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The main aim of the paper is to develop a distributed algorithm for optimal node activation in a sensor network whose
measurements are used for parameter estimation of the underlying distributed parameter system. Given a fixed partition of
the observation horizon into a finite number of consecutive intervals, the problem under consideration is to optimize the
percentage of the total number of observations spent at given sensor nodes in such a way as to maximize the accuracy of
system parameter estimates. To achieve this, the determinant of the Fisher information matrix related to the covariance
matrix of the parameter estimates is used as the qualitative design criterion (the so-called D-optimality). The proposed
approach converts the measurement scheduling problem to a convex optimization one, in which the sensor locations are
given a priori and the aim is to determine the associated weights, which quantify the contributions of individual gaged
sites to the total measurement plan. Then, adopting a pairwise communication scheme, a fully distributed procedure for
calculating the percentage of observations spent at given sensor locations is developed, which is a major novelty here.
Another significant contribution of this work consists in derivation of necessary and sufficient conditions for the optimality
of solutions. As a result, a simple and effective computational scheme is obtained which can be implemented without
resorting to sophisticated numerical software. The delineated approach is illustrated by simulation examples of a sensor
network design for a two-dimensional convective diffusion process.
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1. Introduction

Optimized measurement strategies for parameter
estimation of spatio-temporal systems, commonly known
as distributed parameter systems (DPSs), have become
of considerable interest in both theory and practice for a
great variety of engineering problems. A key difficulty
here is that it is impossible to observe the system states
over the entire spatial domain. This leads directly to the
issue of determining a sensor placement so as to get the
most valuable information about the unknown system
parameters.

At the same time, technological advances in
communication systems and sensor technology have
begun a strong trend of measurement devices to become
miniaturized and cheap, while making the networks of
sensors increasingly powerful. The performance of
distributed sensor networks improved to the point where
their wide applicability is unquestionable (Zhao and
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Guibas, 2004; Ögren et al., 2004; Jain and Agrawal,
2005; Cassandras and Li, 2005; Wu, 2006; Boukerche,
2006; Zhong and Cassandras, 2011). This is especially
important in the context of spatio-temporal systems where
a large number of sensors can be used for the task of
monitoring the dynamics of a system. A cooperated
and scalable network of sensors has a potential to
substantially enhance the performance of the observation
systems. Although in the context of DPSs the number
of sensor placement techniques dedicated to manage the
configuration for sensor networks of practical scale is
limited, some effective approaches have been proposed
to cover a number of different experimental settings,
including stationary (Nehorai et al., 1995; Uciński, 2000;
Point et al., 1996; Joshi and Boyd, 2009; Patan and
Kowalów, 2014; Kowalów et al., 2015; Patan and Uciński,
2016a), scanning (Uciński and Patan, 2002; Patan, 2006;
2008; 2012a; Tricaud et al., 2008) or moving observations
(Rafajłowicz, 1986; Porat and Nehorai, 1996; Uciński,
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2000; 2012; Patan et al., 2008; Demetriou and Hussein,
2009; Demetriou, 2010). Their adaptation to the
sensor-network setting was reported by Tricaud and Chen
(2012) as well as Song et al. (2009).

Some computational schemes have been developed
to attack directly the original problem or its convenient
approximation. The adopted optimization criteria are
essentially the same, i.e., various scalar measures of
performance based on the Fisher information matrix
(FIM) associated with the parameters to be identified
are minimized. The idea is to express the goodness of
parameter estimates in terms of the covariance matrix of
the estimates. For sensor-location purposes, one assumes
that an unbiased and efficient estimator is employed so
that the optimal sensor placement can be determined
independently of the estimator used. This leads to a
great simplification since the Cramér–Rao lower bound
for the aforementioned covariance matrix is merely the
inverse of the FIM, which can be computed with relative
ease, even though the exact covariance matrix of a
particular estimator is very difficult to obtain. A related
optimality criterion was given by Point et al. (1996)
by the maximization of the Gram determinant, which
is a measure of the independence of the sensitivity
functions evaluated at sensor locations. The form of
the criterion itself resembles the D-optimality criterion,
being the determinant of the FIM, but the counterpart of
the information matrix takes on much larger dimensions,
which may lead to more intensive calculations.

However, most approaches communicated by various
authors rely on centralized techniques, which assume
the existence of some superior entity to maintain the
whole network, responsible for optimization of the
observation strategy. The distributed nature of the
measurement scheduling problem is taken into account
very occasionally. Recent advancements in sensor
networks necessitate effective and distributed algorithms
for computation and information exchange.

In this paper we wish to focus on certain
computational aspects of sensor placement problems for
parameter estimation in DPSs. Given a finite set of
stationary located sensors, the observation horizon is
divided into consecutive stages (time subintervals). Then,
the non-negative weights are assigned to each sensor
at a given stage so as to maximize the determinant of
the FIM. The weight assigned to a measurement point
can be interpreted as the proportion of observations
performed at this point, or the frequency of sensor
activation during replications of the experimental trials.
Thus, the observation scheduling problem is embedded
in the context of weight optimization, which is close in
spirit to the classical optimum experimental design theory
for lumped systems (Atkinson et al., 2007; Fedorov and
Hackl, 1997; Pázman, 1986). The potential solutions are
of considerable interest while assessing which sensors are

more informative than the others and allow complexity
reduction of the measurement system.

The approach developed here relies on a very
simple fixed-point iteration algorithm for computation of
a D-optimum design on a finite set, devised and analysed
by Pázman (1986), Silvey et al. (1978) or Torsney and
Mandal (2004) for the case of rank-one information
matrices per single observation, and then extended to the
multi-response systems case by Uciński (2004, p. 62). In
the paper, we further generalize it to the framework of
scanning observations, with possible sensor switchings
between the consecutive time subintervals. Although
there exist some alternative approaches to the problem,
via application of semi-definite programming (Joshi and
Boyd, 2009) or branch-and-bound discrete optimization
(Uciński and Patan, 2007), unfortunately there is no
straightforward and efficient way to adapt them to the
framework of decentralized computations.

