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Stabilization of neutral systems with state delay is considered in the presence of uncertainty and input limitations in mag-
nitude. The proposed solution is based on simultaneously characterizing a set of stabilizing controllers and the associated
admissible initial conditions through the use of a free weighting matrix approach. From this mathematical characterization,
state feedback gains that ensure a large set of admissible initial conditions are calculated by solving an optimization problem
with LMI constraints. Some examples are presented to compare the results with previous approaches in the literature.
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1. Introduction

Time-delay systems have theoretical and practical
importance because delays appear in epidemic, population
dynamics and economy models, and in many other
practical areas. In fact, delays generally lead to
poor closed-loop system performance and instabilities.
Therefore, closed-loop stability analysis of time-delay
systems is being extensively studied (see, e.g., the works
of Gu et al. (2003), Thuan et al. (2012), Tissir (2010),
Zakaria et al. (2015) or Zhang et al. (2005) and the
references therein). Moreover, practical control systems
are subject to input limitations, because of the existence
of technological and safety constraints (see ElFezazi et
al., 2016; 2015; El Haoussi and Tissir, 2010; Liu, 2005;
Mesquine, 2004). Input limitations are known to be
a source of performance degradation, generated limit
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cycles, multiple equilibrium points and even instability.
Therefore they should be taken into account during the
design (see, e.g., the works of Tissir and Hmamed (1992),
Cao et al. (2002), Tarbouriech et al. (2003) or El Fezazi
et al. (2017) and the references therein).

The design of controllers in simultaneous presence
of time-delays and input limitations makes closed-loop
stabilization a difficult problem. Nonetheless, some
works addressing stabilization in the presence of input
saturation can be found in the literature. For example,
Tissir and Hmamed (1992) proposed some conditions
for stabilization under state feedback. However, the
set of admissible initial conditions for which asymptotic
stability is ensured in the presence of input saturation
(called the domain of attraction) was not considered. In
the work of Tarbouriech et al. (2003), the synthesis of
stabilizing static anti-windup loops was addressed for the
case of fixed delays. Cao et al. (2002) proposed a method
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for computing stabilizing state feedback control laws
aimed at enlarging estimates of the domain of attraction,
based on the use of polytopic differential inclusions to
describe the behavior of the closed-loop system with
saturating inputs. Based on this ideas, in a recent
work (El Fezazi et al., 2017) we proposed, for neutral
systems, to use a generalized sector approach to modelling
the saturation effects, and a method for computing
stabilizing state feedback controls in the continuous time
domain: that proposal is completed here for sampled-data
control, which is more relevant for practical problems.
Sampled-data control in the presence of input saturations
has been studied, e.g., by Fridman et al. (2004) or
Seuret and Da Silva (2012). However, to the best of
our knowledge, there is a lack of works dealing with
the problem of sampled-data control in the presence of
input saturations for the class of systems studied in this
paper (Wang et al., 2014; 2015). Moreover, it has not
been yet sufficiently taken into account that, for practical
problems, it is important to consider uncertainty in the
models, as they are always an approximation of the reality,
so uncertainty will be explicitly considered here.

Thus, in this paper, the robust stabilization
problem for neutral systems with time-varying delay
and input magnitude limitations is solved when the
controller is based on sampling. By incorporating
Lyapunov–Krasovskii (L–K) functional theory, the
free-weighting matrix technique, integral inequalities
and a function to describe decentralized dead-zone
nonlinearities, efficient stabilization conditions are
obtained in terms of LMIs for a general class of
uncertainties. An optimization problem is formulated
with the aim of computing stabilizing state feedback
control laws: this optimization looks for the maximal
delay bound for which a stabilizing control law can be
found. On the other hand, when the open-loop system is
unstable, the optimization objective consists in finding
a control law that maximizes an estimate of the domain
of attraction, or, alternatively, ensures the stability for a
given set of admissible initial states.

The rest of this paper is organized as follows.
Section 2 formulates the stabilization of uncertain neutral
time-delay systems with input limitations. The main
results are presented in Section 3. Practical optimization
problems are formulated in Section 4. Finally, some
numerical examples are solved to illustrate the results
developed in this paper.

The following notation will be used: the Banach
space of continuous vector functions mapping the interval
[−hm, 0] into R

n is denoted by Chm = C([−hm, 0],Rn),
Ki denotes the i-th row of K , λ(P ) is the maximal
eigenvalue of matrix P .

