our previous papers (e.g., Zattoni et al., 2017b),
since they address linear impulsive systems with the same
characteristics as those considered herein. On a last
note, it is worth mentioning that the geometric approach
has proven to be very effective also in mastering control
problems stated for other classes of hybrid systems, such
as switched linear systems (Zattoni et al., 2013a; 2013b;
Zattoni, 2014; Conte et al., 2013; Zattoni and Marro,
2013b).

The remainder of the work is organized as follows.
The problem of structural model matching by output
feedback for linear impulsive systems is stated in
Section 2. The problem of structural disturbance
decoupling by feedforward is formulated in Section 3.
In Section 4, the geometric notions needed to approach
the problems in question are set forth. Section 5 shows
a necessary and sufficient condition for solvability of
the disturbance decoupling problem. Section 6 formally
establishes the equivalence between the two problems
and, consequently, between the respective solutions.
Section 7 presents some concluding remarks.
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Notation. The symbols R and R
+ stand for the

sets of real numbers and nonnegative real numbers,
respectively. Matrices and linear maps are denoted by
slanted upper-case letters, like A. The image and the
kernel of A are denoted by ImA and KerA, respectively.
The inverse of a nonsingular square matrix A is denoted
by A−1. Vector spaces and subspaces are denoted by
calligraphic letters, like V . The notation B−1 V , where
B is not necessarily an invertible linear map and V is a
subspace of a vector space whose dimension is consistent
with B, stands for the inverse image through B of the
subspace V . The notation V ⊕W =X , where V and W
are subspaces of the vector space X , stands for the direct
sum of V and W , namely, V +W =X and V ∩W = {0}.
Let A :X →X denote a linear map from a vector space X
to the same vector space X , and let C denote a subspace
of X . The symbol maxJ (A, C) stands for the maximal
A-invariant subspace contained in C. The symbol I
denotes an identity matrix of appropriate dimension.

2. Problem statement: Structural model
matching by output feedback

In order to formally describe linear impulsive systems,
an appropriate definition of the so-called hybrid time do-
main is required in the first place. In the general case of
nonuniformly spaced state jumps, the hybrid time domain
consists of an interlaced sequence of continuous time
intervals with various lengths and isolated time instants
which correspond to the times when the state shows
discontinuities. The number of the discontinuity points
is assumed to be finite in any finite time interval or,
equivalently, the set of the discontinuity points is assumed
not to show any accumulation point. This hypothesis
guarantees that the linear impulsive systems defined on
this time domain do not exhibit Zeno behaviours. In more
formal terms, the set of the discontinuity points of the time
axis is defined as a finite or countably infinite set of strictly
increasing points of the nonnegative real axis R

+ and is
denoted by T = {t0, t1, . . .}. The set of all the sequences
T of jump times satisfying the constraint of presenting no
accumulation points is denoted by T .

Secondly, in order to formulate the problem of
structural model matching by output feedback for linear
impulsive systems with nonuniformly spaced state jumps,
a plant ΣP , a model ΣM , and a compensator ΣC must be
defined. The linear impulsive system with nonuniformly
spaced state jumps ΣP is defined by

ΣP ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP u(t),

with t∈R
+ \ T ,

xP (t) = JP xP (t
−), with t= tk, tk ∈ T ,

yP (t) = CP xP (t), with t∈R
+,

where xP ∈XP =R
nP is the state, u∈R

p is the control

input, and yP ∈R
q is the output, with p, q≤nP . The

matrices AP , BP , JP , and CP have suitable dimensions
and constant real entries. In particular, BP and CP

are assumed to be full rank. The set of the admissible
control input functions u(t), with t∈R

+, is assumed
to be the set of all piecewise-continuous functions with
values in R

p. The differential state equation governs
the so-called flow dynamics. The symbol xP (t

−) stands
for limτ→0+ xP (t− τ). The algebraic state equation
governs the so-called jump dynamics. Hence, according
to the linear impulsive structure of ΣP , the state trajectory
xP (t) in the time interval [0, t0) is the solution of the
differential equation, with given initial state xP (0) and
input function u(t), with t∈ [0, t0). The state xP (t), with
t= tk and tk ∈T , is the image of xP (t

−) through JP .
The state trajectory xP (t) in the time interval [tk tk+1),
with tk ∈T , is the solution of the differential equation,
with given initial state xP (tk) and input function u(t),
with t∈ [tk tk+1). Hence, whenever the linear map JP ,
governing the plant jump dynamics, is different from the
identity, it generates a discontinuity of the state evolution
at each time tk belonging to the set T .