A key contribution of this work consists in
partial decomposition of the optimization problem into
subproblems for each time subintervals coupled by the
global FIM. To achieve this, the necessary and sufficient
conditions for the optimality of solutions are derived,
together with appropriate mathematical substantiation
based on the concept of the so-called continuous de-
signs. What is more, this result also opens the possibility
of embedding the optimization task into the context of
consensus type algorithms over a distributed network. The
general idea is based on the class of so-called randomized
gossip algorithms in which each node communicates with
no more than one neighbor at each time instant (Xiao
and Boyd, 2004; Boyd et al., 2006), introduced in the
domain of communication and distributed data averaging.
It was extended to temporal measurements by Braca
et al. (2008), although still without direct relations to
measurement scheduling. Therefore, this work can be
considered the first attempt to extend this concept to
the area of distributed sensor scheduling for parameter
estimation of DPSs.

In the presented algorithmic scheme, the different
nodes of the network independently calculate and store the
desired quantities, and their final estimates are obtained
in a fully decentralized fashion. The advantage of
such information exchange is clear as it is robust with
respect to individual sensor faults and the global estimate
of the information matrix is stored at all sensor nodes
so can easily be recovered. Since our intention is to
develop an algorithmic approach able to cope with the
networks of practical scale comprising hundreds or even
thousands of nodes, in order to reduce the communication
payload on the network nodes the problem of reduction
of measurement space is also discussed. Here, the
additional contribution of this work is derivation of a
suitable thresholding rule for rejecting non-informative
sensor nodes, being an extension of the result derived
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originally by Pronzato (2003) to the case of scanning
observations of multi-output DPSs.

The paper has the following structure. Section 2
formally states the measurement scheduling problem in
the context of parameter estimation of spatio-temporal
systems. The continuous approximation of the original
discrete resource allocation problem, its decomposition
and optimality conditions are discussed in Section 3.
Section 4 provides the algorithmic solution for distributed
computing of a spatio-temporal measurement schedule
over sensor network. In Section 5, the illustration of
algorithm performance is given on a simulation example
of a two-dimensional convective diffusion process.
Conclusion and a discussion on related open issues are
delivered in Section 6. The proofs of some essential
properties of the approach developed in the paper are
contained in Appendix.

Notation. Notation throughout the paper is more or less
standard. We use N and R to denote the sets of integers
and real numbers, respectively. Further, N+ and R+

denote the sets of non-negative integer and real numbers.
The n-dimensional Euclidean vector space is denoted by
R

n, and the Euclidean matrix space of real matrices with
n rows and k columns is denoted by R

n×k. We will write
S
n for the subspace of Rn×n consisting of all symmetric

matrices. The identity matrix of order n is denoted by
In. In S

n, two sets are of special importance: the cone
of non-negative definite matrices and the cone of positive
definite matrices, denoted by S

n
+ and S

n
++, which are

respectively given by

S
n
+ = {A ∈ R

n : xTAx ≥ 0 for all x ∈ R
n},

S
n
++ = {A ∈ R

n : xTAx > 0 for all 0 �= x ∈ R
n}.

The symbols 1 and 0 denote vectors whose
components are all one and zero, respectively. The
context makes their lengths clear. Given a set of points
A, conv(A) stands for its convex hull. The probability
(or canonical) simplex in R

n is defined as Pn =
conv

({
e1, . . . , en

})
=

{
p ∈ R

n
+ | 1Tp = 1

}
, where ej

is the usual unit vector along the j-th coordinate of Rn.

2. Measurement scheduling for
identification of DPSs

Let y = y(x; t; θ) denote the s-dimensional state of
a given distributed-parameter system (DPS) at a spatial
point x ∈ Ω ⊂ R

d, where s and d belong to N+ and time
instant t ∈ T = [0, tf ], tf < ∞. Here θ represents an
unknown constantm-dimensional parameter vector which
must be estimated using observations of the system.

The state y is observed by N scanning sensors,
which possibly change their positions at time instants
0 < t0 < t1 < · · · < tK = tf and will remain stationary

for the duration of each subinterval Tk = [tk−1, tk],
k = 1, . . . ,K . Thus, the ‘scanning’ observation strategy
considered can be formally represented as (Patan and
Uciński, 2010; 2016b)

zj(t) = y(xj
k, t; θ) + ε(xj

k, t), xj
k ∈ X, t ∈ Tk, (1)

for j = 1, . . . , N and k = 1, . . . , where xj
k is the element

selected from a-priori defined set of sensor locations X =
{x1, . . . , xN} and ε(xj

k, t) is measurement noise which
is assumed zero-mean, Gaussian, spatial uncorrelated
and white (Patan, 2008; Patan and Uciński, 2016a), i.e.,
E[ε(xj

k, t)] = 0 and cov[ε(xj
k, t)] = C(xj

k, t), where
C(x, t) ∈ S

s
++ is a known covariance matrix representing

potential correlations between outputs of the system.
For the sake of simplicity of our further discussion,
the multiple outputs are assumed to be uncorrelated
and noise normalized, i.e., C is an identity matrix.
A comprehensive treatment of the setting of correlated
outputs is proposed Patan (2012b). Also, although white
noise is not possible in real applications, it constitutes
here a fair approximation to disturbances whose adjacent
samples are uncorrelated at all time instants for which the
time increment is small compared with the time constants
of the DPS (Kubrusly and Malebranche, 1985). Such
an approach is often accepted in the literature as there
is a large number of practical application where such
an approximation is satisfactory, including examples of
environmental monitoring (Jacobson, 1999; Cacuci et al.,
2014), thermal systems (Alifanov et al., 1995), computer
assisted impedance tomography (Holder, 2004) and many
others.

A further assumption is that the estimation of
the unknown parameter vector θ is performed via
minimization of the least-squares criterion

J (θ) =
N∑

j=1

K∑

k=1

∫

Tk

‖zj(t)− ŷ(xj
k, t; θ)‖2 dt, (2)

with θ ∈ Θad and Θad being the set of admissible
parameters and ŷ(·, ·; θ) denoting the system model
response suitable for θ. The estimate of the true value
of θ� is a vector θ̂ which minimizes J (θ) . Obviously,
the covariance matrix cov(θ̂) of the above least-squares
estimator depends on the active sensor locations xj

k .
This gives us the possibility to improve the quality
of estimates of the system parameters through proper
selection of measurements over the sensor networks. To
form a basis for the comparison of different locations,
a quantitative measure of the ‘goodness’ of particular
sensor configurations is required. Such a measure Ψ is
customarily based on the concept of the Fisher infor-
mation matrix (FIM), which is widely used in optimum
experimental design theory for lumped systems (Fedorov
and Hackl, 1997; Atkinson et al., 2007). In our setting,
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owing to the character of noise in (1), the so-called
average (or normalized per measurement) FIM is given
by (Uciński and Patan, 2002; Patan, 2012b)