2. Problem formulation and preliminaries

Consider the following uncertain neutral time-delay
system:

ẋ(t)− Cẋ(t− τ(t)) = ̂Ax(t) + ̂Adx(t− τ(t))

+ ̂Bu(t) +Bww(t),

z(t) = Czx(t),

x(t) = φ(t), φ(t) ∈ Chm , (1)

where x(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
r and z(t) ∈ R

s

are, respectively, the state, the control, the disturbance and
the output vectors. Here w(t) is assumed to be bounded
with finite energy, that is, w(t) ∈ L2. Hence, for a scalar
ω, the disturbance w(t) is bounded as follows:

‖w(t)‖22 =

∫ ∞

0

wT (t)w(t) dt ≤ ω−1 <∞.

The delay τ(t) is a positive integer that can be time
dependent, but satisfying 0 ≤ τ(t) ≤ hm and 0 ≤ τ̇ (t) ≤
d < 1, where hm and d are known positive and finite
integers.

The uncertain matrices ̂A, ̂Ad and ̂B are decomposed
as follows: ̂A = A + ΔA(t), ̂Ad = Ad + ΔAd(t) and
̂B = B + ΔB(t), where ΔA(t), ΔAd(t) and ΔB(t) are
system uncertainties, structured as
[

ΔA(t) ΔAd(t) ΔB(t)
]

= DF (t)
[

E0 E1 E2

]

, (2)

where D, E0, E1 and E2 are known real matrices of
appropriate dimensions, and F (t) denotes time-varying
uncertainties with Lebesgue-measurable elements that
fulfill

FT (t)F (t) ≤ I, ∀t ≥ 0. (3)

Moreover, C, A, Ad, B, Bw and Cz are constant real
matrices of appropriate dimensions.

Special focus in this paper is on the fact that the
controller uses sampled signals: the state is then measured
by a sampler at discrete-time instants tk=0,1,..., satisfying

0 = t0 < · · · < tk < . . . ,

with tk+1 − tk ≤ hk, where hk indicates the maximal
sampling period at instant k.

We assume that outputs and control signals are
measured and transmitted quickly, compared with the
system delay and time constants, and the communication
delay is small enough to be ignored (the communication
channel is ideal); then, the control law is expressed by
u(t) = u(tk), tk ≤ t < tk+1. In order to mathematically
represent input sampling, the sampling instants tk are
represented by a time-delay dk(t) = t−tk, which satisfies
0 ≤ dk(t) ≤ hk, and ḋk(t) = 1.
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Moreover, each component of the input vector u(tk)
is subject to magnitude limitations defined by |ui(tk)| ≤
u0i , u0i > 0, where i = 1, . . . ,m. Furthermore, to
generate the desired time responses systematically, we
adopt a standard control problem for the system (1): due
to the control bounds, the effective control signal to be
applied to the system (1) is given by

u(tk) = sat(Kx(tk)), (4)

where the saturation function sat(Kx(tk)) is

[sat(K1x(tk)) . . . sat(Kmx(tk))]
T ,

with

sat(Kix(tk)) = sign(Kix(tk))min{u0i, |Kix(tk)|}.

Hence, the closed-loop system (1) is

ẋ(t)− Cẋ(t− τ(t)) = ̂Ax(t) + ̂Adx(t − τ(t))

+ ̂Bsat(Kx(t− dk(t)))

+Bww(t),

z(t) = Czx(t). (5)

The nominal system, ignoring the unknown
parameters in (5), is given by

ẋ(t)− Cẋ(t− τ(t)) = Ax(t) +Adx(t − τ(t))

+Bsat(Kx(t− dk(t)))

+Bww(t),

z(t) = Czx(t). (6)

To mathematically treat the control limitations, we
define ψ(Kx(t−dk(t))) = Kx(t−dk(t))− sat(Kx(t−
dk(t))), which corresponds to a decentralized dead-zone
nonlinearity. Thus, the closed-loop system (6) can be
written as

ẋ(t)− Cẋ(t− τ(t)) = Ax(t) +Adx(t− τ(t))

+BKx(t− dk(t)) +Bww(t)

−Bψ(Kx(t− dk(t))),

z(t) = Czx(t). (7)

The following auxiliary function will also be used:

J(t) = V̇ (t) +
1

γ
zT (t)z(t)− wT (t)w(t).

We now derive a controller (4) such that the
system (7) is asymptotically stable and satisfies the
following condition for the performance index:

∫ ∞

0

[ 1

γ
zT (t)z(t)− wT (t)w(t)

]

dt < 0, (8)

where the prescribed scalar γ should be as small as
possible.

