AN ADAPTIVE OBSERVER DESIGN APPROACH FOR A CLASS OF DISCRETE–TIME NONLINEAR SYSTEMS

KRISHNAN SRINIVASARENGAN a,∗, JOSÉ RAGOT a, CHRISTOPHE AUBRUN a, DIDIER MAQUIN a

aCRAN UMR 7039, CNRS
University of Lorraine, F-54000 Vandoeuvre-lès-Nancy, France
e-mail: {krishnan.srinivasarengan,jose.ragot}@univ-lorraine.fr
{christophe.aubrun,didier.maquin}@univ-lorraine.fr

We consider the problem of joint estimation of states and some constant parameters for a class of nonlinear discrete-time systems. This class contains systems that could be transformed into a quasi-LPV (linear parameter varying) polytopic model in the Takagi–Sugeno (T–S) form. Such systems could have unmeasured premise variables, a case usually overlooked in the observer design literature. We assert that, for such systems in discrete-time, the current literature lacks design strategies for joint state and parameter estimation. To this end, we adapt the existing literature on continuous-time linear systems for joint state and time-varying parameter estimation. We first develop the discrete-time version of this result for linear systems. A Lyapunov approach is used to illustrate stability, and bounds for the estimation error are obtained via the bounded real lemma. We use this result to achieve our objective for a design procedure for a class of nonlinear systems with constant parameters. This results in less conservative conditions and a simplified design procedure. A basic waste water treatment plant simulation example is discussed to illustrate the design procedure.

Keywords: adaptive observer, joint state and parameter estimation, Takagi–Sugeno model, time-varying parameter estimation, sector nonlinearity transformation, discrete-time nonlinear systems.

1. Introduction

The term ‘adaptive observers’ is used to represent those observers that simultaneously estimate the states and unknown parameters (constant or time-varying) without augmenting the parameters along with the states. For nonlinear systems, a systematic procedure was first proposed by Cho and Rajamani (1997). However, the extension of this approach to discrete-time systems is not straightforward as it exploits some specific structure arising from continuous-time trajectories investigated in the proof.

Specific applications such as fault diagnosis have been attacked using adaptive observers as in the work of Caccavale et al. (2008), where a diagnostic observer adaptively estimates uncertainties. The authors assume all states as measured and use a peculiar innovation term $e_{x,k+1} - (A - K_o)e_{x,k}$, where A and K_o are the system and the state observer gain matrices, respectively, with $e_{x,k}$ representing the state error. This innovation allows cancellation of terms that complicates the adaptation of the approach by Cho and Rajamani (1997) to discrete-time. Another fault detection application based on the design of an adaptive observer is proposed by Thumati and Sarangapani (2008). The specific constraints used to tune the observers for the fault detection case do not extend to general adaptive observers.

One way to develop observers for general nonlinear systems could be using equivalent forms. A large class of nonlinear systems could be converted to linear parameter varying (LPV) or quasi-LPV system formulations. A nonlinear state equation of the form

\[x_{k+1} = f(x_k, u_k) \]

(1)
could be put through a systematic procedure of factorizing them as proposed by Kwiatkowski et al. (2006) to obtain a quasi-LPV form,

\[x_{k+1} = A(x_k, u_k)x_k + B(x_k, u_k)u_k. \]

(2)
For the model structure used by Cho and Rajamani (1997), the quasi-LPV form with unknown parameters \(\theta_j, j = 1, \ldots, n_\theta \), would be

\[
x_{k+1} = \sum_{j=1}^{n_\theta} (A_j(x_k, u_k)x_k\theta_j + B_j(x_k, u_k)u_k\theta_j),
\]

and possibly with an affine term. Here, \(n_\theta \) is the number of parameters. If the system matrices depend only on measured or known variables, the observer design strategies for these systems are the same as those for linear time-varying (LTV) systems (Ticlea and Besançon, 2016).

In that direction, we can also consider the adaptive observer proposed for LTV systems by Guyader and Zhang (2003). The authors set forth an innovation term whose gain is obtained by filtering the parameters’ transmission matrix in the state equation. This structure, along with some boundedness assumption, allows showing the exponential convergence of the observer. If the system has bounded zero mean noise, the estimation errors have the expected value that exponentially converges to zero. The main issue with this approach is the lack of a clear procedure to choose a scalar that helps to guarantee convergence. These criticisms lead Ticlea and Besançon (2016) to propose an exponential forgetting factor based approach. It mimics a Kalman filter with an update and propagation step, but has two interconnected exponential forgetting factor designs, thus preserving the adaptive observer structure. The main assumptions are complete uniform observability of the system and the invertibility of the system matrix of LTV, \(\dot{A}_k, \forall k \).

LTV based observers, however, cannot handle the case when the system matrices depend on one of the unmeasured states. This type of design can be handled in the realm of one of the quasi-LPV polytopic models: the Takagi–Sugeno (T–S) form. One way to obtain a T–S model that exactly represents the original nonlinear system within a sector is using sector nonlinearity (SNL) transformation (Takagi–Sugeno models (Tanaka and Wang, 2004) are of the form

\[
x_{k+1} = \sum_{i=1}^{2^n} \mu_i(z_k) \left[(A_i + \sum_{j=1}^{n_\theta} \bar{A}_{ij}\theta_j)x_k
+ (B_i + \sum_{j=1}^{n_\theta} \bar{B}_{ij}\theta_j))u_k \right],
\]

\[
y_k = Cx_k,
\]

where \(n_\theta \) is the number of premise variables \(z_k \), which could be one of the states, inputs, and outputs. Like Cho and Rajamani (1997), we consider here a linear output equation. We assert that observer design for such models can cover all possible systems that are represented by those in the work of Cho and Rajamani (1997). The observer for this type of system should take into account the fact that the weighting functions \(\mu_i \) would be depending on estimated premise variables, rather than exact ones. Fortunately, there is a growing body of literature for observer design for T–S systems with unmeasured premise variables (Lendek et al., 2010), as well as using immersion techniques to avoid T–S systems with unmeasured premise variables (Ichalal et al., 2016).