The linear impulsive model with nonuniformly
spaced state jumps ΣM is defined by

ΣM ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋM (t) = AM xM (t) +BM d(t),

with t∈R
+ \ T ,

xM (t) = JM xM (t−), with t= tk, tk ∈ T ,

yM (t) = CM xM (t), with t∈R
+,

where xM ∈R
nM is the state, d∈R

q is the input, and
yM ∈R

q is the output. AM , BM , JM , and CM are
constant real matrices with suitable dimensions. In
particular, BM and CM are assumed to be full rank. The
set of the admissible input functions d(t), with t∈R

+,
is assumed to be the set of all piecewise-continuous
functions with values in R

q .
The to-be-designed linear impulsive compensator

with nonuniformly spaced state jumps ΣC is defined by

ΣC ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋC(t) = AC xC(t) +BC h(t),

with t∈R
+ \ T ,

xC(t) = JC xC(t
−), with t= tk, tk ∈ T ,

u(t) = CC xC(t) +DC h(t), with t∈R
+,

where xC ∈R
nC is the state, h∈R

q is the input, and
u∈R

p is the output. AC , BC , JC , CC , and DC

are constant real matrices of suitable dimensions. The
set of the admissible input functions h(t), with t∈R

+,
is assumed to be the set of all piecewise-continuous
functions with values in R

q. It is worth noting that
the structure of the linear impulsive compensator ΣC

presented above presupposes that the jump time instants
of the plant and of the model, which are assumed to be
simultaneous, are known (i.e., measurable).
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Fig. 1. Block diagram for structural model matching by output feedback.

Since, in the model matching control scheme
considered in this section, the linear impulsive
compensator ΣC is assumed to act as an output-feedback
compensator, the input h(t) is taken as the difference
between the new input w(t), which is assumed to belong
to the set of all piecewise-continuous functions with
values in R

q, and the feedback signal, which consists of
the plant output yP (t), namely,

h(t)=w(t)− yP (t), with t∈R
+.

In this context, the problem of structural model
matching by output feedback for linear impulsive systems
with nonuniformly spaced state jumps can be formulated
as follows.

Problem 1. (Structural model matching by output
feedback) Let the linear impulsive system ΣP and
the linear impulsive model ΣM be given. Find an
output-feedback linear impulsive compensator ΣC such
that the closed-loop linear impulsive system ΣL, defined
by

ΣL≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋL(t) = AL xL(t) +BLw(t),

with t∈R
+ \ T ,

xL(t) = JL xL(t
−), with t= tk, tk ∈ T ,

yP (t) = CL xL(t), with t∈R
+,

where

AL =

[
AP −BP DC CP BP CC

−BC CP AC

]

,

BL =

[
BP DC

BC

]

,

JL =

[
JP 0
0 JC

]

,

CL =
[
CP 0

]
,

satisfies the requirement that its output yP (t) is equal to
the model output yM (t), for all t∈R

+, or, equivalently,
the difference

y(t) = yP (t)− yM (t), with t∈R
+, (1)

is equal to zero, when the respective inputs are taken
equal, i.e.,

w(t) = d(t), with t∈R
+,

and the respective initial states are zero, for all the
admissible input functions d(t), with t∈R

+, and for all
the admissible sequences of jump times T ∈T .

The system interconnection considered in Problem 1
is illustrated in the block diagram of Fig. 1.

3. Problem statement: Structural
disturbance decoupling by feedforward

The purpose of this section is to introduce the problem
of structural disturbance decoupling by feedforward
for linear impulsive systems with nonuniformly spaced
state jumps. In general, disturbance decoupling by a
feedforward action is a viable option when the disturbance
is (at least) accessible for measurement—a detailed
discussion of this topic for the case of linear time-invariant
systems can be found, e.g., in the work of Zattoni
(2007). In particular, the interest in considering structural
disturbance decoupling by feedforward in the context of
model matching by output feedback for linear impulsive
systems with nonuniformly spaced state jumps lies in the
fact that the solution of the structural model matching
problem previously stated can be achieved through the
solution of a structural disturbance decoupling problem
by feedforward, formulated for a suitably defined linear
impulsive system, as will be shown in the next sections.

Hence, the so-called modified linear impulsive model
with nonuniformly spaced state jumps, from now on
denoted by Σ̃M , is derived by closing a positive unit
output feedback on the flow dynamics of the original
linear impulsive model ΣM . Namely, by taking

d(t) = v(t) + yM (t), with t∈R
+,

where the new input v(t), with t∈R
+, is assumed to

belong to the set of all piecewise-continuous functions
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Fig. 2. Block diagram for structural disturbance decoupling by feedforward.

with values in R
q , one gets

Σ̃M ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋM (t) = (AM +BM CM )xM (t) +BM v(t),

with t∈R
+ \ T ,

xM (t) = JM xM (t−), with t= tk, tk ∈ T ,

yM (t) = CM xM (t), with t∈R
+.