The L–K functional candidate is selected to be

V (t) = xT (t)Px(t) +

∫ t

t−τ(t)

xT (s)Q1x(s) ds

+

∫ t

t−dk(t)

xT (s)Q2x(s) ds

+

∫ 0

−τ(t)

∫ t

t+θ

ẋT (s)R1ẋ(s) ds dθ

+

∫ 0

−dk(t)

∫ t

t+θ

ẋT (s)R2ẋ(s) ds dθ

+

∫ t

t−τ(t)

ẋT (s)Wẋ(s) ds (9)

The following lemmas are going to be used.

Lemma 1. (Peterson, 1987) Let Ω, Υ, and Φ be real ma-
trices of appropriate dimensions. Then, for F (t) satisfy-
ing (3),

Ω+ΥF (t)Φ + ΦTFT (t)ΥT < 0

if and only if there exists some ε > 0 such that

Ω+ εΥΥT + ε−1ΦTΦ < 0.

Lemma 2. (Zhang et al., 2005) For any free weighting
matrices Y1 and Y2 of appropriate dimensions, the fol-
lowing bounding inequality holds:

−
∫ t

t−τ(t)

ẋT (s)R1ẋ(s) ds

≤ ξT (t)
(

YI
T + IY

T + τ(t)YR−1
1 Y

T
)

ξ(t),

where

ξ(t) =

[

x(t)
x(t− τ(t))

]

,

Y =

[

Y1
Y2

]

, I =

[

I
−I

]

.

Lemma 3. (Tarbouriech et al., 2003) Given a matrix G,
define the following polyhedral set:

S =
{

x(t) ∈ R
n : |(Ki −Gi)x(t)| ≤ u0i ,

i = 1, . . . ,m,
}

.

If x(t) ∈ S, the relation

ψT (Kx(t))T0

[

ψ(Kx(t)) −Gx(t)
]

≤ 0

is satisfied for any diagonal positive matrix T0.
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An ellipsoid De is characterized as follows:

De =
{

x(t) ∈ R
n : xT (t)Px(t) ≤ β−1

}

.

where β is a positive scalar and P > 0. An estimate of
the domain of attraction Ξ ⊂ Φ is

Ξ =
{

φi(t) ∈ Chm : max ‖φi(t)‖ ≤ δ
}

,

with the initial condition x0 = φi(t),−hm ≤ t ≤ 0, and
the domain of attraction to the origin is

Φ =
{

φi(t) ∈ Chm : lim
t→∞φi(t, x0) = 0

}

.

Problem 1. Based on the analysis and definitions above,
the problem solved in this paper is the following: For the
system (1), provide a method for designing a controller
(4) such that the closed-loop system is robustly stable, and
for a given performance index γ > 0, the H∞ norm of the
closed-loop transfer function G(s) satisfies

‖G(s)‖2∞ =
‖z(t)‖22
‖w(t)‖22

=

∫∞
0
zT (t)z(t) dt

∫∞
0 wT (t)w(t) dt

< γ, (10)

or, equivalently, that the performance index meets (8).

3. Main results

Some results are now derived to ensure robust stabilization
of the neutral system with input limitations.

3.1. Asymptotic stability. First, some results are
derived to ensure asymptotic stabilization of the nominal
system for initial conditions within an estimated domain
of attraction.

Theorem 1. Assume that there exist symmetric positive
definite matrices P , Q1, Q2, R1, R2, W , appropriately
sized matrices X , Y 1, Y 2, Z1, Z2, M , U , a diagonal
matrix S of appropriate dimension and a real scalar α
satisfying the conditions

Ω =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ω11 ∗ ∗ ∗ ∗ ∗
Ω21 Ω22 ∗ ∗ ∗ ∗
Ω31 Ω32 Ω33 ∗ ∗ ∗
Ω41 Ω42 0 Ω44 ∗ ∗
Ω51 Ω52 0 0 Ω55 ∗
Ω61 Ω62 0 Ω64 0 Ω66

Ω71 Ω72 0 0 0 0
Ω81 0 Ω83 0 0 0
Ω91 0 0 Ω94 0 0
Ω101 0 0 0 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Ω77 ∗ ∗ ∗
0 Ω88 ∗ ∗
0 0 Ω99 ∗
0 0 0 Ω1010

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (11)

[

P ∗
Ui −Mi βu20i

]

≥ 0, (12)

β − ω ≤ 0, (13)