The approach used in this paper springs from the idea of Bezzaoucha et al. (2013b) to represent a time-varying parameter using SNL transformation. This was extended to T–S models with time-varying parameters by Bezzaoucha et al. (2013a). We derived the discrete-time version for T–S models (Srinivasarengan et al., 2016a). In the present paper, we first derive a different, but more relevant example. The outline of the paper is as follows: The following section discusses the preliminaries that are used later on. Section 3 discusses the model structure idea and formulates the problem. Joint state and time-varying parameters are derived for a discrete-time linear time-varying system in Section 4. These results are customized to design an adaptive observer for nonlinear discrete-time systems with constant parameters in Section 5. A simulation example is given in Section 6 to illustrate the proposed method. The paper is then summarized with a future outlook in Section 7.

2. Preliminaries

2.1. Notation. Takagi–Sugeno models (Tanaka and Wang, 2004) are of the form

\[
x_{k+1} = \sum_{i=1}^{r} \mu_i(z_k) [A_i x_k + B_i u_k],
\]

\[
y_k = Cx_k.
\]
Here, \(r = 2^n_p \), where \(n_p \) is the number of premise variables \(z_k \). The weighting functions \(\mu_i(z_k) \) capture the nonlinearity associated with the corresponding premise variables. Further,

\[
x_k \in \mathbb{R}^{n_x}, \quad u_k \in \mathbb{R}^{n_u}, \quad z_k \in \mathbb{R}^{n_z}, \quad y_k \in \mathbb{R}^{n_y}
\]

and

\[
A_i \in \mathbb{R}^{n_x \times n_x}, \quad B_i \in \mathbb{R}^{n_x \times n_u}, \quad C \in \mathbb{R}^{n_y \times n_x}, \quad \forall i\]

Given a symmetric matrix,

\[
A = \begin{bmatrix}
a_{11} & a_{12} \\
* & a_{22}
\end{bmatrix},
\]

the ‘*’ symbol represents the symmetric transpose element, that is, in this case, \(* = a_{12}^T \).

2.2. Preliminary results. The following known results would be referred to while proving the results in this work.

Lemma 1. (Boyd et al., 1994) For a symmetric matrix \(M \), given by

\[
M = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix},
\]

if \(C \) is invertible, then the following properties hold:

1. \(M > 0 \) iff \(C > 0 \) and \(A - BC^{-1}B^T > 0 \);
2. if \(C > 0 \), then \(M \geq 0 \) iff \(A - BC^{-1}B^T \geq 0 \).

Lemma 2. (Zhou and Khalil, 1998) Consider two matrices \(X \) and \(Y \) with appropriate dimensions, a time-varying matrix \(\Delta_k \) and a positive scalar \(\lambda \). Then

\[
X^T \Delta_k^T Y + Y^T \Delta_k X \leq \lambda X^T X + \lambda^{-1}Y^T Y \quad (7)
\]

for \(\Delta_k^T \Delta_k \leq I \)

Lemma 3. (de Souza and Xie, 1992) For a discrete-time system of the form

\[
x_{k+1} = Ax_k + Bu_k, \\
y_k = Cx_k + Du_k,
\]

the bounded real lemma equivalent LMI condition for stability is

\[
P = P^T > 0, \\
\begin{bmatrix} A^T PA - P + C^T C & A^T PB + C^T D \\ B^T PA + D^T C & B^T PB + D^T D - \Gamma_2 \end{bmatrix} \leq 0,
\]

where \(\Gamma_2 \) is the \(L_2 \) gain between the input \(u_k \) and the output \(y_k \).

3. System model and problem formulation

3.1. Representing a time-varying parameter using SNL. The idea of the estimation of a time-varying parameter lies in representing it using sector nonlinearity (SNL) transformation. SNL assumes that the parameter is bounded and its boundary values are known. For a scalar parameter \(\theta_k \in [\theta^1, \theta^2] \), we could write

\[
\theta_k = \mu^1(\theta_k)\theta^1 + \mu^2(\theta_k)\theta^2,
\]

where

\[
\mu^1(\theta_k) = \theta^2 - \theta_k, \quad \mu^2(\theta_k) = \frac{\theta_k - \theta^1}{\theta^2 - \theta^1}
\]

The membership functions satisfy the convex sum property, that is,

\[
\sum_i \mu^i(\cdot) = 1, \quad 0 \leq \mu^i(\cdot) \leq 1, \quad \forall i.
\]

Hence each parameter could be represented by a weighted sum of two elements.

Remark 1. For a vector case, or for T–S systems with unknown parameters, the membership functions can be manipulated to obtain weighting functions that depend on the same membership functions. To illustrate this, take the case of two unknown parameters, \(\theta_{1,k} \in [\theta^1_1, \theta^2_1] \) and \(\theta_{2,k} \in [\theta^1_2, \theta^2_2] \), represented by

\[
\theta_{1,k} = \mu^1_{1}((\theta_{1,k})\theta^1_1 + \mu^1_{2}((\theta_{1,k})\theta^2_1, \\
\theta_{2,k} = \mu^2_{1}((\theta_{2,k})\theta^2_1 + \mu^2_{2}((\theta_{2,k})\theta^2_2.
\]

We can now create a new formulation for the unknown parameters by

\[
\theta_{1,k} = (\mu^2_{1}((\theta_{2,k}) + \mu^2_{2}((\theta_{2,k}) \theta^1_1, \\
\theta_{2,k} = (\mu^1_{1}((\theta_{1,k}) + \mu^1_{2}((\theta_{1,k}) \theta^2_2.
\]

By bringing the alternative form in (12), we obtain the membership functions that depend on the same but four weighting functions, which are the products of the membership functions of the original representation. In general, this approach would lead to \(2^{n_\theta} \) submodels, where \(n_\theta \) is the number of parameters. A detailed treatment of this representation could be obtained from the work of Nagy et al. (2010).

3.2. System model structures. Consider the following linear time-varying system:

\[
x_{k+1} = A(\Theta_k)x_k + B(\Theta_k)u_k, \\
y_k = Cx_k,
\]

where \(\Theta_k \in \mathbb{R}^{n_\theta} \) is the vector of the time-varying parameter \(\theta_{1,k}, \forall i \in [1, \ldots, n_\theta], k \) being the time
index. We consider only the following specific form of
time-varying matrices:

\[
A(\theta_k) = A_0 + \sum_{i=1}^{n_\theta} \theta_{i,k} \bar{A}_i, \\
B(\theta_k) = B_0 + \sum_{i=1}^{n_\theta} \theta_{i,k} \bar{B}_i; \\
\]

(15)

that is, it is possible to write these time-varying matrix
as a sum of constant matrices that are scaled by unknown
parameters.