Moreover, the so-called extended linear impulsive
system with nonuniformly spaced state jumps, henceforth
denoted by Σ, is defined as the output-difference
connection between the given linear impulsive system
ΣP and the modified linear impulsive model Σ̃M .
Consequently, by defining y(t) as in (1), one obtains that
the linear impulsive system Σ is described by

Σ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = Ax(t) +B u(t) +H v(t),

with t∈R
+ \ T ,

x(t) = J x(t−), with t= tk, tk ∈ T ,

y(t) = C x(t), with t∈R
+,

where

A =

[
AP 0
0 AM +BM CM

]

, (2)

B =

[
BP

0

]

, (3)

H =

[
0

BM

]

, (4)

J =

[
JP 0
0 JM

]

, (5)

C =
[
CP −CM

]
. (6)

The state space of Σ is denoted by X , i.e., X =R
n, where

n=nP +nM .
Furthermore, it is worth noting that the feedforward

compensation scheme considered herein presupposes
that the linear impulsive compensator ΣC performs a
feedforward action. This means that ΣC is fed by the

same input v(t) which is applied to the modified linear
impulsive model Σ̃M . Namely, it is set

h(t) = v(t), with t∈R
+,

in the equations of the flow dynamics and of the output
of ΣC , where v(t) is assumed to be accessible for
measurement.

Hence, the problem of structural disturbance
decoupling by feedforward, with reference to the extended
linear impulsive system Σ, is stated as follows.

Problem 2. (Structural disturbance decoupling by feed-
forward) Let the extended linear impulsive system Σ be
given. Find a feedforward linear impulsive compensator
ΣC such that the compensated linear impulsive system

Σ̃≡

⎧
⎪⎨

⎪⎩

˙̃x(t) = Ã x̃(t) + H̃ v(t), with t∈R
+ \ T ,

x̃(t) = J̃ x̃(t−), with t= tk, tk ∈ T ,

y(t) = C̃ x̃(t), with t∈R
+,

where

Ã =

[
A BCC

0 AC

]

, (7)

H̃ =

[
BDC +H

BC

]

, (8)

J̃ =

[
J 0
0 JC

]

, (9)

C̃ =
[
C 0

]
, (10)

satisfies the requirement that the output y(t) is zero,
for all t∈R

+, when the initial state is zero, for all the
admissible input functions v(t), with t∈R

+, and for all
the admissible sequences of jump times T ∈T .

The block diagram in Fig. 2 shows the system
interconnection taken into consideration in Problem 2.
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4. Structural notions of the geometric
approach for linear impulsive systems
with nonuniformly spaced state jumps

The broad literature on disturbance decoupling shows
that one of the most powerful tools for handling this
control problem is the geometric approach (Wonham,
1985; Basile and Marro, 1992). Indeed, the fundamental
notions originally set forth to solve the disturbance
decoupling problem for linear time-invariant systems have
progressively been extended and adjusted in order to
tackle more general problem formulations, addressing
various classes of dynamical systems, such as, for
instance, systems over rings (Conte and Perdon, 1995),
linear parameter varying systems (Conte et al., 2015b),
switched linear systems in the case of inaccessible
disturbances (Zattoni and Marro, 2013a; Zattoni et al.,
2014a; 2016) as well as in the case of combined,
measurable and inaccessible, disturbances (Zattoni,
2016a).

Concerning linear impulsive systems (either with
unequally spaced or with periodic state jumps), some
fundamental notions of the geometric approach, like
those of invariance and controlled invariance, have been
generalized so as to fit these classes of dynamical systems
in some previous papers which dealt with different control
problems. To be more specific, these problems were
that of output regulation in the presence of periodic state
jumps (Zattoni et al., 2015; 2017b) and in the presence
of unequally spaced state jumps (Zattoni et al., 2017a), as
well as that of inaccessible disturbance decoupling both
in the presence of periodic state jumps (Conte et al.,
2015a) and nonuniformly spaced state jumps (Perdon
et al., 2016b). Hence, the purpose of this section is to
collect and review such, recently introduced, structural
notions, needed to successfully manage the problem of
disturbance decoupling in linear impulsive systems with
nonuniformly spaced state jumps, in particular.

For ease of reference, the definitions and the
properties of the structural concepts of invariant subspace
and of controlled invariant subspace for a linear impulsive
system with nonuniformly spaced state jumps are set
forth with regard to the extended linear impulsive system
previously defined, namely, the system Σ. However, it
is understood that only the macroscopic structure of Σ
plays a role in the presentation of these notions. In other
words, the special structure, shown in (4)–(6), of the
matrices of Σ, deriving from the definition of Σ as the
output-difference connection between the linear impulsive
plant ΣP and the modified linear impulsive model Σ̃M , is
uninfluential to this specific purpose.

The symbols B and H are used henceforth to denote
the subspaces ImB and ImH , respectively. Moreover,
from now on, the symbol C stands for the subspace
KerC. Hence, the following definitions and properties,

first presented by Zattoni et al. (2015), can be stated.

Definition 1. A subspace V ⊆X is said to be an invariant
subspace for the linear impulsive system Σ if

AV ⊆ V , (11)

J V ⊆ V . (12)

A subspace V satisfying (11), (12) is called an
H -invariant subspace.

Definition 2. A subspace V ⊆X is said to be a controlled
invariant subspace for the linear impulsive system Σ if
(12) and

AV ⊆V +B (13)

hold. A subspace V satisfying (12), (13) is called an
H -controlled invariant subspace.