δ2
(

λ(X−1PX−T ) + hmλ(X
−1Q1X

−T )

+ hkλ(X
−1Q2X

−T ) +
h2m
2
λ(X−1R1X

−T )

+
h2k
2
λ(X−1R2X

−T ) + hmλ(X
−1WX−T )

]

≤ β−1 − ω−1, (14)

where δ = max ‖φ(θ)‖ and

Ω11 = AXT +XAT + Y 1 + Y
T

1

+ Z1 + Z
T

1 +Q1 +Q2

Ω21 = −X + αAXT + P ,

Ω31 = XAT
d − Y

T

1 + Y 2,

Ω22 = −αX − αXT

+ hmR1 + hkR2 +W,

Ω32 = αXAT
d ,

Ω33 = −Y 2 − Y
T

2 − (1 − d)Q1

Ω41 = UTBT − Z
T

1 + Z2, Ω42 = αUTBT ,

Ω44 = −Z2 − Z
T

2 ,

Ω51 = XCT , Ω52 = αXCT ,

Ω55 = −(1− d)W, Ω61 = −SBT ,

Ω62 = −αSBT , Ω64 =M,

Ω66 = −2ST , Ω71 = BT
w ,

Ω72 = αBT
w , Ω77 = −I,

Ω81 = hmY
T

1 , Ω83 = hmY
T

2

Ω88 = −hmR1, Ω91 = hkZ
T

1 ,

Ω94 = hkZ
T

2 , Ω99 = −hkR2,

Ω101 = CzX
T , Ω1010 = −γI.
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Then the state feedback control law K = UX−T ensures
that

(a) the closed-loop system (6) is asymptotically stable,

(b) the performance index satisfies (10).

Proof. See Appendix A. �

In the following, a new result for robust stabilization
is provided for the class of systems under study. Thus,
based on Theorem 1, some results are now derived to
ensure stabilization subject to the uncertainty (2).

3.2. Robust stability.

Theorem 2. Assume that there exist symmetric positive
definite matrices P , Q1, Q2, R1, R2, W , appropriately
sized matrices X , Y 1, Y 2, Z1, Z2, M , U , a diagonal
matrix S of appropriate dimension, a real scalar α and a
positive scalar ε satisfying the conditions
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ω
′
11 ∗ ∗ ∗ ∗ ∗

Ω
′
21 Ω

′
22 ∗ ∗ ∗ ∗

Ω31 Ω32 Ω33 ∗ ∗ ∗
Ω41 Ω42 0 Ω44 ∗ ∗
Ω51 Ω52 0 0 Ω55 ∗
Ω61 Ω62 0 Ω64 0 Ω66

Ω71 Ω72 0 0 0 0
Ω81 0 Ω83 0 0 0
Ω91 0 0 Ω94 0 0
Ω101 0 0 0 0 0
E0X

T 0 E1X
T E2U 0 −E2S

T

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Ω77 ∗ ∗ ∗ ∗
0 Ω88 ∗ ∗ ∗
0 0 Ω99 ∗ ∗
0 0 0 Ω1010 ∗
0 0 0 0 −εI

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (15)

[

P ∗
Ui −Mi βu20i

]

≥ 0, β − ω ≤ 0, (16)

δ2
(

λ(X−1PX−T ) + hmλ(X
−1Q1X

−T )

+ hkλ(X
−1Q2X

−T ) +
h2m
2
λ(X−1R1X

−T )

+
h2k
2
λ(X−1R2X

−T ) + hmλ(X
−1WX−T )

]

≤ β−1 − ω−1, (17)

where Ω
′
11 = Ω11 + εDDT , Ω

′
21 = Ω21 + εαDDT and

Ω
′
22 = Ω22 + εα2DDT . Then a state feedback control

law K = UX−T exists, such that the closed-loop system
(5) satisfies

(a) robust stability,

(b) the performance index fulfills (10).

Proof. See Appendix B. �

Remark 1. In deriving Theorem 1, slack variables T1,
T2, Y1, Y2, Z1, Z2 are introduced in order to reduce the
conservatism of the asymptotic stability conditions. From
the proof it can be seen that V̇ (t) remains unaffected
by the slack variables T1, T2, Y1, Y2, Z1, Z2, so these
matrices provide a more flexible LMI condition in (11)
and (15), reducing the conservatism of Theorem 1, and
consequently that of Theorem 2. This advantage will be
appreciated in the numerical examples at the end of this
paper.