M =
1

N

K∑

k=1

N∑

j=1

Υk(x
j
k), (3)

where Υk(x) is a local information matrix at the k-th
subinterval at spatial point x given by

Υk(x) =
1

tf

∫

Tk

GT(x, t)G(x, t) dt, (4)

G(x, t) =

(
∂y(x, t; θ)

∂θ

)

θ=θ0

, (5)

with G denoting the Jacobi matrix of the sensitivity
coefficients. As for θ0, which stands for a prior estimate
to the unknown parameter vector θ, usually some known
nominal values of the parameters θ can be used or we
can apply estimates obtained from previous experiments
(Sun, 1994; Uciński, 2004; Atkinson et al., 2007). In the
remainder of this paper we shall assume that elements
of G ∈ R

s×m are continuous. Up to a constant scalar
multiplier, the inverse of the FIM constitutes a good
approximation of the covariance matrix of any unbiased
estimator (Atkinson et al., 2007).

As for a specific form of Ψ, various options exist
(Fedorov and Hackl, 1997; Atkinson et al., 2007), but
the most popular choice is to maximize the D-optimality
criterion

Ψ(M) = log det(M), (6)

which yields the minimum volume of the uncertainty
ellipsoid for the estimates. In the following, we assume
a Ψ to be defined as in (6).

3. Problem decomposition and optimality
conditions

The introduction of an optimality criterion renders it
possible to formulate the sensor location problem as an
optimization one,

Ψ[M ]→ max, (7)

with respect to xj
k belonging to the admissible set X .

Owing to the assumption on independent
measurement noise, we admit replicated measurements,
i.e., some values xj

k may appear several times in
the optimal solution (we can use multiple sensors
located at the same position or we can repeat the
process). Consequently, we introduce rjk as the number
of replicated measurements corresponding to the
sensor nodes locations x1, . . . , xN at consecutive time
subinterval Tk. The sequence of pairs

ξk = {(x1
k, pk1), (x

2
k, pk2), . . . , (x

N
k , pkN )}, (8)

where pkj = rjk/N , N =
∑N

j=1 r
j
k, is called the exact

design of experiment for subinterval Tk. The proportion
pkj of observations performed at xj

k can be considered the
percentage of experimental effort spent at that point.

Introducing

ξ = (ξ1, ξ2, . . . , ξK) (9)

as the total experimental design, we rewrite the FIM in the
form

M(ξ) =

K∑

k=1

Mk(ξk), (10)

where

Mk(ξk) =
1

tf

N∑

j=1

pkj

∫

Tk

GT(xj
k, t)G(xj

k, t) dt. (11)

Here the pkj’s are rational numbers, since both rjk’s and N
are integers. This discrete nature of N -observation exact
designs leads directly to integer programming problems,
therefore causing serious difficulties that cannot be solved
easily by standard optimization techniques, particularly
when N is large. A reasonable approach is to relax the
definition of the design. When N is large, the weights pkj
can be approximated with real numbers in the interval [0,
1], not necessarily integer multiples of 1/N . Obviously,
we must have

∑N
j=1 pkj = 1, for k = 1, . . . ,K , so

we may think of the designs as probability distributions
on set of admissible locations X . This leads to the
so-called continuous designs, which constitute the basis
of the modern theory of optimal experiments (Atkinson
et al., 2007; Uciński, 2004; Walter and Pronzato, 1997).
It turns out that such an approach drastically simplifies
the design. Thus, we shall operate on designs which
concentrate approximately Npkj measurements at each
location xj

ks.
Relaxing the notion of the design ξk even further

to all probability measures over X which are absolutely
continuous with respect to the Lebesgue measure and
satisfy by definition the conditions

∫

X

ξk(dx) = 1, k = 1, . . . ,K, (12)

we obtain the equivalent notation, where Mk(ξk) in (10)
takes the form

Mk(ξk) =

K∑

k=1

∫

X

Υk(x) ξk(dx). (13)

The integration in (12) and (13) is to be understood in
the Lebesgue–Stieltjes sense. Then, we may redefine an
optimal design as a solution to the following optimization
problem.
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Problem 1. Determine ξ� ∈ Ξ(X) to maximize
Ψ[M(ξ)], where Ξ(X) denotes the set of all designs of
the form (9).

A number of characterizations of the optimal design
ξ� can be derived based on some general results given by
Uciński (2004) and Patan (2012b).

Lemma 1. For any ξ ∈ Ξ(X) the information matrix
M(ξ) is symmetric and non-negative definite. Let us in-
troduce the notation M(X) for the set of all admissible
information matrices, i.e., M(X) = {M(ξ) : ξ ∈ Ξ(X)}.

Lemma 2. M(X) is compact and convex.

The next result constitutes the necessary and
sufficient condition for the optimality of designs. It is
usually called an equivalence theorem (Uciński, 2004;
Patan, 2012b).

Theorem 1. The following conditions are equivalent:

(i) the design ξ� maximizes Ψ[M(ξ)],

(ii) max
x∈X

φk(x, ξ
�) = ςk(ξ

�), k = 1, . . . ,K ,

where

φk(x, ξ) = trace
[
M−1(ξ)Υk(x)

]
, (14)

ςk(x, ξ) = trace
[
M−1(ξ)Mk(ξk)

]
. (15)

Proof. See Appendix. �

Remark 1. The sensitivity functions φk(x, ξ) are of vital
importance here, providing us with a simple test for the
optimality of designs. In particular, if they take values
less than or equal to ςk(ξ) for all x ∈ X , then ξ is optimal,
otherwise ξ is not optimal.

Remark 2. Theorem 1 establishes decomposition of
the original optimization task for the scanning sensor
network into a finite set of ‘virtually independent’
problems, where continuous-time observations are taken
by stationary sensors over subintervals Tk. This
opens a great possibility of almost direct application
of the classical algorithms from the theory of optimum
experimental design valid for stationary sensors (Uciński,
2004; Patan, 2012b). Also, since the only element
joining the subproblems for consecutive time subintervals
is the common global FIM M(ξ), this also raises
attractive possibilities for parallel and/or distributed
implementations of the algorithm, which will be discussed
in the next section.