We can use SNL transformation as in (9) to represent
the matrices of time-varying parameters. Let us first
consider the scalar framework,

\[
A(\theta_k) = A_0 + \theta_k \bar{A} \\
= A_0 + (\mu^1(\theta_k)\theta^1 + \mu^2(\theta_k)\theta^2) \bar{A} \\
= 2 \sum_{j=1}^{2} \mu^j(\theta_k)(A_0 + \theta^j) \bar{A},
\]

(16)

with \(\theta^j \) corresponding to one of \(\theta^1 \) or \(\theta^2 \) depending upon
the submodel \(j \). Similarly,

\[
B(\theta_k) = 2 \sum_{j=1}^{2} \mu^j(\theta_k)(B_0 + \theta^j) \bar{B}.
\]

(17)

This could then be extended to the vector case to yield

\[
A(\Theta_k) = \sum_{i=1}^{2^{n_\theta}} \sum_{j=1}^{2} h_i(\Theta_k)(A_0 + \theta^j \bar{A}_i), \\
B(\Theta_k) = \sum_{i=1}^{2^{n_\theta}} \sum_{j=1}^{2} h_i(\Theta_k)(B_0 + \theta^j \bar{B}_i),
\]

(18)

where \(h_i(\Theta_k) \) is the normalized product of a membership
function \(\mu^j_i(\theta_{i,k}) \) of each parameter (see Remark 1 and \(\theta^i_j, j = 1, 2 \) represents the sector boundary values of each
parameter \(\theta_i \). Here \(\theta^0_j \) is the corresponding maximum or
minimum value of \(\theta_j \) for the submodel \(i \); more details could be obtained from Tanaka and Wang (2004). This
would lead to

\[
x_{k+1} = \sum_{i=1}^{r} h_i(\hat{\Theta}_k)(A_i x_k + B_i u_k), \\
y_k = C x_k.
\]

(19)

For the model in (19), we propose an observer of the form

\[
x_{k+1} = \sum_{i=1}^{r} h_i(\hat{\Theta}_k)(A_i x_k + B_i u_k) + \sum_{i=1}^{r} h_i(\hat{\Theta}_k)(A_i \hat{x}_k + B_i u_k) + L_i(y_k - \hat{y}_k), \\
\hat{\theta}_{k+1} = \hat{\theta}_k + \sum_{i=1}^{r} h_i(\hat{\Theta}_k)(K_{y,i}(y_k - \hat{y}_k) - K_{\theta}\hat{\theta}_k), \\
\hat{y}_k = C x_k.
\]

(21)

The gains \(L_i \in \mathbb{R}^{n_x \times n_u} \) and \(K_{y,i} \in \mathbb{R}^{n_x \times n_y} \) are to be
estimated while the gain \(K_{\theta} \in \mathbb{R}^{n_\theta \times n_{\theta}} \) is chosen. The
choice of \(K_{\theta} \) will typically be in the form of a diagonal
matrix. In the initial work (Bezzaouche et al., 2013a),
this was introduced to avoid a marginal stability condition
for the error dynamics. As discussed by Srinivasarengan
et al. (2016b), choosing this reduces the number of
variables in the final LMI to be solved and hence allows
a computationally tractable problem. Further, in the
discrete-time case, \(K_{\theta} \) as a variable leads to unresolvable
nonlinear terms in the matrix inequalities.

3.3. Uncertain-like model representation. Let us
define the state estimation error \(e_{x,k} = x_k - \hat{x}_k \). If
we want to analyse the dynamics of the errors based on
the system and observer models in (19) and (21), it would
involve comparing systems weighted by functions that
depend on mismatched variables (i.e., \(x_k, \hat{x}_k \) vs \(\hat{x}_k, \hat{\theta}_k \)).
This is a typical problem in observer design for T–S systems with unmeasured premise variables. There are
various approaches to deal with it. In this work, we use the
one proposed by Ichalal et al. (2009) to develop an uncertain-like model representation. Making use of the
convex sum property in (11), we can rewrite (19), without
making any approximations, as

\[
x_{k+1} = \sum_{i=1}^{r} h_i(\hat{\Theta}_k)(A_i x_k + B_i u_k) \\
+ \sum_{i=1}^{r} h_i(\hat{\Theta}_k) h_i(\hat{\Theta}_k)(A_i x_k + B_i u_k), \\
y_k = C x_k.
\]

(22)

Write

\[
\Delta A_k = \sum_{i=1}^{r} (h_i(\hat{\Theta}_k) - h_i(\hat{\Theta}_k)) A_i = A \Sigma_{A,k} E_A, \\
\Delta B_k = \sum_{i=1}^{r} (h_i(\hat{\Theta}_k) - h_i(\hat{\Theta}_k)) B_i = B \Sigma_{B,k} E_B.
\]

(23)

where

\[
A = [A_1 \ A_2 \ \ldots \ A_r] \in \mathbb{R}^{n_x \times n_x r}, \\
E_A = [I_{n_x} \ I_{n_x} \ \ldots \ I_{n_x}]^T \in \mathbb{R}^{n_x r \times n_x},
\]

\[
B = [B_1 \ B_2 \ \ldots \ B_r] \in \mathbb{R}^{n_x \times n_x r},
\]

\[
E_B = [I_{n_x} \ I_{n_x} \ \ldots \ I_{n_x}]^T \in \mathbb{R}^{n_x r \times n_x}.
\]
\[\Sigma_{A,k} = \begin{bmatrix} (h_1 - \hat{h}_1)I_{n_x} & \cdots & 0 \\ 0 & \cdots & (h_r - \hat{h}_r)I_{n_x} \end{bmatrix} \]

(24)