Remark 2. For given α, the inequalities (11) and (15)
are linear and the problem can easily be solved using the
LMI-toolbox of MATLAB. To find an optimal value of α,
a numerical optimization algorithm can be employed to
reduce the conservatism.

Remark 3. The conditions (14) and (17) are nonlinear,
so they cannot be directly tested using the usual numerical
tools (such as the LMI-toolbox of MATLAB). In Section 4
we show that it is it possible to transform the nonlinear
conditions into matrix inequalities, introducing relaxation
conditions.

4. Optimization problems

The proposed conditions in Theorems 1 and 2 are in LMI
form, so that they can be easily considered in convex
optimization problems. At the end of the paper, three
problems of interest are solved to illustrate these results.

4.1. Maximization of disturbance tolerance. The
objective is to maximize the L2-norm bound on the
disturbance for which it can be ensured that the system
trajectories remain bounded. Assuming that the initial
condition is zero, this can be accomplished by the
following convex optimization problem:

Minimize β subject to (11)–(13), (15)–(16). (18)
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4.2. Maximization of disturbance attenuation. For a
non-null positive bound on the L2-norm of the admissible
disturbances (given by β−1 = ω−1), the objective is
to minimize the upper bound of the L2-gain of w(t) on
z(t). Assuming that the initial condition is zero, this can
be obtained from the solution of the following convex
optimization problem:

Minimize γ subject to (11)–(13), (15)–(16). (19)

4.3. Maximization of the region of admissible ini-
tial conditions. Considering the disturbance-free case
(w(t) = 0), this stage shows how the theoretical
conditions derived so far can be cast as LMI-based
optimization problems, to determine a suitable gain K
and the associated domain of attraction (so that the system
trajectories starting from any initial functions φ(θ) in De

will remain within De for all t > 0).
The idea is to develop an estimate of the largest

possible domain of initial conditions satisfying � ≤
β−1 for which it can be ensured that the closed-loop
system trajectories remain bounded. Then, we introduce

new auxiliary matrix variables Π
−1

= ˜Π with Π =
P,Q1, Q2, R1, R2,W and X−1 = ˜X , and impose the
following conditions:

[

σ1I ˜X
˜XT

˜P

]

≥ 0,

[

σ2I ˜X
˜XT

˜Q1

]

≥ 0,

[

σ3I ˜X
˜XT

˜Q2

]

≥ 0,

[

σ4I ˜X
˜XT

˜R1

]

≥ 0,

[

σ5I ˜X
˜XT

˜R2

]

≥ 0,

[

σ6I ˜X
˜XT

˜W

]

≥ 0. (20)

Thus, the condition (14) implies that

δ2
[

σ1 + hmσ2 + hkσ3 +
h2m
2
σ4

+
h2k
2
σ5 + hmσ6

]

≤ β−1. (21)

Therefore, a feasibility problem is constructed, based
on the ideas presented by Lee et al. (2004), as follows:

min tr
(

P ˜P +Q1
˜Q1 +Q2

˜Q2 +R1
˜R1 +R2

˜R2

+W˜W + (X +XT )( ˜X + ˜XT )
)

subject to (11)–(13), (15)–(16), (20), (21),
[

Π ∗
I ˜Π

]

≥ 0,

[

X +XT ∗
I ˜X + ˜XT

]

≥ 0.

(22)

The new LMI problem can be solved by using
Algorithm 1.

Algorithm 1. Cone complementarity.
Step 1. Given hm, choose a sufficiently small δ and
set

(

Π, X, ˜Π, ˜X, σ1,...,6
)

0
=

(

Π, X, ˜Π, ˜X, σ1,...,6
)

that
satisfies the constrained minimization (22). Then, fix Δ
where δ = δ +Δ.

Step 2. Solve the following LMI minimization problem
in the matrix variables Π and ˜Π:

min tr
(

P ˜P0 +Q1
˜Q10 +Q2

˜Q20 +R1
˜R10

+R2
˜R20 +W˜W0 + (X +XT )( ˜X0 + ˜XT

0 )

+P 0
˜P +Q10

˜Q1 +Q20
˜Q2

+R10
˜R1 +R20

˜R2 +W 0
˜W

+(X0 +XT
0 )( ˜X + ˜XT )

)

subject to the LMIs in (22).

Step 3. Substitute the new matrix variables into (22). If
the result is feasible, then set δ = δ+Δ and repeat Step 2;
otherwise, δ = δ −Δ is the desired estimate: Stop.