4. Distributed algorithm

4.1. Experimental effort optimization. Analytical
determination of optimal designs is possible only in
simple situations, and for general systems it is usually the

case that some iterative design procedure will be required.
Our basic assumption is that the set of admissible support
points X , where the observations are possible, is finite.
Because the number of locations from X is limited, any
design ξ ∈ Ξ(X) is uniquely determined by the collection
of the corresponding weights. Such a description is very
convenient as the problem is reduced to optimization of
weights. As has already been mentioned, the weight
assigned to a measurement point can be interpreted as
the proportion of observations performed at this point.
The potential solutions are of considerable interest while
assessing which sensors are more informative than others
at a given time instant and allow complexity reduction of
the measurement system.

In the case under consideration, i.e., the design for
fixed sensor locations, we focus our attention on the FIM
defined by (10) and (11). Thus, Problem 1 can be rewritten
as follows.

Problem 2. Find P � = [p�kj ], k = 1, . . .K, i =
1, . . . , N , to maximize the criterion P defined as

P(P ) = Ψ[M(ξ)], (16)

subject to P ∈ R
k×N being a stochastic matrix, i.e.,

P1 = 1, pkj ≥ 0,

k = 1, . . .K, i = 1, . . . , N. (17)

The constraint (17) simply means that each row
pk = (pk1, . . . , pk�) ∈ PN (i.e., belongs to the canonical
simplex of order N ). Therefore, Problem 2 is equivalent
to a finite-dimensional optimization one over the product
of canonical simplices PK

N .
In the case considered in the paper, i.e., the design

for fixed sensor locations, an efficient decentralized
computational algorithm can be derived based on the
mapping T : Ξ(X) → Ξ(X) defined for k = 1, . . . ,K
by

T ξ =
{(

x1
k, pk1

φ(x1
k, ξ)

ςk(ξ)

)
, . . . ,

(
xN
k , pkN

φk(x
N
k , ξ)

ςk(ξ)

)}
.

(18)
From Theorem 1 it follows that a design ξ� is D-optimal
if it is a fixed point of the mapping T , i.e.,

T ξ� = ξ�. (19)

Also, we have the valuable property that the sum
of weights pkj is invariant with respect to T for any
k = 1, . . . ,K (i.e., it is always equal to 1). As for
interpretation of this mapping, let us note that in the
case of ξ not being an optimal design, it increases the
weights for those sensor locations where we observe
high values of the sensitivity function at the cost of
decreasing the weights of non-informative locations with
small values of φ. Using this simple idea, it is possible
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to develop a decentralized configuration algorithm for
the sensor network being a distributed generalization
of the classical optimum experimental design problem
consisting in iterative computation of a D-optimum design
on a finite set. It was proposed in the context of convex
experimental design theory for non-linear regression
models and widely exploited in applications (Silvey et al.,
1978; Silvey, 1980; Pázman, 1986; Torsney and Mandal,
2004; Patan and Bogacka, 2007; Patan and Patan, 2010).
As for convergence of the fixed-point iteration (18), it was
proved in the case of only one system response by Pázman
(1986, p.139) and extended for MIMO systems by Uciński
(2004).

4.2. Decentralized communication scheme. In the
following we assume the asynchronous time model for the
configuration process. Let r = 0, 1, 2 . . . be the discrete
time index, which partitions the continuous configuration
time axis into time slots Zr = [zr−1, zr).

Owing to Theorem 1 we can use the mapping T to
iteratively improve the experimental effort distribution.
Unfortunately, φk(·, ξ) and ςk(ξ) computed according
to (14) in a centralized fashion are not very useful in
our setting. But the only component which cannot be
calculated independently of other network nodes is the
global information matrix M(ξ). Moreover, from (10) it is
clearly seen the information matrix is a weighted average
of the subinterval information matrices Υk(x

j
k).

Thus, our task is closely related to the problem of
distributed averaging on a network, which appears in
many applications and has been a subject of extensive
studies (Xiao and Boyd, 2004; Boyd et al., 2006; Braca
et al., 2008).

Distributed averaging can be achieved in many
ways. One of straightforward techniques is pairwise
communication flooding, also known as a gossip scheme,
which in its classic version assumes that at the k-th
reconfiguration time slot the i-th sensor contacts some
neighboring node j with probabilityQij , i.e., a pair (i−j)
is randomly and independently selected. At this time,
both nodes set their values equal to the average of their
current values. Denoting by M j

k(ξ
(r)) the estimate of

(11) for subinterval Tk maintained by the j-th sensor at
configuration time slot Zr, as we have (← is an update
operator)

M �
k(ξ

(r))← pkiM
i
k(ξ

(r) + pkjM
j
k(ξ

(r))

pki + pkj
, (20)

where � ∈ {i, j}, k = 1, . . . ,K. However, in our
setting the averaging problem is not typical since the
contribution of the nodes with weights tending to zero
as r increases should be eliminated from the averaging.
This can be achieved by increasing the contribution of the
local information matrix via the concept of the so-called

running consensus (Braca et al., 2008),

M i
k(ξ

(r))← r − 1

r
M i

k(ξ
(r)) +

1

r
Υk(x

i
k). (21)

The first term enforces consensus among the nodes
(represents the average information from the rest of the
network), while the second accounts for the increase in
the total contribution of the local node. Note that there
is no need to record the whole design structure of ξ(r) at
each node as the information about the current solution
is propagated via local estimates of the global FIM, i.e.,
M i

k(ξ
(r)). The whole idea of the communication process

is given by Algorithm 1.

Algorithm 1. Distributed optimization of experimental
effort. (Indices i and j denote, respectively, data from
a local repository and obtained from a neighbor, r is an
index of current configuration slot Zr. The function EX-
CHANGE is responsible for both sending and receiving
data to/from connector neighbor (order descending on
who initiated communication).)

1: for k ← 1,K do
2: EXCHANGE(M j

k(ξ
(r)), M i

k(ξ
(r))) {sends and

receives}
3: EXCHANGE(pki and pkj ) {FIM weights}
4: p← pki + pkj
5: M i

k(ξ
(r))← (pkiM

i
k(ξ

(r)) + pkjM
j
k(ξ

(r)))/p
6: Calculate φk(x

�
k, ξ

(r)) and ςk(ξ
(r)), � ∈ {i, j}

7: Update pki ← pkiφk(x
i
k, ξ

(r))/ςk(ξ
(r))

8: pki ← p ·pi(pki+pkj) {normalization pki’s to sum
up to 1}

9: Update M i
k(ξ

(r))← r−1
r M i

k(ξ
(r)) + 1

rΥk(x
i
k)

10: end for
11: r← r + 1

For all subintervals Tk data are calculated separately
to reach the most informative configuration for the
above-mentioned part of the experiment. At r = 0 each
network node starts with global FIM estimates M i

k(ξ
(r))

initialized with its local information matrix Υk(x
i
k) and

starting with non-zero weights (this is important since,
once the weight attains zero, a multiplicative update
forces it to remain zero). Then at each of asynchronous
configuration time slots Zr an appropriate pair of nodes
exchanges information according to Algorithm 1. It
can be shown that the algorithm converges to an
optimal solution, which is a consequence of independent
weight updates for each network node and the stochastic
convergence of gossip algorithms (Xiao and Boyd, 2004).