Likewise,

\[\mathcal{B} = [B_1 \ B_2 \ \cdots \ B_r] \in \mathbb{R}^{n_u \times n_x}, \]

\[E_B = [I_{n_u} \ I_{n_u} \ \cdots \ I_{n_u}]^T \in \mathbb{R}^{n_r \times n_u}, \]

\[\Sigma_{B,k} = \begin{bmatrix} (h_1 - \hat{h}_1)I_{n_u} & \cdots & 0 \\ 0 & \cdots & (h_r - \hat{h}_r)I_{n_u} \end{bmatrix}, \]

(25)

with \(h_i \) and \(\hat{h}_i \) standing for \(h_i(\Theta) \) and \(\hat{h}_i(\Theta) \), respectively. Since \(-1 \leq (h_i - \hat{h}_i) \leq 1\), the matrices \(\Sigma_{A,k} \in \mathbb{R}^{n_x \times n_x}, \Sigma_{B,k} \in \mathbb{R}^{n_u \times n_u} \) have the useful property

\[\Sigma_{A,k}^T \Sigma_{A,k} \leq I, \quad \Sigma_{B,k}^T \Sigma_{B,k} \leq I \]

(26)

which will later be used to bound the time-varying difference between the known and estimated weighting functions. This will transform the system model (19) to

\[x_{k+1} = \sum_{i=1}^{r} h_i(\hat{\Theta})[(A_i + \Delta A_k)x_k + (B_i + \Delta B_k)u_k], \]

\[y_k = Cx_k. \]

(27)

As the model (27) and its observer (21) now share the same weighting functions \(h_i(\hat{\Theta}) \), it is therefore possible to express the state and the parameter estimation errors in a simpler and more tractable form.

4. Joint state and time-varying parameter estimation

In this section, we provide the results for stability analysis of the joint state and parameter observer. The results can be considered a discrete-time version of the observer design of Bezzaoucha et al. (2013a) and our approach follows the steps of Srinivasarengan et al. (2016a).

Theorem 1. Given the system model of the form (19), there exists an observer of the form (21) if there exist \(P_0, \ P_1, \ R_0, \ F_i, \ \lambda_1, \ \lambda_2, \ \lambda_3, \ \lambda_4, \ \Gamma_j \) \((\forall i \in [1, r], \forall j \in \{x, u, \theta, \Delta \theta\})\) such that

\[P_0 = P_0^T > 0, \quad P_1 = P_1^T > 0, \]

\[\lambda_m > 0, \forall m \in \{1, 2, 3, 4\}, \quad \Gamma_j > 0, \forall j, \]

(28)

\[\begin{bmatrix} -P + I & Q_{A,i} & \Phi_i^T P & 0 \\ * & \Theta_{22} & 0 & Q_{B,i}^T \end{bmatrix} \begin{bmatrix} \tilde{T}_{A,i} \ \tilde{T}_{B,i} \ \tilde{T}_{A,B,i} \end{bmatrix} < 0. \]

(29)
where
\[
\Phi_i = \begin{bmatrix} A_i - L_i C & 0 \\ -K_{y,i} C & -K_{\theta} \end{bmatrix},
\]
\[
\Psi_{i,k} = \begin{bmatrix} \Delta A_k & \Delta B_k \\ 0 & 0 \end{bmatrix} I + K_{\theta} I \] (33)

Setting
\[
\mathbf{e}_{a,k} = \begin{bmatrix} e_{x,k}^T & e_{\theta,k}^T \end{bmatrix}^T,
\]
\[
\tilde{u}_k = \begin{bmatrix} u_k^T & \Theta_k^T \Delta \Theta_k^T \end{bmatrix}^T,
\]
the error dynamics can be written as
\[
\mathbf{e}_{a,k+1} = \sum_{i=1}^{r} h_i(\hat{\Theta}_k) (\Phi_i \mathbf{e}_{a,k} + \Psi_{i,k} \tilde{u}_k). \quad (34)
\]

The aim here is an asymptotic decay of the error and the minimization of the effect of \(\tilde{u}_k\) on the error. It is to be noted that \(\Phi_i\) has constant entries, but \(\Psi_{i,k}\) has time-varying entries. To analyze the stability of (34), we consider the following Lyapunov candidate:
\[
V_k = \mathbf{e}_{a,k}^T P \mathbf{e}_{a,k}. \quad (35)
\]
Since there are time-varying perturbations that affect the error \(\mathbf{e}_{a,k}\) in (34), the sufficient condition for stability that we consider is
\[
V_{k+1} < V_k - (\mathbf{e}_{a,k}^T \mathbf{e}_{a,k} - \tilde{u}_k^T \Gamma_2 \tilde{u}_k), \quad (36)
\]
where \(\Gamma_2\) is a block diagonal matrix with the entries
\[
\Gamma_2 = \text{diag}(\Gamma_{2,x}, \Gamma_{2,\theta}, \Gamma_{2,y}, \Gamma_{2,\theta}) \] (37)
that represent the \(\ell_2\)-gains of the effect of the elements in \(\tilde{u}\) on the error. Applying the discrete-time version of the bounded real lemma (BRL) in Lemma 3 we get the matrix inequality condition
\[
\begin{bmatrix} \Phi_i^T P \Phi_i & P + I \\ * & \Phi_i^T P \Psi_{i,k} \end{bmatrix} < 0. \quad (38)
\]
The introduction of \(l\) terms is to illustrate that we have cross terms between the different submodels. However, we could take the more conservative condition of considering \(l = i\), based on the illustrations in Theorem 17 by Blanco (2001). We find another form for (38) so as to
- obtain linear bounds for the nonlinearities (in \(\Phi_i^T P \Phi_i\), \(\Phi_i^T P \Psi_{i,k}\) and their transposes);
- obtain bounds for the time-varying terms (in \(\Phi_i^T P \Psi_{i,k}\) and \(\Psi_{i,k}^T P \Psi_{j,k}\))