5. Illustrative examples

This section illustrates the proposed methodology: the
first two examples do not include uncertainty, in order
to compare the results with those in the literature (Chen
et al., 2015; Liu, 2011; Manitius, 1984), whereas the last
one includes the uncertainty to show how the proposed
solution can easily include uncertainty.

Example 1. (Chen et al., 2015) Consider a neutral
time-delay system with an input limitation at ±15,
described as follows:

ẋ(t)− Cẋ(t− τ(t)) = Ax(t) +Adx(t− τ(t))

+Bsat(u(t)),

where

A =

[

1 1.5
0.3 −2

]

, Ad =

[

0 −1
0 0

]

,

B =

[

10
1

]

, C =

[

c 0
0 c

]

, hm = 1.

Applying the stability results presented in Theorem 1
and the cone complementarity algorithm, taking β = 1,
hk = 0.1, the corresponding state-feedback gain obtained
for the neutral system when c = 0.2 and d = 0.1 is given
byK =

[− 0.2492 − 0.0175
]

. For a constant time-delay
(i.e., when c = d = 0), K =

[ − 0.2426 − 0.0829
]

is obtained: for these calculations the tuning parameters
were fixed to be α = 0.3 and α = 0.5, respectively.

Table 1 provides a comparison with previous
approaches: it is clear that the obtained stability radius
δ is significantly larger than those obtained by Da Silva
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et al. (2011), Chen et al. (2015), El Haoussi et al. (2013)
or Dey et al. (2014). To see the effect of varying α, the
gains are listed in Table 2 for the neutral system.

Table 1. Comparison of stability radius δ for Example 1.
Approach δ(c = 0.2) δ(c = 0)

Da Silva et al., 2011 70.74 83.55
Chen et al., 2015 76.23 84.61

El Haoussi et al., 2013 80.21 96.16
Dey et al., 2014 − 106.29

Theorem 1 97.0 115.0

Table 2. Gain obtained for different values of α for Example 1.
Tuning parameter K(c = 0.2, δ = 97)

α = 0.1 Infeasible
α = 0.2

[− 0.2557 − 0.0472
]

α = 0.3
[− 0.2492 − 0.0175

]

α = 0.4 Infeasible
...

...
α = 0.9 Infeasible

To see graphically the improvements of the proposed
approach, Fig. 1 presents the domains of attraction of
the controllers obtained with the different approaches
(Table 1) for both the neutral system (c = 0.2) and the
time-delay system (c = 0). �

Example 2. To show the applicability of the technique
to realistic problems, we now consider the control of the
Mach number in a wind tunnel. An approximated nominal
model of this system is the following (which takes into
account practical limitations in the range of the guide vane
angle actuator (El Fezazi et al., 2017; Manitius, 1984)):

ẋ(t) =

⎡

⎣

−a 0 0
0 0 1
0 −w2 −2ξw

⎤

⎦x(t)

+

⎡

⎣

0 ka 0
0 0 0
0 0 0

⎤

⎦x(t− τ(t))

+

⎡

⎣

0
0
w2

⎤

⎦ sat(u(t)).

To draw a comparison with previous results, the
numerical matrices given by Manitius (1984) and Liu
(2011) are used, with u0 = 1, d = 0 and hk = 1.
Applying Theorem 1 gives the following gain matrix,
when α = 0.7 and β = 1:

K =
[

0.0442 0.0866 0.0122
]

,

which stabilizes the system for any delay smaller than
hm = 3; the stability radius for the set of acceptable
initial conditions is δ = 6. For comparison with the
results of Manitius (1984) and Liu (2011), the admissible
upper bounds of the delay are summarized in Table 3: the
proposed method produces controllers that ensure stability
for a significantly larger delay than those previously
published in the literature. �

Example 3. We retake the Mach number control problem
presented in Example 2: as in reality the linear model used
in Example 2 is just an approximation, we now consider
uncertainties and disturbances in the model, to make the
design more realistic. That is, the following uncertain
model is now used:

ẋ(t) = ̂Ax(t) + ̂Adx(t− τ(t)) + ̂Bsat(u(t))

+Bww(t)

z(t) = Czx(t),

with

Bw =

⎡

⎣

0
0
10

⎤

⎦ , Cz =

[

1 0 0
0 1 0

]

,

F = sin(t), D = I,

E0 = 0.02A, E1 = 0.02Ad, E2 = 0.02B.