Obviously, the sensor network topology and the
choice of a proper communication scheme significantly
influence the convergence rate. In general, under
some assumptions on the network connectivity graph, a
suitable gossip algorithm can be provided via semidefinite
programming with an exponential convergence rate. Since
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a discussion on those very important issues is far beyond
the scope of this work, we refer the reader to the seminal
papers of Xiao and Boyd (2004), Boyd et al. (2006) or
Patan and Romanek (2016) for details.

4.3. Reduction of the measurement space. It is
clear that the numerical complexity of the communication
protocol considered depends linearly on the number of
sensor nodes taking part in the averaging. Note that
the choice of the initial weights for algorithm is not
crucial for the convergence; however, no weights can
be equal to zero, because it would then be impossible
to change them. This simple observation may lead
to a significant improvement, since if during the run
of the procedure a weight achieves a value close to
zero, it is rather impossible that it will be increased
in the next iterations. Deletion of such points from
the communication schedule significantly decreases the
communication and computational burden.

In order to give more formal justification of this
fact, first note that it is easy to check that the sum of
weights is invariant with respect to the mapping T . As
for interpretation of this function, consider the situation
when a design ξ is not optimal. Then the mapping T
increases the weights of those support points of ξ at which
the sensitivity function takes high values, i.e., φk(x, ξ) >
ςk(ξ), in such a way decreasing its maximal values. This
is attained at the cost of decreasing the weights for support
points with small values of φ(x, ξ) (where φ(x, ξ) <
ςk(ξ)). More precisely, for the case of a multi-output
system we can formulate the following extension of the
result provided by Prozato (2003) in the context of single
response regression model.

Theorem 2. Let X be some finite design space, X =
{xj ∈ R

d, j = 1, . . . , N}, s denote the number of system
outputs and ξ(r) be any design measure on X , with

εr = max
xj
k∈X

φk(x
j
k, ξ

(r))− ςk(ξ). (22)

Then any point xj
k such that

φk(x
j
k, ξ

(r)) < ςk(ξ)d(εk) (23)

with

d(ε) = 1 +
sε

2
−

√
sε(4 + sε)

2
(24)

cannot be a support point of a D-optimum design measure
on X .

Proof. See Appendix. �

Armed with such a result, when using any algorithm
of the D-optimum design, one can remove all the points
satisfying (23) from the design space X in each iteration.
Clearly, the acceleration that can be expected depends

on the employed algorithm and the cardinality of X .
Removing support points based on Theorem 2 implies
some additional computations. Consequently, the best
results can be obtained for a high power of the set X .
Nevertheless, this gives us the mathematical justification
for removing the non-informative sensor nodes from the
communication scheme and directly leads to a significant
decrease in pairwise communications between the sensor
nodes during the network configuration. In fact, usually
in practical implementations, instead of calculating the
condition (23), we can resort to a simple heuristic
choice and delete from the activation schedule the nodes
with negligible weights below some arbitrarily chosen
threshold. In most situations, the number of 1/N , where
N is a total number of measurements, is a reasonable
choice (Patan, 2012b). This means that, if εr is fixed at
1/N , no measurements will be taken by a given sensor at
a given time instant with a lower weight.

5. Simulation example

As a demonstrative example illustrating the ideas of
underlying approach, consider sensor scheduling for
parameter estimation of the air pollutant transport process
over a given urban area. The spatial domain was
normalized to the unit square Ω = (0, 1)2. Inside this area
two sources of pollutant are located emitting the pollutant
which spreads over the entire area (cf. Fig. 1). Let
y = y(x, t) denote the pollutant concentration at a given
spatial point at time t belonging to the normalized time
interval T = [0, 1). Mathematically, the spatio-temporal
changes in concentration are described by the following
advection–diffusion equation:

∂y(x, t)

∂t
+∇ ·

(
v(x, t)y(x, t)

)

= ∇ ·
(
α(x)∇y(x, t)

)
+ f1(x) + f2(x), (25)

where x ∈ Ω while the boundary and initial conditions are
respectively given by

∂y(x, t)

∂n
= 0 on Γ× T, (26)

y(x, 0) = y0 in Ω, (27)

Terms f�(x) = 50 exp(−50||x−c�||2), � = 1, 2 represent
the pollutant sources located at the positions c1(t) and
c2(t)] (in general, we allow moving sources, which will
be examined in different scenarios) and ∂y/∂n denote the
derivative of y in the direction of the outward normal to
the boundary Γ. The average spatio-temporal changes of
the wind velocity field over the area were approximated
with v(x, t) = (2(x1 + x2 − t), x2 − x1 + t). The
assumed functional form of the spatially-varying diffusion
coefficient is

α(x) = θ1 + θ2x1x2 + θ3x
2
1. (28)
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Such a class of models using partial differential equations
(PDEs) is typically used to describe the dynamics of
distributed parameter system, especially in the case of
a environmental monitoring, e.g., the smog prediction
problem in big agglomerations.

A MATLAB program was written using a PC
equipped with an Intel Core i5 processor (1.9 GHz, 12
GB RAM) running Windows 10. The nominal values of
the systems parameters were assumed to be θ01 = 0.05,
θ02 = 0.01, θ03 = 0.005. Calculations were performed
with a finite element method for a spatial mesh composed
of 590 triangles, 326 nodes and evenly partitioned time
subintervals Tk = (k−1

3 , k
3 ], where k = 1, 2, 3. The

sensitivity coefficients were then linearly interpolated
and stored within the sensor nodes repositories. It was
assumed that observation grid consists of only internal
points of the finite element mesh, and there are N = 266
such internal points in Ω ∪ Γ where measurements are
supposed to be taken. We aim at finding the weights
for sensor nodes at each time subinterval representing the
proportions of the total amount of measurements in such
a way as to obtain D-optimum least-squares estimates of
the parameters θ. It was assumed that the network is
fully connected with a uniform probability distribution for
the connection between selected pairs of nodes. For a
better understanding of the physical phenomena and the
sensor configuration process, a set of different scenarios
is studied: using two stationary sources (with a fixed
position along the time interval), where failures of sensors
were implemented, and with two mobile sources.