Reducing nonlinearities. The quadratic terms associated with \(\Phi_i\) and \(\Psi_{i,k}\) could be reduced to linear terms. By using the Schur complements (Lemma 1) for the nonlinear terms, the matrix terms in (38) could be reduced to
\[
\begin{bmatrix} -P + I & \Phi_i^T P \Psi_{i,k} & \Phi_i^T P \Psi_{i,k} \Psi_{i,k}^T P \Psi_{i,k} \\ * & -\Gamma_2 & 0 \\ * & * & -P \end{bmatrix} < 0. \quad (39)
\]
This has not resolved all the nonlinear entries, though, and the residual factors are in the form of unresolvable terms inside \(\Phi_i^T P\) and \(\Phi_i^T P \Psi_{i,k}\). This is because, as in (33), \(\Phi_i\) has two variables \(L_i\) and \(K_{y,i}\), as part of the matrix split into \(n_x\) and \(n_\theta\) blocks. This issue is alleviated in two steps:
- Consider a diagonal structure for the Lyapunov matrix \(P = \begin{bmatrix} P_0 & 0 \\ 0 & P_1 \end{bmatrix}\).
- This Lyapunov structure would lead to terms \(P_0 L_i\) and \(P_1 K_{y,i}\). These quadratic terms are eliminated by introducing new variables,
\[
R_i = P_0 L_i, \quad F_i = P_1 K_{y,i}. \quad (40)
\]
These steps would reduce the nonlinear matrix entries in (39) to linear terms. First, we define, to simplify the notation,
\[
P_{0,i} = A_i^T P_0 - C_i^T R_i^T. \quad (41)
\]
The term \(\Phi_i^T P\) would reduce to
\[
\Phi_i^T P = \begin{bmatrix} P_{0,i} & -C_i^T F_i^T \\ 0 & -K_{\theta}^T F_i^T \end{bmatrix}, \quad (42)
\]
Further, we split the linearized time-varying matrices to those with constant entries and time-varying terms,
\[
\Phi_i^T P \Psi_{i,k} = Q_{A,i} + L_{U,i,k}, \quad \Psi_{i,k}^T P = Q_B + L_{L,k}. \quad (43)
\]

where
\[
Q_{A,i} = \begin{bmatrix} 0 & 0 & -C_i^T F_i^T (I + K_{\theta}) & -C_i^T F_i^T (I + K_{\theta})^T \\ 0 & 0 & -K_{\theta}^T P_1 (I + K_{\theta}) & -K_{\theta}^T P_1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]
\[
Q_{B} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]
\[
L_{U,i,k} = \begin{bmatrix} P_{0,i} \Delta A_k & P_{0,i} \Delta B_k & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]
\[
L_{L,k} = \begin{bmatrix} P_0 \Delta A_k & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \]
Bounds for time-varying terms. The linearized version of the inequality in (43) can now be split into terms with and without time-varying terms and their corresponding transposes,

\[Q_i + L_{i,k} + L^T_{i,k} < 0, \]

where

\[Q_i = \begin{bmatrix} -P + I & Q_{A,i} & \Phi^TP & 0 \\ \ast & -\Gamma_2 & 0 & Q_B \\ \ast & \ast & -P & 0 \\ \ast & \ast & \ast & -P \end{bmatrix}, \]

with \(Q_{A,i} \) and \(Q_B \) given in (30). The time-varying terms are gathered as follows:

\[L_{i,k} = \begin{bmatrix} 0 & L_{U,i,k} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & L_{L,k} & 0 & 0 \end{bmatrix}. \]

There are four time-varying terms and their transposes in (44). In (26), we showed that the uncertain-like terms could be written as products of matrices and further showed an interesting property of the time-varying matrix in (26). By the same token, we can split each of the uncertain-like terms in \(L_{i,k} \). Let us insert the four terms corresponding to the time-varying factors, \(P_{0,i}\Delta A_k, P_{0,i}\Delta B_k, \) as parts of individual matrices, \(L_{A1,k}, L_{A2,k}, L_{B1,k}, L_{B2,k} \) respectively, that is,

\[
L_{A1,k} = \begin{bmatrix} 0 & P_{0,i}\Delta A_k & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]

\[
L_{A2,k} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]

\[
L_{B1,k} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]

\[
L_{B2,k} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]

and similarly for \(L_{B1,k} \) and \(L_{A2,k} \), so that

\[L_{i,k} = L_{A1,k} + L_{A2,k} + L_{B1,k} + L_{B2,k}. \]

It is to be noted that the zero entries in the matrices have appropriate dimensions and are usually grouped together to make the representation easier. Based on the representation in (24), we represent the uncertain-like terms as

\[
\mathcal{L}_{A1,k} = \begin{bmatrix} P_{0,i}A \\ 0 \\ 0 \\ 0 \end{bmatrix},
\]

\[
\mathcal{L}_{A2,k} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},
\]

\[
\mathcal{L}_{B1,k} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},
\]

\[
\mathcal{L}_{B2,k} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},
\]

Now, we apply Lemma 2 to the sum of these terms and their transposes,

\[
\mathcal{L}_{A1,k} + L^T_{A1,k} \leq \lambda_1^{-1} \begin{bmatrix} P_{0,i}A \\ 0 \\ 0 \\ 0 \end{bmatrix} \leq \lambda_1^{-1} \begin{bmatrix} A^T P_{0,i} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \leq \begin{bmatrix} \lambda_1^{-1} P_{0,i}A A^T P_{0,i} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \leq \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
\]

for some scalar \(\lambda_1 \). Similarly, the sums of \(\mathcal{L}_{A2,k} + \mathcal{L}^T_{A2,k}, \mathcal{L}_{B1,k} + \mathcal{L}^T_{B1,k} \) and \(\mathcal{L}_{B2,k} + \mathcal{L}^T_{B2,k} \) are bounded.
This would lead the inequality in (44) to

\[
\begin{bmatrix}
0 & \lambda_2 E_A^T E_A & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

with

\[
L^1_i = \lambda_1^{-1} P_{0,i} A A^T P_{0,i} + \lambda_3^{-1} P_{0,i} B B^T P_{0,i},
\]

\[
L^2 = \begin{bmatrix}
(\lambda_1 + \lambda_2) E_A^T E_A & 0 & 0 & 0 \\
0 & (\lambda_3 + \lambda_4) E_B^T E_B & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
L^3 = \lambda_2^{-1} P_0 A A^T P_0 + \lambda_4^{-1} P_0 B B^T P_0.
\]

This would lead the inequality in (44) to

\[
\begin{bmatrix}
L^1_i & 0 & 0 & 0 \\
0 & L^2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

These terms have quadratic entries that could be handled by applying Schur’s complement. In this way, we could consider

\[
L^1_i < 0 \iff \begin{bmatrix}
-P_0 + I & P_{0,i}^T A & P_{0,i}^T B \\
0 & P_{0,i} & 0 \\
0 & 0 & -\lambda_1 I \\
0 & 0 & 0
\end{bmatrix} < 0,
\]

and in much the same way as we could do for \(L^{44} \). Putting them together and rearranging, we get

\[
\begin{bmatrix}
-P + I & Q_{A,i} & \Phi_i^T P & 0 \\
T_{222} & 0 & Q_{i,i}^T & T_{i,i} \\
0 & -P & 0 & 0 \\
0 & 0 & -P & \Lambda
\end{bmatrix} < 0,
\]

This completes the proof.