Taking u0 = 1, d = 0, hk = 1, α = 0.1, and ε =
0.1, the algorithm proposed in (18), based on Theorem 2,
successfully finds the following feedback stabilizing gain:

K =
[− 0.0008 2.6169 0.4760

]× 10−3,

with the optimal value and the upper bound to the delay
being β = 10−4 and hm = 8, respectively.

Applying the algorithm proposed in (19) and based
on Theorem 2, the prescribed scalar is γ = 0.2 where
u0 = 1, d = 0, hk = 1, β = 1, α = 0.1, and ε = 0.1. For
hm = 5, the feedback stabilizing gain is given by

K =
[− 10.0289 4.5958 0.2255

]× 10−3.

Some simulation results are now presented in
Figs. 2–3 for this example, with x(0) = [−5 5 − 5]T

and the following disturbance added to the system:

w(t) =

{

10, 0 ≤ t ≤ 1,

0, t ≥ 1.

Table 3. Comparison of maximum allowable delay hm for Ex-
ample 2.

Method Manitius, 1984 Liu, 2011 This paper

hm 0.33 0.97 3.00
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Fig. 1. Comparison of the domains of attraction obtained with the methods presented in Table 1 for the neutral system (a) and the
time-delay system (b).

It can be seen that the controller performs
adequately: even though the control input is initially
saturated, the states are driven to the origin and the
disturbance is correctly compensated. In fact, very good
transient responses are obtained. �

6. Conclusions

A methodology for robust stabilization of uncertain
neutral time-delay systems with saturating inputs has
been presented, where the controller uses sampled
measurements. Conditions are provided as LMIs, which
depend on the largest expected delay, that guarantee
the stability of the closed-loop system when the initial
states are taken within a region of attraction that is
simultaneously estimated. The proposed conditions have
been illustrated by numerical examples, which showed the
feasibility of the proposed approach, and the fact that it
is less conservative than those previously proposed in the
literature. The feedback design method presented here
has a wide range of applicability, as the class of systems
investigated appears in many process control applications:
this has been illustrated by application to the feedback
control of the Mach number in a wind tunnel.

The proposed approach open new lines of research:
in the near future, we aim to extend the proposed
methodology to related problems such as anti-windup
synthesis for uncertain systems, observer-based controller
design for uncertain neutral systems, limitations in the
increment or rate of control signals, etc.
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Appendix A

Computing the time derivative of the functional (9) along
the trajectory of the system (7) gives

J(t) ≤ 2xT (t)P ẋ(t) + xT (t)(Q1 +Q2)x(t)

+ ẋT (t)(hmR1 + hkR2 +W )ẋ(t)

− (1− d)xT (t− τ(t))Q1x(t− τ(t))

− (1− d)ẋT (t− τ(t))Wẋ(t− τ(t))

−
∫ t

t−τ(t)

ẋT (s)R1ẋ(s) ds+
1

γ
zT (t)z(t)

−
∫ t

t−dk(t)

ẋT (s)R2ẋ(s) ds− wT (t)w(t).

Using the free weighting matrix approach, for
appropriately dimensioned matrices T1 and T2, we have

2
[

xT (t)T1 + ẋT (t)T2

][

− ẋ(t) + Cẋ(t− τ(t))

+Ax(t) +Adx(t− τ(t)) +BKx(t− dk(t))

−Bψ(Kx(t− dk(t))) +Bww(t)
]

= 0. (A1)

Then, applying Lemmas 2 and 3, and taking account
of (A1), we get

J(t) ≤ ηT (t)Ψη(t), (A2)

where

Ψ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ψ11 ∗ ∗ ∗ ∗ ∗ ∗
Ψ21 Ψ22 ∗ ∗ ∗ ∗ ∗
Ψ31 Ψ32 Ψ33 ∗ ∗ ∗ ∗
Ψ41 Ψ42 0 Ψ44 ∗ ∗ ∗
Ψ51 Ψ52 0 0 Ψ55 ∗ ∗
Ψ61 Ψ62 0 Ψ64 0 Ψ66 ∗
Ψ71 Ψ72 0 0 0 0 Ψ77

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

η(t) =
[

xT (t) ẋT (t) xT (t− τ(t)) xT (t− dk(t))