Proposition 1. A subspace V ⊆X , with a basis matrix V ,
is a controlled invariant subspace for the linear impulsive
system Σ if and only if there exist matrices LA, LJ , and
M such that

AV = V LA +BM, (14)

J V = V LJ . (15)

Proposition 2. A subspace V ⊆X is a controlled invari-
ant subspace for the linear impulsive system Σ if and only
if there exists a linear map F :X →U such that

(A+B F )V ⊆V (16)

holds along with (12).

Definition 3. Let V ⊆X be a controlled invariant
subspace for the linear impulsive system Σ. Any linear
map F :X →U such that (16) holds is said to be a friend
of V .

Proposition 3. The set of all controlled invariant sub-
spaces for the linear impulsive system Σ contained in a
given subspace K⊆X is an upper semilattice, henceforth
denoted by Λ(K), with respect to the sum and the inclu-
sion of subspaces.

Definition 4. The maximum of the upper semilattice of
all controlled invariant subspaces for the linear impulsive
system Σ contained in a given subspace K⊆X is called
the maximal H -controlled invariant subspace contained
in K and is denoted by V∗

H (K).

The subspace V∗
H (K) can be computed through the

following algorithm, which was first presented by Conte
et al. (2015a).

Algorithm 1. The maximal controlled invariant subspace
for the linear impulsive system Σ contained in a given



A geometric approach to structural model matching by output feedback in linear impulsive systems 31

subspace K⊆X—i.e., the subspace V∗
H (K)—is the last

term of the nonincreasing sequence of subspaces

V0 = K, (17)

Vi = Vi−1 ∩ A−1 (Vi + B) ∩ J−1 Vi,

i = 1, . . . , k, (18)

where k≤n− 1 is the least integer such that Vk+1 =Vk.

It is worth pointing out that, in the remainder of this
work, the only upper semilattice of controlled invariant
subspaces for the linear impulsive system Σ playing a
role in connection with the solution of the structural
disturbance decoupling problem is the upper semilattice
of the controlled invariant subspaces contained in the
subspace C (i.e., the null space of the output distribution
matrix C of Σ). For this reason, the corresponding
maximal element, which is V∗

H (C), will be briefly
denoted by V∗

H hereafter. In other words, the argument C
will henceforth be dropped since no confusion may arise.

5. Problem solution: Structural
disturbance decoupling by feedforward

The purpose of this section is to demonstrate a necessary
and sufficient condition for the existence of a solution
to the problem of structural disturbance decoupling by
feedforward for linear impulsive systems subject to
unequally spaced state jumps. As will be shown in
the following, a necessary and sufficient condition for
solvability of Problem 2 (formulated in Section 3) can be
expressed in geometric terms by exploiting the concepts
introduced in Section 4.

It is worth premising that the necessary and sufficient
solvability condition that will be the main result of this
section (Theorem 1) consists in a subspace inclusion and,
as such, it expresses a concept which is independent of
coordinates. However, since the proof of sufficiency
is constructive—i.e., it hinges on the design of a
suitable feedforward linear impulsive compensator—it is
convenient to provide some preliminary results, aimed at
expressing that condition in a coordinate-dependent form,
with respect to a conveniently chosen basis of the state
space of the given linear impulsive system. Indeed, this is
the purpose of Lemmas 1 and 2 in the following.

As to the proof of necessity, this is based on the
notion of unobservable subspace of a linear impulsive
system with nonuniformly spaced state jumps. Hence,
also the definition and an algorithmic characterization of
this geometric object will be given before the statement of
the solvability condition. To be more specific, Definition 5
in the following represents the formal definition of the
unobservable subspace adapted to the case of linear
impulsive systems with nonuniformly spaced state jumps.
Then, Lemma 3 states a property of the unobservable

subspace which suggests an algorithmic procedure to
compute it. For ease of reference, both the definition and
the characterizing property will be formulated addressing
the compensated linear impulsive system Σ̃.

Lemma 1. Let the extended linear impulsive system Σ be
given. Let V∗

H be the maximal controlled invariant sub-
space for Σ contained in C. Let F :X →U be a friend of
V∗

H . Perform the state space basis transformation T , de-
fined by T = [T1 T2 ], where T1 is a basis matrix of V∗

H

and T2 is any matrix such that T is square and nonsin-
gular. Then, with respect to the new coordinates, the ma-
trices A′ +B′ F ′ =T−1 (A+B F )T and J ′ =T−1 J T ,
partitioned according to T , have the characteristic upper
block-triangular structure shown below:

A′ +B′ F ′ = T−1 (A+B F )T

=

[
A′

11 +B′
1 F

′
1 A′

12 +B′
1 F

′
2

0 A′
22 +B′

2 F
′
2

]

, (19)

J ′ = T−1 J T =

[
J ′
11 J ′

12

0 J ′
22

]

. (20)

Moreover, the matrix C′ =C T , also partitioned consis-
tently with T , has the structure

C′ = C T =
[
0 C′

2

]
. (21)

Proof. Concerning the matrix A′ +B′ F ′, the structural
zero submatrix at the lower left corner or, equivalently, the
condition

A′
21 +B′

2 F
′
1 = 0 (22)

is due to (A+B F )-invariance of V∗
H . Likewise, the

structural zero submatrix at the lower left corner of J ′ is
due to J-invariance of V∗

H . Furthermore, the structural
zero submatrix in C′ ensues from V∗

H ⊆C.