5.1. Scenario 1. The first example take a into
account model given by (25)–(27) with two sources with
fixed locations, c1 = [0.3, 0.3] and c2 = [0.8, 0.1].
Temporal changes in wind velocity (arrows) and pollutant
concentration with marked sources (black circles) are
shown in Fig. 1. Sensor configurations at different stages
of the algorithm are presented in Fig. 2. They tend to form
a pattern reflecting the areas of the greatest changes in the
pollutant concentration, but the observations are averaged
over time and it is not trivial to follow the complex
process of contaminant proliferation. It can be observed
that during each time subinterval the system dynamics
enforce the distribution of experimental effort. In the
first stage T1, the pollutant concentration takes significant
values only in the close vicinity of the one source located
at point c1, and thus all measurement effort is spent
at this location (cf. Figs. 2(a)–(d)). As time elapses,
the pollutant spreads over the whole spatial domain.
Therefore, the sensors tend to measure the system state
in other regions, where we observe the greatest changes
in the concentration and gather rich information about
the system dynamics (Figs. 2(e)–(h)). At the final stages
shown in Figs. 2(i)–(l) two subregions where sources
are located are taken as most informative. Additionally,

Table 1. Active sensor reduction ratio for the first scenario.
Number of Approx. no. of active sensors Reduction

sensors T1 T2 T3 ratio

25 7.7317 8.8022 10.3217 64%
266 11.4235 9.1211 9.3211 96%

1121 98.2131 123.5147 125.8143 90%

the pattern of the final design was achieved relatively
quickly after reaching a reasonably small number of r.
Then, the algorithm slows down and achieving a very
high accuracy of the solution becomes expensive in the
sense of the number of pairwise communications. The
convergence of the log-determinant of the FIM for all
time intervals is presented in Fig. 3(a)–(c). The reduction
of the number of active sensors in each time subinterval
along the configuration time is illustrated in Fig 3(d). It is
clearly seen that the final number of active nodes at each
time subinterval is reduced to approximately 5% of the
initial value. This yields a significant reduction of the total
computational burden.

To explore the influence of the spatial discretization
on the solutions, additional simulation with a lower
number of admissible locations for sensor nodes was
done. This time, the number of N potential locations was
assumed to be only N = 25. During the experiment it was
noticed that for this thinner mesh the pattern is somewhat
similar for subintervals T1 and T2, but for T3 the most
informative sensor locations are distributed along a much
larger spatial area than in the case of the denser grid. The
number of active sensors was reduced to approximately
36% of all the available ones. The convergence rate of
the log-determinant of the FIM is similar, but the quality
of the solution is about five times worse in the sense of
the criterion. Let us notice that the total minimal number
of active measurement points is similar for both networks
with 266 and 25 nodes and is equal to about ten active
sensors. Intuitively, sensors networks consisting of more
elements benefit more during reduction of unnecessary
information. A comparison of the efficiency of reduction
rate for different numbers sensors nodes in the network
is shown in Table 1 (the results are averaged over a few
trials of the algorithm). This gives us clear evidence that
the reduction rule works better for denser grids.

5.2. Scenario 2. To illustrate the efficacy of
the distributed calculation scheme with respect to
potential communication failures of individual sensors,
the extension of the previous scenario is considered.
In separate simulations, two situations were analyzed.
First, temporary deactivation of a given random subset
of sensors that are not able to communicate and transmit
data to other sensors within some given time subinterval
(in this case, 40% of sensor nodes was deactivated,
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Fig. 1. Temporal changes in the wind velocity field and pollutant concentration for constant placement of sources for the first scenario:
t = 0 (a), t = 0.28 (b), t = 0.64 (c), t = 1 (d).
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Fig. 2. Allocation of active sensors with experimental effort (stem plot) in consecutive time subintervals for different numbers of
communications r for the first scenario: r = 500 (a), r = 1000 (b), r = 2000 (c), r = 6000 (d), r = 500 (e), r = 1000 (f),
r = 2000 (g), r = 6000 (h), r = 500 (i), r = 1000 (j), r = 2000 (k), r = 6000 (l).
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Fig. 3. Convergence (average value along all sensor nodes) for the log-determinant of FIM estimates in time subintervals: T1 =

[0, 0.333) (a), T2 = [0.333, 0.667) (b), T3 = [0.667, 1.000) (c), and the number of active sensors during the configuration
process (d).

Table 2. Convergence comparison for different scenarios of sen-
sor failures of sensors.

No. of Determinant of FIM at Tk

sensors T1 T2 T3

Temporary 115 4.5440 7.1766 6.8037
failure 266 7.0751 9.6505 9.4696

425 8.4501 11.0506 10.8961
Permanent 115 4.3953 7.1672 6.7696
failure 266 7.0548 9.6083 9.3998

425 8.4442 10.9923 10.8935
No. of 115 4.5163 7.1526 6.8243
failures 266 7.0733 9.6487 9.4586

425 8.4541 11.0502 10.8948

different subsets in each subinterval). Second, permanent
deactivation of a randomly chosen subset of sensors
during the whole time of the experiment (again 40%, this
time the same subset for any subinterval). Both these
situations were compared with Scenario 1 for three sizes
of a network: containing 115, 266 and 425 sensors. The
determinants of the FIMs calculated for each consecutive
subinterval are gathered in Table 2. It is clear that even
with such a significant loss of communication resources,
despite the sensor failures (permanent or temporal), the
distributed calculation scheme converges to virtually
the same accuracy (the difference is within no more
than 1 % in comparison with Scenario 1). This is
strongly consistent with reported results on application of
randomized gossip algorithms (Boyd et al., 2006).

5.3. Scenario 3. The third simulation takes into
account two moving sources. The first pollutant source
c1 is changing the position with a constant speed along
linear trajectory starting from c1 = [0.3, 0.3], finishing
at [0.1, 0.9] and c2 = [0.8, 0.1] moving to position
[0.1, 0.1] also at a constant speed. In Figs. 4 and 5
we can observe the simulation results. This time, the
sensor allocations correspond to intuition as the pattern
follows the movements of sources, at least to some
reasonable extent. Convergence and reduction in the
number of active sensors is shown in Fig. 6, and results

are comparable to previous scenarios where after 100
iterations of configuration time the log-determinant of the
FIM is achieves saturation.