\textbf{Corollary 1.} We could formulate observer design as an optimization problem with the objective to minimize the \(L_2 \)-gain between the perturbation factors \(\tilde{u}_k \) and the errors \(e_{n,k} \) in (44). We could aim to minimize a scalar \(\beta \) such that

\[
\min_{P_0, P_1, P_{0,i}, \Gamma_j, \beta} \beta
\]

\forall i \in [1, r], \forall j \in \{x, u, \theta, \Delta \theta\}, \forall m \in \{1, 2, 3, 4\}, so that the LMI in (29) are satisfied along with

\[
\beta I > \Gamma_j, \forall j \in \{x, u, \theta, \Delta \theta\}.
\]

There is an inherent assumption that the \(L_2 \)-gains of various perturbations are scaled appropriately so that using a single \(\beta \) makes sense. This could otherwise be achieved by using an appropriate scaling factor instead of \(I \) on the left hand side of (57).

\textbf{Corollary 2.} Measurement noise could be added to the output equation in (19) so that

\[
y_k = C x_k + H v_k,
\]

where \(v_k \in \mathbb{R}^{n_y} \) is the measurement noise with \(H \in \mathbb{R}^{n_x \times n_y} \) the transmission matrix. This would
An adaptive observer design approach for a class of discrete-time nonlinear systems

make the perturbation variable turn into \(\tilde{u}_k = [x_k, u_k, \Theta_k, \Delta \Theta_k, v_k]^T \) and the matrix \(\Psi_{1,k} \) in (33) into

\[
\Psi_{1,k} = \begin{bmatrix}
\Delta A_k & \Delta B_k & 0 & 0 & -L_k H \\
0 & 0 & I + K_\theta & I & -K_{y,i} H
data would then lead to the same LMIs with the modifications in the following components in (33):

\[
Q_{A,i} = \begin{bmatrix}
0 & 0 & -CT F_1^T (I + K_\theta) & -CT F_2^T & -R_1 H \\
0 & 0 & -K_\theta^T P_1 (I + K_\theta) & -K_{y,i} P_1 & -F_1 H
\end{bmatrix}
\]

\[
T_{22} = \begin{bmatrix}
T_{11} & 0 & 0 & 0 & 0 \\
0 & T_{22} & 0 & 0 & 0 \\
0 & 0 & -\Gamma_1 & 0 & 0 \\
0 & 0 & 0 & -\Gamma_2 & 0 \\
0 & 0 & 0 & 0 & -\Gamma_2
\end{bmatrix}
\]

where \(\Gamma_2 \) is the L2-gain between the noise \(v \) and the error \(e_{a,k} \). It is to be noted that \(\Gamma_2 \) will also be added as a diagonal block in the matrix \(\Gamma_2 \).

Remark 2. It is to be noted here that since there are only two time-varying terms \(\Delta A_k \) and \(\Delta B_k \) in (35), we could split the time-varying terms into only two additive factors, and hence apply Lemma 2 twice. However, the resulting matrix inequality is nonlinear with crossover terms, making it impossible to resolve. Hence four additive factors were used.

Remark 3. In the continuous-time version discussed by Bezzaoucha et al. (2013a), the factor \(K_\theta \) allowed avoiding numerical issues in the LMI conditions. In our work, this has been followed through. The value of \(K_\theta \), however, is also important because it may make the effect of the innovation term \(K_{y,i}(y_k - \hat{y}_k) \) negligible due to relative scaling between \(K_\theta \) and \(K_{y,i} \), as discussed by Srinivasarengan et al. (2016b). This could be done by adding an extra condition. For example, for a scalar parameter estimation case, let \(k_\theta \) be the scalar value of the observer gain \(K_\theta \), which would yield the condition

\[
\frac{1}{k_\theta} K_{y,i} > \rho,
\]

where \(\rho > 1 \) is a constant chosen depending upon the relative scaling between \(\dot{\theta} \) and \(y_k - \hat{y}_k \). Along with the LMIs in (29), we could add, for a scalar case,

\[
F_1 > \rho P_1 k_\theta.
\]

Remark 4. The LMI in (29) could be considered restrictive partly because of the term \(-P + I \) that calls for \(P \) to be more positive than \(I \). This starts with the term \(e_{a,k}^T I e_{a,k} \) in the Lyapunov function trajectory in (36). If a solution is unavailable for this case, we could replace this with \(e_{a,k}^T Q e_{a,k} \), where \(Q \) could be chosen to be a value that allows a solution to the LMI (29) to exist.

Remark 5. The extension of Theorem 1 to a nonlinear system represented by T–S models is straightforward. That is, the nonlinear model has to be transformed into a T–S model with time-varying matrices and then all the proposed development with the introduction of a supplementary index for some of the matrices involved. Furthermore, the weighting functions now would be the products of membership functions of both unknown parameters as well as the premise variables of the T–S model. Hence the components of the uncertain-like terms would be different.