Lemma 2. Let the extended linear impulsive system Σ
be given. Let V∗

H be the maximal controlled invariant
subspace for Σ contained in C. Let H be the subspace
spanned by the column vectors of the disturbance input
distribution matrix H . Let the subspace P ⊆V∗

H be such
that

B ∩P = {0}, (23)

(B ∩V∗
H )+P = V∗

H . (24)

Let r be the dimension of P and let P ∈R
n×r be a

matrix whose column vectors form a basis of P . Per-
form the state space basis transformation T , defined by
T = [T1 T2 ], where T1 is a basis matrix of V∗

H and
T2 is any matrix such that T is square and nonsingu-
lar. Then, with respect to the new coordinates, the matrix
P ′ =T−1 P , partitioned according to T , has the structure

P ′ = T−1 P =

[
P ′
1

0

]

. (25)
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Moreover, the subspace inclusion

H ⊆ B + V∗
H (26)

holds if and only if there exists a unique pair of matrices
Φ∈R

p×m and Ψ∈R
r×m such that

H ′ = B′ Φ + P ′ Ψ, (27)

where H ′ =T−1H , B′ =T−1B and P ′ =T−1 P .
Equivalently, with reference to the partition of H ′, B′,
and P ′ consistent with the partition of T , the subspace
inclusion (26) holds if and only if there exists a unique
pair of matrices Φ∈R

p×m and Ψ∈R
r×m such that

[
H ′

1

H ′
2

]

=

[
B′

1

B′
2

]

Φ+

[
P ′
1

0

]

Ψ. (28)

Proof. First, note that the structural zero submatrix in P ′

shown in (25) is due to P ⊆V∗
H . Secondly, note that (23)

implies
(B ∩V∗

H )∩P = {0}. (29)

Hence, (24) and (29) are equivalent to

V∗
H =(V∗

H ∩B)⊕P . (30)

By summing B to both members of (30) and taking into
account that B⊇ (V∗

H ∩B) and that (23) holds, one gets

B+V∗
H =B⊕P . (31)

In light of (31), the inclusion (26) is equivalent to

H⊆B⊕P . (32)

In particular, the direct sum in (32) is equivalent to the
existence of a unique pair of matrices Φ and Ψ, of
appropriate dimensions, such that (27) or, equivalently,
(28) hold. In fact, each column vector of H ′, which is a
basis matrix of H with respect to the new coordinates, can
be expressed in a unique way as a linear combination of
the column vectors of B′ and P ′, which are basis matrices
of B and P , respectively, in the new coordinates.

In order to introduce the notion of unobservable
subspace of a linear impulsive system subject to
nonuniformly spaced state jumps, it is worth first
reviewing the concept of unobservable subspace for the
sole flow dynamics. The flow dynamics is a linear
time-invariant dynamics, and the output equation is the
same for both the flow and the jump dynamics. Therefore,
the unobservable subspace of the flow dynamics—which
is the set of the initial states that give rise to free
state trajectories corresponding to zero output—coincides
with the subspace which enjoys the property of being
the maximal invariant subspace, with respect to the
linear map defining the system dynamics, contained in

the null space of the output distribution matrix. As
mentioned at the beginning of this section, the statements
concerning the unobservable subspace will be presented
with reference to the compensated linear impulsive system
Σ̃. Consequently, the unobservable subspace of the
flow dynamics of Σ̃—henceforth denoted by Õ—can
be characterized as maxJ (Ã, C̃), where C̃ denotes the
kernel of the output distribution matrix C̃, i.e., C̃=Ker C̃.
Hence, the definition of the unobservable subspace of Σ̃
and its characterization can be stated as follows.

Definition 5. The set of all the initial states of the linear
impulsive system with nonuniformly spaced state jumps Σ̃
giving rise to state motions corresponding to zero output
for all the admissible sequences of jump times T ∈T
is called the unobservable subspace of Σ̃ and is denoted
by Q̃.

Lemma 3. The unobservable subspace Q̃ of the linear
impulsive system with nonuniformly spaced state jumps Σ̃
is the maximal invariant subspace of Σ̃ contained in the
unobservable subspace Õ of the flow dynamics of Σ̃.