6. Concluding remarks

The problem of selection of an optimal spatio-temporal
observation schedule in view of accurate parameter
estimation in a distributed parameter system has been
addressed. The main contribution of this work is a
proper mathematical and algorithmic characterization of
the underlying problem’s relaxation and decomposition.
This further allows its adaptation to a distributed scheme
of computation and information exchange. The advantage
of introducing continuous designs lies in the fact that
the problem dimensionality is dramatically reduced. A
decided majority of the existing approaches to the
sensor location problem are designed only for centralized
monitoring systems, and in the context of modern
sensor networks often this appears impractical. On the
other hand, numerous effective routines for distributed
information fusion designed for sensor, peer-to-peer or
wireless ad hoc networks are not directly applicable for
the purpose of parameter estimation in systems with
spatio-temporal dynamics. A decided advantage of
the proposed distributed calculation scheme is its great
simplicity and the ability to produce solutions reasonably
fast.

Naturally, there still remain some open problems
which need attention. Potential directions of further
research include generalization towards a wider class
of design criteria as well as the development of the
approaches taking into account the parametric uncertainty
via adaptation of the so-called robust experimental
designs. Additionally, extensions to more sophisticated
monitoring systems, i.e., sensor networks with mobile
nodes and refinements of the proposed approach taking
into account numerous constraints inherent to network
design, e.g., energy consumption or cost of deployment,
can be considered.
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Fig. 4. Temporal changes in the wind velocity field and pollutant concentration for moving sources for the third scenario: t = 0 (a),
t = 0.28 (b), t = 0.64 (c), t = 1 (d).
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Fig. 5. Allocation of active sensors with experimental effort (stem plot) in consecutive time subintervals for different numbers of
communications r for the third scenario: r = 200 (a), r = 500 (b), r = 2000 (c), r = 6000 (d), r = 200 (e), r = 500 (f),
r = 2000 (g), r = 6000 (h), r = 200 (i), r = 500 (j), r = 2000 (k), r = 6000 (l).
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Appendix

A1. Proof of Theorem 1

To prove the discussed necessary and sufficient conditions
for optimality of designs, we first have to derive some
auxiliary assertions.

Lemma A1. For any design ξ = (ξ1, . . . , ξK) ∈ Ξ(X)
and all k = 1, . . . ,K , we have

(i)
∫
X
φk(x, ξ) ξk(dx) = ςk(ξ), and

(ii) max
x∈X

φk(x, ξ) ≥ ςk(ξ).

Proof. From (14) and (15), we have
∫

X

φk(x, ξ) ξk(dx)

=

∫

X

trace
[
M−1(ξ)Υk(x)

]
ξk(dx)

= trace

[
M−1(ξ)

∫

X

Υk(x) ξk(dx)

]

= trace
[
M−1(ξ)Mk(ξk)

]
= ςk(ξ).

(A1)

This asserts (i).
As for the second part, we have

ςk(ξ) =

∫

X

φk(x, ξ) ξk(dx)

≤
∫

X

max
x∈X

φk(x, ξ) ξk(dx) = max
x∈X

φk(x, ξ),

(A2)

which proves (ii). �

Lemma A2. If ξ = (ξ1, . . . , ξK) ∈ Ξ̃ = {ξ :
Ψ[M(ξ)] < ∞} �= ∅, ξ̄ = (ξ̄1, . . . , ξ̄K) ∈ Ξ(X) and
ξα = (1 − α)ξ + αξ̄, then

∂Ψ[M(ξα)]

∂α

∣∣
∣
∣
α=0+

=

K∑

k=1

∫

X

φk(x, ξ) ξ̄k(dx) − ς(ξ),

where

ς(ξ) =

K∑

k=1

ςk(ξ).

Proof. Taking into account (14) and (15), we have

∂Ψ[M(ξα)]

∂α

∣
∣
∣∣
α=0+

=
∂Ψ[(1− α)M(ξ) + αM(ξ̄)]

∂α

∣
∣
∣∣
α=0+

= trace
{
M−1(ξ)[M(ξ̄)−M(ξ)]

}

=

K∑

k=1

∫

X

{
trace

[
M−1(ξ)Υk(x)

]}

− trace
{[
M−1(ξ)Mk(ξk)

]}
ξ̄(dx)

=

K∑

k=1

∫

X

φk(x, ξ) ξ̄k(dx) −
K∑

k=1

ςk(ξ).

(A3)

�
Now, we are in position to prove Theorem 1. First,

introduce the design ξα = (1 − α)ξ� + αξ̄, where ξ� =
(ξ�1 , . . . , ξ

�
K) ∈ Ξ̃, and ξ̄ = (ξ̄1, . . . , ξ̄K) ∈ Ξ(X).

(i)⇒ (ii) If ξ� = arg min
ξ∈Ξ(X)

Ψ[M(ξ)], then

∂Ψ[M(ξα)]

∂α

∣∣
∣
∣
α=0+

≥ 0, ∀ξ̄ ∈ Ξ(X). (A4)

From Lemma A2, for any i = 1, . . . ,K , setting ξ = ξ�

and ξ̄ such that

ξ̄k =

{
ξ�k if k �= i,{

(x, 1)
}

if k = i,
(A5)

we obtain

∂Ψ[M(ξα)]

∂α

∣
∣∣
∣
α=0+

=

K∑

k=1

ςk(ξ
�)

−
K∑

k=1
k �=i

∫

X

φk(x, ξ
�) ξ�k(dx)− φi(x, ξ

�)

=

K∑

k=1

ςk(ξ
�)−

K∑

k=1

∫

X

φk(x, ξ
�) ξ�k(dx)

− φi(x, ξ
�) +

∫

X

φi(x, ξ
�) ξ�i (dx)

= ςi(ξ
�)− φi(x, ξ

�) ≥ 0.