5. Adaptive observer design

Consider now a discrete-time version of the nonlinear system by Cho and Rajamani (1997) and the particular case where the unknown parameter vector \(\Theta \) is constant:

\[
x_{k+1} = A x_k + \phi(x_k, u_k) + b_f(x_k, u_k) \Theta,
\]

\[
y_k = C x_k,
\]

where a quasi-LPV equivalent would be of the form (34). Our aim is to design an adaptive observer for this model, assuming that we know a range of values \([\theta^1, \theta^2]\) in which the true value of each \(\theta_i, \forall i \in 1, \ldots, n_\theta \) lies. This substitutes the sector bounds for the time-varying case. In much the same way as in the previous section, applying SNL transformation to the time-varying parameter with these bounds, we obtain

\[
x_{k+1} = \sum_{i=1}^{n} h_i(z_k, \Theta)(A_i x_k + B_i u_k),
\]

\[
y_k = C x_k,
\]

where \(s = 2^n_p + n_\theta \) and \(h_i(z_k, \Theta) \) is the weighting function obtained by normalizing the product of membership functions associated with the premise variables \(z_k \) and the parameters \(\theta \). For this type of system, we propose an observer of the form

\[
\dot{x}_{k+1} = \sum_{i=1}^{n} h_i(z_k, \Theta)(A_i \dot{x} + B_i u_k + L_i(y_k - \hat{y}_k)),
\]

\[
\dot{\Theta}_{k+1} = \dot{\theta} + \sum_{i=1}^{n} h_i(z_k, \Theta) K_{y,i}(y_k - \hat{y}_k),
\]

\[
\hat{y}_k = C \dot{x}_k.
\]

As could be noted, the gain term \(K_\theta \) has been dropped. One main reason is the simplification this offers (this will be apparent soon). Further, the condition \(K_\theta = \)
Furthermore, following the steps described in the proof of Theorem 1, we can summarize the results as follows.

As could be seen, the number of perturbations has reduced and hence the dynamics matrices are simplified. By applying the discrete-time BRL and following it up with the application of LMI equivalence using Schur’s complement (Lemma 1), then splitting the Lyapunov matrix to the form

$$P = \begin{bmatrix} P_0 & 0 \\ 0 & P_1 \end{bmatrix},$$

and applying the variable transformations $R_i = P_0 L_i$ and $F_i = P_1 K_{yi,i}$, we get

$$-P + I \Phi_i^T P \Psi_i,k = \begin{bmatrix} P_0 \Delta A_k & \Phi_i^T P \Psi_i,k \\ 0 & 0 \end{bmatrix} < 0,$$
(67)

with

$$\Phi_i^T P \Psi_i,k = \begin{bmatrix} P_{0,i} \Delta A_k & \Phi_i^T P \Psi_i,k \\ 0 & 0 \end{bmatrix},$$
$$\Phi_i^T P = \begin{bmatrix} P_{0,i} \Delta A_k & \Phi_i^T P \Psi_i,k \\ 0 & 0 \end{bmatrix},$$
$$\Psi_i^T P = \begin{bmatrix} \Delta A_k P_0 & \Delta B_k P_0 \\ 0 & 0 \end{bmatrix}. $$
(68)

Furthermore, following the steps described in the proof of Theorem 1 we can summarize the results as follows.

Theorem 2. Given a nonlinear discrete-time system of the form (63) which can be transformed into a T–S model, an observer of the form (65) could be designed if there exist P_0, P_1, R_i, F_i, λ_1, λ_2, λ_3, λ_4, $\Gamma_i^j (\forall i \in [1, r], \forall j \in \{x, u\})$ such that

$$-P + I \Phi_i^T P \Psi_i,k = \begin{bmatrix} P_0 \Delta A_k & \Phi_i^T P \Psi_i,k \\ 0 & 0 \end{bmatrix} < 0,$$
(70)

where $\Phi_i^T P$ is given in (68) and Λ in (30). T_{AB} has the same structure as in (30) except for accommodating the changes in the number of zero rows due to the change of T_{22} to

$$T_{22} = \begin{bmatrix} T_{11} & 0 \\ 0 & T_{22} \end{bmatrix},$$

where $T_{11} = -\Gamma_2^2 + (\lambda_1 + \lambda_2)E_A^T E_A$ and $T_{22} = -\Gamma_2^2 + (\lambda_3 + \lambda_4)E_B^T E_B$. The observer gains are given by $K_{yi,i} = P_0^{-1} F_i$ and $L_i = P_1^{-1} R_i$.

Proof. The proof follows that of Theorem 1 with the changes in the matrix block entries discussed above. ■

6. Simulation example

We consider a discrete-time version of the simplified waste water treatment plant from the work of Bezzaoucha et al. (2013a). The simplification concerns reducing the 10-state system to a 2-state model, given by

$$x_{1,k+1} = x_{1,k} + T_s \left[\frac{a x_{1,k}}{x_{2,k} + b} x_{2,k} - x_{1,k} u_k \right],$$
$$x_{2,k+1} = x_{2,k} + T_s \left[-c a x_{1,k} x_{2,k} + (d - x_{2,k}) u_k \right],$$
$$y_k = x_{1,k}.$$
(72)

In this model, we consider an uncertainty in the parameter a, that is,

$$a = a_0 + \theta.$$
(73)

The parameters of the model used are given in Table 1. The unknown parameter θ in (65) is constant; however, for observer design purposes we assume it to be known and in the range

$$\theta \in [-0.3, 0.3].$$
(74)

We choose the premise variables

$$z_{1,k} = u_k, \quad z_{2,k} = \frac{x_{1,k}}{x_{2,k} + b}.$$
(75)

It is evident that $z_{2,k}$ depends on the unmeasured state $x_{2,k}$, making it unmeasured. Assuming a range of values for $u_k \in [0, 0.4]$, $x_{1,k} \in [0.01, 6]$, and $x_{2,k} \in [0.01, 3]$, we get the range of the premise variables as

$$z_{1,k} \in [0, 0.4], \quad z_{2,k} \in [0.003, 14.63].$$
(76)
An adaptive observer design approach for a class of discrete-time nonlinear systems

With these parameters, we get the model

\[
x_{k+1} = \sum_{i=1}^{s} h_i(x_k, \theta_k) [A_i x_k + B_i u_k],
\]

(77)

where \(h_i(x_k, \theta)\) is obtained from the product of membership functions of \(z_{1,k}, z_{2,k}\) and \(\theta\) corresponding to the submodel \(i\). The system matrices are given by

\[
A_1 = \begin{bmatrix} 1 & 5.9 \times 10^{-4} \\ 0 & 0.99 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 0.0024 \\ 0 & 0.99 \end{bmatrix},
\]

\[
A_3 = \begin{bmatrix} 1 & 2.92 \\ 0 & -0.17 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 1 & 11.7 \\ 0 & -3.68 \end{bmatrix},
\]

\[
A_5 = \begin{bmatrix} 0.6 & 5.9 \times 10^{-4} \\ 0 & 0.6 \end{bmatrix}, \quad A_6 = \begin{bmatrix} 0.6 & 0.0024 \\ 0 & 0.6 \end{bmatrix},
\]

We used Matlab with the Yalmip (Löfberg, 2004) interface, as well as the LMIlab toolbox, to solve the LMI conditions.