Proof. First, note that the unobservable subspace Q̃
is a locus of trajectories of the linear impulsive system
with nonuniformly spaced state jumps Σ̃, contained in
the kernel C̃ of the output distribution matrix C̃. As a
locus of trajectories of the linear impulsive dynamics, Q̃ is
invariant under the linear map J̃ eÃ t for any given t∈R

+,
namely,

J̃ eÃ t Q̃ ⊆ Q̃, (33)

for any given t∈R
+. Secondly, observe that Q̃ is a locus

of trajectories of the flow dynamics of Σ̃ contained in
C̃. As a locus of trajectories of the flow dynamics, Q̃ is
invariant under the linear map Ã, i.e.,

Ã Q̃ ⊆ Q̃. (34)

By applying the state space basis transformation

T̃ =
[
T̃1 T̃2

]
,

where T̃1 is a matrix whose column vectors form a basis
of Q̃ and T̃2 is any matrix such that T̃ is square and
nonsingular, one obtains

Ã′ = T̃−1 Ã T̃ =

[
Ã′

11 Ã′
12

0 Ã′
22

]

, (35)

J̃ ′ = T̃−1 J̃ T̃ =

[
J̃ ′
11 J̃ ′

12

J̃ ′
21 J̃ ′

22

]

, (36)

where the structural zero submatrix at the lower left corner
of Ã′, shown in (35), is due to (34). By taking into account
(35) and (36), one gets

J̃ ′ eÃ
′ t =

[
J̃ ′
11 e

Ã′
11 t ∗

J̃ ′
21 e

Ã′
11 t ∗

]

, (37)
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for any given t∈R
+, where the symbol ‘∗’ denotes a

matrix block whose expression is of no special interest
to this discussion and, therefore, has not been specified
to avoid heavier (inessential) developments. By virtue of
(33), from (37) it follows that

J̃ ′
21 e

Ã′
11 t = 0 (38)

for any given t∈R
+. Since eÃ

′
11 t is nonzero for all

t∈R, (38) holds if and only if J̃ ′
21 =0, which, in turn,

is equivalent to J̃-invariance of Q̃. Consequently, Q̃,
being both Ã-invariant and J̃-invariant, is invariant for the
linear impulsive system Σ̃. Moreover, Q̃, as an invariant
subspace for the linear impulsive system Σ̃ contained in C̃,
is contained in Õ, since the latter is the maximal invariant
subspace of Σ̃ contained in C̃. Finally, maximality of Q̃
can be easily shown by contradiction.

As mentioned above, the previous lemmas pave the
way to the proof of the necessary and sufficient condition
for solvability Problem 2, which can be stated as follows.

Theorem 1. Let the linear impulsive system with nonuni-
formly spaced state jumps Σ be given. Let V∗

H be the
maximal controlled invariant subspace of Σ contained in
C. Let B and H be the subspaces respectively spanned by
the column vectors of the control input distribution matrix
B and by the column vectors of the disturbance input dis-
tribution matrix H . Problem 2 has a solution if and only
if (26) holds.

Proof.

(Sufficiency) First, note that this part of the proof will
be entirely developed by referring to the coordinates
considered in Lemmas 1 and 2. Let (26) hold. Let the
linear map F :X →U be a friend of V∗

H . Hence, with
respect to the coordinates introduced in Lemmas 1 and
2, (19), (20), (21), and (28) hold. With respect to the
same coordinates, let the feedforward linear impulsive
compensator ΣC be defined by the following matrices:

A′
C = A′

11 +B′
1 F

′
1, (39)

B′
C = P ′

1 Ψ, (40)

J ′
C = J ′

11, (41)

C′
C = F ′

1, (42)

D′
C = −Φ. (43)

Then, it will be shown that the compensator ΣC thus
defined, with zero initial state, solves Problem 2.

To this aim, recall that the cascade of the
feedforward linear impulsive compensator ΣC with the
extended linear impulsive system Σ, denoted by Σ̃ in
Problem 2, is described by the matrices shown in (7)–(10).
Consequently, with respect to new coordinates introduced
in Lemmas 1 and 2, and taking into account (39)–(43), it

ensues that Σ̃ is described by (44). In particular, observe
that the state space basis transformation T , introduced in
Lemmas 1 and 2, has been applied to the original state
x(t), so that the new state z(t)=T−1 x(t), partitioned
according to T , is given by

z(t)=

[
z1(t)
z2(t)

]

, with t∈R
+.

Moreover, the state of the feedforward linear impulsive
compensator with respect to these coordinates has been
denoted by zC(t). Also observe that (28) has been taken
into account in writing (44). Next, by applying the change
of variables

ζ(t)= z1(t)− zC(t), with t∈R
+,

the system Σ̃ can be written as (45), where (22) has been
taken into account. Hence, the assumption of zero initial
state implies ζ(t)= 0 and z2(t)= 0, for all t∈R

+, which,
in particular, also implies y(t)= 0, for all t∈R

+, for all
the admissible input functions v(t), with t∈R

+, and for
all the admissible sequences of jump times T ∈T .