ẋT (t− τ(t)) ψT (Kx(t− dk(t))) wT (t)
]T

,
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and

Ψ11 = T1A+ATT T
1 + Y1 + Y T

1

+ Z1 + ZT
1 +Q1 +Q2,

+ hmY1R
−1
1 Y T

1 + hkZ1R
−1
2 ZT

1 ,

+
1

γ
CT

z Cz ,

Ψ21 = −T T
1 + T2A+ P,

Ψ32 = AT
d T

T
2 ,

Ψ77 = −I,
Ψ22 = −T2 − T T

2 + hmR1 + hkR2 +W,

Ψ31 = AT
d T

T
1 − Y T

1 + Y2 + hmY2R
−1
1 Y T

1 ,

Ψ33 = −Y2 − Y T
2 − (1− d)Q1 + hmY2R

−1
1 Y T

2 ,

Ψ41 = KTBTT T
1 − ZT

1 + Z2 + hkZ2R
−1
2 ZT

1 ,

Ψ42 = KTBTT T
2 ,

Ψ44 = −Z2 − ZT
2 + hkZ2R

−1
2 ZT

2 ,

Ψ51 = CTT T
1 ,

Ψ52 = CTT T
2 ,

Ψ55 = −(1− d)W,

Ψ61 = −BTT T
1 ,

Ψ62 = −BTT T
2 ,

Ψ64 = T0G,

Ψ66 = −2T0,

Ψ71 = BT
wT

T
1 ,

Ψ72 = BT
wT

T
2 .

It is clear that, if Ψ < 0, then

J(t) = V̇ (t) +
1

γ
zT (t)z(t)− wT (t)w(t) < 0. (A3)

From Ψ, it is easy to see that T2 is
nonsingular and consequently T1 is inversible.
Then, setting T2 = αT1, applying the Schur
complement to (A2), premultiplying it by
diag{T−1

1 , T−1
1 , T−1

1 , T−1
1 , T−1

1 , T−1
0 , I, T−1

1 , T−1
1 , I}

and postmultiplying by its transpose, and then introducing
the change of variables X = T−1

1 , U = KXT ,
M = GXT , S = T−1

0 , and Π = XΠXT , where
Π = P,Q1, Q2, R1, R2,W, Y1, Y2, Z1, Z2, give (11).

By virtue of (11), when w(t) = 0, (A3) implies
that V̇ (t) < 0, so it follows that the system (7) is
asymptotically stable. Now, when w(t) 
= 0, integrating

both the sides of (A3) from 0 to T , we have

V (T )− V (0) +

∫ T

0

(1

γ
zT (t)z(t)− wT (t)w(t)

]

dt < 0.

Let T → ∞. Since the system is asymptotically
stable we get V (T ) = 0, and using the zero initial
condition, we can conclude that (8) is satisfied.

On the other hand, the satisfaction of (12) guarantees
that ∀x(t) ∈ De, x(t) ∈ S. In fact, De ⊂ S is met by the
following conditions:

[

P ∗
Ki −Gi βu20i

]

≥ 0. (A4)

Pre- and postmultiplying (A4) respectively by Δ =
diag{X, I} and its transpose will result in the LMI (12).

Moreover, the satisfaction of (13) and (14) can be
proven as follows: from the L–K functional defined in (9),
we have

V (0) ≤ xT (0)Px(0) +

∫ 0

−hm

xT (s)Q1x(s) ds

+

∫ 0

−hk

xT (s)Q2x(s) ds

+

∫ 0

−hm

∫ 0

θ

ẋT (s)R1ẋ(s) ds dθ

+

∫ 0

−hk

∫ 0

θ

ẋT (s)R2ẋ(s) ds dθ

+

∫ 0

−hm

ẋT (s)Wẋ(s) ds.

Then we obtain

V (0)

≤
(

λ(P ) + hmλ(Q1) + hkλ(Q2)
]

‖φ(θ)‖2

+
(h2m

2
λ(R1) +

h2k
2
λ(R2) + hmλ(W )

]

‖φ̇(θ)‖2

= �.

Therefore, we have xT (t)Px(t) ≤ V (t) ≤ V (0) +
‖w(t)‖22 ≤ � + ω−1 ≤ β−1; that is, for all t ≥ 0, the
trajectories of the system do not leave the set De for any
initial functions φ(θ) in De, which ensures that x(t) ∈ S.

Appendix B

ReplaceA, Ad, andB byA+DF (t)E0, Ad+DF (t)E1,
and B + DF (t)E2, respectively. We find that Eqn. (11)
is equivalent to Ω+ 2ΥF (t)Φ < 0, where

Υ =
[

DT αDT 0 0 0 0 0 0 0 0
]T
,

Φ =
[

E0X
T 0 E1X

T E2U 0

−E2S
T 0 0 0 0

]

.
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According to Lemma 1 and by the Schur
complement, we obtain the LMI (15). This completes the
proof.
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