(A6)

The result is

ςi(ξ
�) ≥ φi(x, ξ

�) ≥ max
x∈X

φi(x, ξ
�). (A7)

Part (ii) of Lemma A1 now yields the desired conclusion.
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(ii)⇒ (i) Let ξ� ∈ Ξ(X) satisfy (ii). We have

∂Ψ[M(ξα)]

∂α

∣
∣∣
∣
α=0+

=

K∑

k=1

[
ςk(ξ

�)−
∫

X

φk(x, ξ
�) ξ̄k(dx)

]

≥
K∑

k=1

[
ςk(ξ

�)−max
x∈X

φk(x, ξ
�)
]
= 0,

(A8)

which completes the proof.

A2. Proof of Theorem 2

In order to derive the main result, first we need to claim
some useful lemmas.

Lemma A3. Let A be a symmetric matrix of size s. Then

(
trace(A)

)2 ≤ s trace(A2). (A9)

Proof. Denote by λ1, . . . , λs a sequence of eigenvalues
of matrix A. The inequality considered can be rewritten
as

( s∑

i=1

λi

)2

≤ s

s∑

i=1

λ2
i . (A10)

This is equivalent to

s∑

k=1

s∑

i=1

λiλk ≤
s∑

k=1

s∑

i=1

λ2
i , (A11)

and further to

0 ≤ 1

2

s∑

k=1

s∑

i=1

−1

2

s∑

k=1

s∑

i=1

2λiλk

=
1

2

∑

(i,k)

(
λ2
i + λ2

k − 2λiλk

)
=

1

2

∑

(i,k)

(λi − λk)
2,

(A12)

which completes the proof. �

Lemma A4. Let A and B be any matrices of the same
size. Then

trace(ABTABT) ≤ trace(AATBBT). (A13)

Proof. Using the cyclic permutation rule, we can rewrite
the inequality in the form

trace(BTABTA) ≤ trace(BTAATB). (A14)

Hence, introducing matrix C = BTA, we obtain

trace(C2) ≤ trace(CCT). (A15)

Since for every square matrix trace(C) = trace(CT), we
have

2
(
trace(CCT)− trace(C2)

)

= trace(CCT + CTC − CC − CTCT)

= trace
{
(C − CT)(CT − C)

}

= − trace (CT − C)2 ≥ 0.

(A16)

The last inequality is a result of the fact that CT − C is a
skew-symmetric matrix. Hence its has purely imaginary
eigenvalues. Therefore, its square has to be semi-negative
definite, which establishes our claim. �

Lemma A5. Let B ∈ S
n
+. Then, for any matrix Y ,

trace(Y TBY ) ≤ trace(Y TY ) trace(B) (A17)

Proof. For any non-negative definite matrices A and B,
we have

trace(AB) ≤ trace(A) trace(B).

Then

trace(Y TBY ) = trace(Y Y TB)

≤ trace(Y Y T) trace(B)

= trace(Y TY ) trace(B).

(A18)

�

Lemma A6. Let M be some convex set of m×m positive
definite matrices and R,Q ∈M, where

Q = arg max
M∈M

log detM. (A19)

Define r = trace(GTP−1G), q = trace(GTQ−1G) with
G being some matrix of Rm×s, and let ε be some positive
real value. If

trace{R−1(Q−R)} ≤ ε, (A20)

then
qd(ε) ≤ r, (A21)

where

d(ε) = 1 +
sε

2
− 1

2

√
sε(sε+ 4).

Proof. We start with

r − q =trace
{
GTR−1G

}
− trace

{
GTQ−1G

}

=trace
{
GTR−1(Q−R)Q−1G

}
.

(A22)

Since R and Q are positive definite, it is possible to
introduce the following decompositions:

R−1 = UUT, Q−1 = V V T. (A23)
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In addition to this, define Z such that Z = V T(Q −
R)R−1G. Then, using Lemmas A3 and A4, we have

(r − q)2 =
(
trace

{
GTR−1(Q−R)Q−1G

})2

≤s trace
{[

GTR−1(Q −R)Q−1G
]2}

=s trace
{
(ZTV TG)2

}

≤s trace
{
ZTZGTQ−1G

}

≤s trace
{
ZTZ

}
trace

{
GTQ−1G

}
.

(A24)

Further, according to Lemma A5, we obtain

trace
(
ZTZ

)

= trace
{
GTUUT(Q−R)Q−1(Q−R)UUTG

}

≤ trace
{
GTR−1G

}

× trace
{
UT(Q−R)Q−1(Q−R)U

}

= trace
{
GTR−1G

}

× trace
{
(R−1 −Q−1)(Q −R)

}
.

(A25)

In such a way,

(r − q)2 ≤ s trace
{
GTQ−1G

}
trace

{
GTR−1G

}

× trace
{
(R−1 −Q−1)(Q −R)

}

= srq trace
{
(R−1 −Q−1)(Q −R)

}
.

(A26)

At this point, introduce Mα = (1−α)R+αQ, α ∈
[0, 1] and the function Ψ(α) = log detMα. Its Fréchet
derivative is given by

◦
Ψ(α) = trace{M−1

α (Q−R)}. (A27)

Further,

◦
Ψ(α)

∣
∣
∣
α=0+

= trace{R−1(Q−R)} ≤ ε

and Ψ(α) ≥ Ψ(1) = log detQ. This, taken in

conjunction with the concavity of Ψ, implies 0 ≤
◦
Ψ(1) ≤

◦
Ψ(0) ≤ ε. Finally,

ε ≥
◦
Ψ(1)−

◦
Ψ(0) = trace

{
(R−1 −Q−1)(Q −R)

}
.

(A28)
Combination of (A26) and (A28) gives

(p− q)2 ≤ εsrq. (A29)

Solving this quadratic inequality with respect to r
and taking the lower bound, we get

q

(
1 +

sε

2
− 1

2

√
sε(sε+ 4)

)
≤ r, (A30)

which completes the proof. �

Assume that ξ� is a D-optimum design measure;
then, from Lemma A1 and definition of ε(r)k , we have

ε
(r)
k ≥

∫

X

φk(x, ξ
(r)) ξ�(dx) − ςk(ξ

(r))

= trace
{
M−1(ξ(r))

[
M(ξ�)−M(ξ(r))

]}
.

(A31)

Then, the assertion of Theorem 2 follows immediately
from Lemma A6. In fact, taking R = M(ξ(r)) and
Q = M(ξ�) in Lemma A6, in conjunction with the claim
(ii) of Theorem 1, for any support point xj

k in ξ�, we
obtain

d(ε
(r)
k )ςk(ξ

�) ≤ φk(x
j
k, ξ

(k)),

which constitutes the desired result.
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