(Necessity) Let Problem 2 have a solution. Then, there
exists a feedforward linear impulsive compensator ΣC

such that the compensated linear impulsive system Σ̃
satisfies the condition that the subspace H̃, spanned
by the column vectors of H̃ , is contained in the
unobservable subspace Q̃. Refer to the coordinates
introduced in Lemmas 1 and 2. Hence, the compensated
linear impulsive system Σ̃ is described by the following
matrices:

Ã′ =

⎡

⎣
A′

11 A′
12 B′

1 C
′
C

A′
21 A′

22 B′
2 C

′
C

0 0 A′
C

⎤

⎦ , (46)

J̃ ′ =

⎡

⎣
J ′
11 J ′

12 0
0 J ′

22 0
0 0 J ′

C

⎤

⎦ , (47)

C̃′ =
[
0 C′

2 0
]
, (48)

H̃ ′ =

⎡

⎣
B′

1 D
′
C +H ′

1

B′
2 D

′
C +H ′

2

B′
C

⎤

⎦ . (49)

Let Q̃′ be a full rank matrix whose column vectors span
the unobservable subspace Q̃ of Σ̃. According to the
partition shown in (46)–(49), let Q̃′ be partitioned as

Q̃′ =

⎡

⎣
Q′

1

Q′
2

Q′
C

⎤

⎦ . (50)

Hence, it will be shown that the subspace V ⊆X , defined
by

V = ImV ′ = Im

[
Q′

1

Q′
2

]

, (51)
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Σ̃ ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1(t) = A′
11 z1(t) +A′

12 z2(t) +B′
1 F

′
1 zC(t) + P ′

1 Ψ v(t), with t∈R
+ \ T ,

ż2(t) = A′
21 z1(t) +A′

22 z2(t) +B′
2 F

′
1 zC(t), with t∈R

+ \ T ,
żC(t) = (A′

11 +B′
1 F

′
1) zC(t) + P ′

1 Ψ v(t), with t∈R
+ \ T ,

z1(t) = J ′
11 z1(t

−) + J ′
12 z2(t

−), with t= tk, tk ∈ T ,
z2(t) = J ′

22 z2(t
−), with t= tk, tk ∈ T ,

zC(t) = J ′
11 zC(t

−), with t= tk, tk ∈ T ,
y(t) = C′

2 z2(t), with t∈R
+.

(44)

Σ̃ ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇(t) = A′
11 ζ(t) +A′

12 z2(t), with t∈R
+ \ T ,

ż2(t) = A′
21 ζ(t) +A′

22 z2(t), with t∈R
+ \ T ,

żC(t) = (A′
11 +B′

1 F
′
1) zC(t) + P ′

1 Ψ v(t), with t∈R
+ \ T ,

ζ(t) = J ′
11 ζ(t

−) + J ′
12 z2(t

−), with t= tk, tk ∈ T ,
z2(t) = J ′

22 z2(t
−), with t= tk, tk ∈ T ,

zC(t) = J ′
11 zC(t

−), with t= tk, tk ∈ T ,
y(t) = C′

2 z2(t), with t∈R
+.

(45)

is a controlled invariant subspace for the extended linear
impulsive system Σ, enjoying the property of being
contained in C and also satisfying the condition

H⊆B + V . (52)

To this aim, first note that Ã-invariance of Q̃ is equivalent
to the existence of a matrix LA such that

Ã′ Q̃′ = Q̃′LA (53)

or, equivalently,
⎡

⎣
A′

11 A′
12 B′

1 C
′
C

A′
21 A′

22 B′
2 C

′
C

0 0 A′
C

⎤

⎦

⎡

⎣
Q′

1

Q′
2

Q′
C

⎤

⎦ =

⎡

⎣
Q′

1

Q′
2

Q′
C

⎤

⎦ LA

(54)
hold. The first two blocks of rows in (54) can also be
written as

[
A′

11 A′
12

A′
21 A′

22

] [
Q′

1

Q′
2

]

=

[
Q′

1

Q′
2

]

LA −
[

B′
1

B′
2

]

C′
C Q′

C . (55)

Let the matrix M be defined as M =−C′
C Q′

C . Hence,
(55) shows that there exists a pair of matrices LA and M
such that

A′ V ′ = V ′ LA +B′ M (56)

holds, which is equivalent to stating that V , defined
by (51), is an (A,B)-controlled invariant subspace.
Similarly, J̃-invariance of Q̃ is equivalent to the existence
of a matrix LJ such that

J̃ ′ Q̃′ = Q̃′ LJ (57)

or, equivalently,
⎡

⎣
J ′
11 J ′

12 0
0 J ′

22 0
0 0 J ′

C

⎤

⎦

⎡

⎣
Q′

1

Q′
2

Q′
C

⎤

⎦ =

⎡

⎣
Q′

1

Q′
2

Q′
C

⎤

⎦ LJ (58)

hold. The first two blocks of rows in (58) can also be
written as

[
J ′
11 J ′

12

0 J ′
22

] [
Q′

1

Q′
2

]

=

[
Q′

1

Q′
2

]

LJ . (59)

Hence, (59) shows that there exists a matrix LJ such that

J ′ V ′ = V ′ LJ (60)

holds, which is equivalent to stating that V , defined by
(51), is a J-invariant subspace. Hence, (56) and (60) show
that V is a controlled invariant subspace of the extended
linear impulsive system Σ. Moreover, the inclusion Q̃⊆ C̃
is equivalent to C′ Q′=0 or

[
0 C′

2 0
]

⎡

⎣
Q′

1

Q′
2

Q′
C

⎤

⎦ = 0. (61)

By considering the product only between the first two,
respective, matrix blocks, one gets

[
0 C′

2

]
[

Q′
1

Q′
2

]