Remark 6. Some problem specific conditions could be added to obtain an optimum solution to the problem. For example, pole placement for the state observers \(A_i - L_i C\) could be added as a separate LMI condition so as to achieve a favourable rate of convergence. Further, some minimum value for the gain corresponding to parameter estimation, \(K_i\), \(\forall i\) could be imposed so that the innovation term be useful in augmenting the estimated \(\theta\) (due to the relative scaling between the values of \(\theta\) and \(y - \hat{y}\)). Further, as noted in Remark 4, the value of \(Q_e\) was chosen as

\[
Q_e = \begin{bmatrix} 0.001 I_{n_x} & 0 \\ 0 & 0.1 I_{n_y} \end{bmatrix}
\]

Remark 7. It is to be noted that there are a number of variables to be determined by the LMI solver. This could be reduced by fixing some of the parameters. For this example, we chose the values for \(\Gamma^*_2 = \Gamma^*_1 = 0.1\) and \(\lambda_i = 0.001, \forall i = 1, 2, 3, 4\). This significantly reduces the computational complexity of the problem.

With the above conditions, we obtain the following observer gain values:

\[
L_1 = \begin{bmatrix} 0.23 \\ 0.24 \end{bmatrix}, \quad L_2 = \begin{bmatrix} 0.23 \\ 0.24 \end{bmatrix}, \quad L_3 = \begin{bmatrix} 0.31 \\ 0.21 \end{bmatrix},
\]

\[
L_4 = \begin{bmatrix} 0.61 \\ 0.09 \end{bmatrix}, \quad L_5 = \begin{bmatrix} -0.41 \\ 0.30 \end{bmatrix}, \quad L_6 = \begin{bmatrix} -0.41 \\ 0.30 \end{bmatrix},
\]

\[
L_7 = \begin{bmatrix} -0.41 \\ 0.30 \end{bmatrix}, \quad L_8 = \begin{bmatrix} -0.27 \\ 0.24 \end{bmatrix},
\]

and \(K_i = 0.03, \forall i\).
With these gain values, we obtain the state estimation results as shown in Figs. 1 and 2 (here ‘Nonlin’ and ‘TSObs’ refer to the results from nonlinear system T–S observer). The estimation of the unknown parameter is given in (Fig. 3). Further, the input used for the simulation is shown in Fig. 4. To illustrate the nonlinearity of the model, we show the variation of the weighting function $h_i(\hat{x}, \hat{\theta})$ in Fig. 5.

Remark 8. The transient response characteristics of polytopic observers have some known issues. This concerns implicitly taking into account the known bound for the states in observer design. This might make the transient response of estimated states (and hence the parameters) exceed the bounds and lead to jerks in the response as seen in (Fig. 3). This could be partially mitigated through approaches such as that described by Ichalal et al. (2015), but is beyond the scope of this work.

7. Concluding remarks

We presented an adaptive observer design procedure for discrete-time nonlinear systems which could be converted to a quasi-LPV form. The work fills a gap in adaptive observer design for discrete-time nonlinear systems for those cases where transformed quasi-LPV matrices depend on one of the unmeasured system states. The results in this approach are conservative, but give way to exploring a systematic approach to adaptive observer design for nonlinear systems of this type. One interesting extension could be to explore other observer structures, especially the one proposed by Guyader and Zhang (2003), and follow a similar design strategy as in our work so as to expand for the unmeasured premise variable case.

Acknowledgment

This work was supported by the FP7 project Energy in Time (EiT) under the grant no. 608981.

References

An adaptive observer design approach for a class of discrete-time nonlinear systems

Krishnan Srinivasarengan is a PhD candidate at Université de Lorraine, Nancy, France, and is associated with the CRAN laboratory (Research Center for Automatic Control in Nancy). He obtained his MTech in control and computing from the Indian Institute of Technology, Bombay, in 2011, and his BTech from the National Institute of Technology, Tiruchirappalli, India. Before starting his doctoral studies, he was a researcher at TCS Innovation Labs, Bangalore, where he is currently on a sabbatical. His broad interests lie in the area of control theory and its applications, with the present focus on observer design.

José Ragot received his PhD in 1973 from the University of Nancy (France). He then joined Henri Poincaré University, Nancy, as an assistant professor, and in 1980 obtained his DSc and in 1985 became a professor at Institut National Polytechnique de Lorraine (INPL), Nancy. He is also a researcher at the Research Centre for Automatic Control in Nancy (CRAN), where he had headed the process diagnosis group for 12 years. Presently, he is a professor emeritus. His interests include data validation and reconciliation, as well as process and fault diagnosis, with a particular focus on multi-models with applications in multiple domains. He has successfully advised 70 PhD candidates and published about 500 refereed technical communications (130 journal articles and 370 conference papers), 4 books, and 14 chapters in collective volumes.

Christophe Aubrun received his PhD in 1993 from Henri Poincaré University, Nancy I, France. Since 2003 he has been a full professor at Henri Poincaré University, Nancy I, where he teaches automatic control. He has been the director of the University Institute for Training in Electrical Engineering and the head of the Department of Electrical Engineering of the Nancy University Institute of Technology. He is a member of the Research Centre in Automatic Control of Nancy (CRAN). His current research interests are in model-based fault diagnosis and fault tolerant control with the emphasis on networked control systems and continuous commissioning of building energy systems.

Didier Maquin is a professor of automatic control at the University of Lorraine, France. He teaches automatic control and applied mathematics in various engineering schools. He is a member of the Research Center for Automatic Control of Nancy and the scientific leader of the research department in control, identification and diagnosis, which gathers about forty academics and as many PhD students. His research topics include state estimation, fault diagnosis and fault tolerant control, both using model-based or data-driven approaches. Didier Maquin has co-authored more than 50 journal articles and 160 conference communications.

Received: 10 February 2017
Revised: 14 June 2017
Accepted: 9 August 2017