= 0, (62)

which is equivalent to the inclusion V ⊆C. Furthermore,
the inclusion H̃⊆ Q̃ is equivalent to the existence of a
matrix X , of suitable dimensions, such that H̃ ′ = Q̃′X
or, equivalently,

⎡

⎣
B′

1 D
′
C +H ′

1

B′
2 D

′
C +H ′

2

B′
C

⎤

⎦ =

⎡

⎣
Q′

1

Q′
2

Q′
C

⎤

⎦ X (63)

hold. By only considering the first two blocks of rows in
(63), one obtains

[
H ′

1

H ′
2

]

= −
[

B′
1

B′
2

]

D′
C +

[
Q′

1

Q′
2

]

X (64)
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or, equivalently,

H ′ = B′ Y +Q′ X, (65)

where Y =−D′
C . Equation (65) shows that the inclusion

H⊆B+V (66)

holds. Note that V , as a controlled invariant invariant
subspace of the linear impulsive system Σ contained in C,
is contained in V∗

H . Hence, in light of this consideration,
(66) implies that (26) holds.

6. Problem solution: Structural model
matching by output feedback

The objective of this section is to show that the problem
of structural disturbance decoupling by feedforward,
formulated for the extended linear impulsive system in
Section 3 and solved in Section 5, is equivalent to the
structural model matching problem by output feedback
stated for the original system and model in Section 2.
In other words, such equivalence means that a linear
impulsive compensator solves any of these problems if
and only if it solves the other one. The following theorem
provides the formal statement (and the consequent proof)
of this result. It is just worth mentioning that, in
accordance with the statement above, the output variable
is postulated to be zero throughout the proof.

Theorem 2. Let the linear impulsive system ΣP and the
linear impulsive model ΣM be given. A linear impulsive
compensator ΣC solves Problem 2 if and only if it solves
Problem 1.

Proof.

(Sufficiency) Let the linear impulsive compensator ΣC

solve Problem 1. Hence, the overall compensated
linear impulsive system with measurement
feedback—henceforth denoted by Σ̃′—is described
by (67). Note that, since ΣC solves Problem 1, on
the assumption of zero initial state, the output of Σ̃′

satisfies the condition that y(t)= 0, for all t∈R
+, for

all the admissible input functions d(t), with t∈R
+,

and for all the admissible sequences of jump times
T ∈T . Hence, one can replace yP (t)=CP xP (t) with
yM (t)=CM xM (t) in the state equations of Σ̃′. Thus,
the new system, henceforth denoted by Σ̃′′, is described
by (68). Moreover, since y(t)= 0 for all t∈R

+, for all
the admissible d(t), with t∈R

+, this condition holds,
in particular, by picking d(t)=CM xM (t)+ v(t), where
v(t), with t∈R

+, denotes any admissible input function.
Then, the resulting system is the linear impulsive system
Σ̃ considered in Problem 2, as shown by (69), derived
from those of Σ̃′′ with the replacement mentioned above.
The equations of Σ̃, which hold with y(t)= 0 for all

t∈R
+, for all the admissible v(t), with t∈R

+, and for
all the admissible sequences of jump times T ∈T , show
that the linear impulsive compensator ΣC also solves
Problem 2, i.e., the problem of decoupling the signal v(t),
with t∈R

+, in the extended linear impulsive system Σ,
including the modified linear impulsive model Σ̃M .

(Necessity) Let the linear impulsive compensator ΣC

solve Problem 2. Then, in order to show that ΣC also
solves Problem 1, the same reasoning presented in the
proof of sufficiency can be followed backward, i.e., from
Σ̃ to Σ̃′.

7. Conclusions

In this work, the problem of finding an output feedback
linear impulsive compensator which ensures that the
forced response of a given linear impulsive system
matches that of a given linear impulsive model, for all the
admissible inputs and for all the admissible sequences of
jump time instants, has been formulated on the general
assumption that the jump time instants are not equally
spaced in time, but satisfy the constraint that their set
has no accumulation points on the time axis. The
problem of structural model matching has been tackled
by reducing it to an equivalent problem of structural
disturbance decoupling by feedforward. Solvability
of the structural disturbance decoupling problem has
been characterized through a necessary and sufficient
condition. Equivalence between the original model
matching problem by output feedback and the disturbance
decoupling problem by feedforward has been formally
established. A computational procedure for the synthesis
of the linear impulsive compensator that solves both the
equivalent problems has been illustrated through the proof
of sufficiency of the solvability condition. In fact, the
matrices of the compensator are constructed on the basis
of the results set forth in the preceding lemmas.
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ẋC(t) = −BC CP xP (t) +AC xC(t) +BC d(t), with t∈R
+ \ T ,

xP (t) = JP xP (t
−), with t= tk, tk ∈ T ,

xM (t) = JM xM (t−), with t= tk, tk ∈ T ,
xC(t) = JC xC(t

−), with t= tk, tk ∈ T ,
y(t) = CP xP (t)− CM xM (t), with t∈R

+.

(67)

Σ̃′′ ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩
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