
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 2, 269–281
DOI: 10.2478/amcs-2018-0019

ON–THE–FLY DIAGNOSABILITY ANALYSIS OF BOUNDED AND UNBOUNDED
LABELED PETRI NETS USING VERIFIER NETS

BEN LI a,∗, MANEL KHLIF-BOUASSIDA a, ARMAND TOGUYÉNI a

aCRIStAL, UMR 9189
Centrale Lille, 59650 Villeneuve d’Ascq, France

e-mail: {ben.li,manel.khlif-bouassida,armand.toguyeni}@centralelille.fr

This paper considers the problem of diagnosability analysis of discrete event systems modeled by labeled Petri nets (LPNs).
We assume that the LPN can be bounded or unbounded with no deadlock after firing any fault transition. Our approach is
novel and presents the on-the-fly diagnosability analysis using verifier nets. For a given LPN model, the verifier net and its
reachability graph (for a bounded LPN) or coverability graph (for an unbounded LPN) are built on-the-fly and in parallel
for diagnosability analysis. As soon as a diagnosability decision is established, the construction is stopped. This approach
achieves a compromise between computation limitations due to efficiency and combinatorial explosion and it is useful to
implement an engineering approach to the diagnosability analysis of complex systems.

Keywords: fault diagnosis, discrete event systems, labeled Petri nets, on-the-fly diagnosability analysis, verifier nets.

1. Introduction

This paper addresses the fault diagnosis problem of
discrete event systems (DESs). Two main issues of fault
diagnosis of DES models include (i) on-line diagnosis of
the system (Sampath et al., 1995; Lefebvre and Delherm,
2007; Basile et al., 2009; Cabral et al., 2015) and (ii)
off-line diagnosability analysis of the system (Sampath
et al., 1995; Basile et al., 2012; Cabasino et al., 2012;
2014; Liu et al., 2014). The on-line diagnosis is to deduce
the occurrence of faults (represented by unobservable
events) and their types by using observable events, while
the system is running. The diagnosability represents the
ability to detect a fault in a finite delay after its occurrence,
based on observations. The diagnosability is checked
“off-line” (at the design stage of the system) and must
be ensured before implementing the system. The on-line
diagnosis is executable if and only if all the faults are
“diagnosable”.

Sampath et al. (1995) provided a formal definition of
diagnosability in the framework of automata and formal
languages. The diagnoser is introduced to perform both
diagnosability analysis and on-line diagnosis. For a given
automaton, an intermediary model (i.e., generator) is built,
which reduces all the unobservable transitions by using

∗Corresponding author

the ε-reduction technique. Afterwards, the diagnoser
is built according to the idea of state estimation. The
system diagnosability is related to the existence of an
indeterminate cycle in the diagnoser. The verification of
the existence of an indeterminate cycle contains two steps:
(i) if there exists an F-uncertain cycle in the diagnoser and
each of its macro-states (states of the diagnoser) contains
at least one normal state and one faulty state of the
system; (ii) if there exist one normal cycle and one faulty
cycle in the intermediary model, which correspond to the
F-uncertain cycle in diagnoser. The system is diagnosable
if there is no indeterminate cycle. The diagnoser approach
can be applied for the diagnosability analysis of Petri nets
(PNs) by working on the reachability graph (RG).

One of the problems of the diagnoser approach by
Sampath et al. (1995) is the combinatorial explosion
problem. The construction of an intermediary model
involves memory costs. The diagnoser is built by
enumerating all the possible states. In particular, for a PN,
the RG is built at first by enumerating all the markings.
In order to overcome this problem, some research efforts
have been made. In the work of Cabasino et al. (2014),
the modified basis reachability graph (MBRG) and basis
reachability diagnoser (BRD) were developed. The
authors provided a compact manner for the construction
of the state space for diagnosability analysis of bounded

{ben.li, manel.khlif-bouassida, armand.toguyeni}@centralelille.fr

270 B. Li et al.

labeled Petri nets (LPNs). Liu et al. (2014) proposed
an on-the-fly diagnosability analysis technique to analyze
the diagnosability of bounded LPNs. Only a part of the
FM-graph (fault marking graph, which plays the role of
the RG) and the FM-set tree (fault marking set tree, which
plays the role of the diagnoser) are built on the fly and
in parallel with stop conditions, instead of building the
whole state space and the whole diagnoser a priori. The
approach was improved by using minimal explanations
and T-invariants by Li et al. (2015b; 2015a). In the work
of Boussif et al. (2015), a new variant of the diagnoser
was proposed. The variant diagnoser was built without
building any intermediate model. Moreover, Boussif et al.
(2015) proved that if there exists an F-uncertain cycle in
the diagnoser, the normal cycle always exists. Therefore,
it is only necessary to verify the existence of a faulty
cycle and the authors verify it by using the model of the
given automaton. However, it is worth noticing that the
complexity of these approaches is the same as that of the
diagnoser approach by Sampath et al. (1995).

Another problem of the diagnoser approach is
its computational complexity. In the worst case,
the complexity of building a diagnoser is exponential
with respect to the state space of the initial model.
Some approaches have been proposed to reduce the
computational complexity. In the works of Jiang et al.
(2001) as well as Yoo and Lafortune (2002), a twin-plant
and a verifier was created. The idea is to build a parallel
composition of the given automaton and a copy of itself.
The verification of diagnosability is simplified compared
with the diagnoser approach. It is only necessary to
verify, in the verifier or the twin-plant, the existence
of an F-confused cycle, which is composed of the
nodes that contains both normal and faulty states. The
complexity of these approaches is polynomial. Moreira
et al. (2011) improved the verifier approach by building
a parallel composition of the normal and faulty parts
of a given automaton modeling the complete behavior
of the system. The size of the verifier is reduced.
In terms of the PN-based approach, in the work of
Cabasino et al. (2012), a structure called the verifier
net (VN) was developed to check the diagnosability for
both bounded and unbounded PNs. The K-diagnosablity
of unbounded PNs is analyzed as well. A necessary
and sufficient condition for diagnosability was proposed,
which is based on searching for the existence of a
repetitive sequence in the reachability graph (RG) (resp.
the coverability graph (CG)) of bounded PNs (resp. un-
bounded PNs). The complexity of analyzing a bounded
LPN is polynomial, but that of analyzing an unbounded
LPN is still an open issue. However, the problem of
these polynomial-time approaches is the combinatorial
explosion. Since these approaches build the parallel
composition of two models having the same size of the
given model, the model constructed for diagnosability

analysis (verifier, twin-plant, VN and its RG/CG) is too
large to analyze a complex system.

In this paper, we propose a VN-based approach,
because of the advantages of the VN approach (Cabasino
et al., 2012): (i) the capacity to analyze both bounded
and unbounded LPN; (ii) the simplicity of verifying the
necessary and sufficient condition for diagnosability; (iii)
the polynomial complexity of the diagnosability analysis
of bounded LPNs. We improve the VN approach to
reduce the combinatorial explosion problem in certain
cases. Moreover, we aim at proposing a new approach
for practical and industrial use.

In practice, there is no guarantee that the
diagnosability property is initially fulfilled, because
the system is instrumented from the perspective of the
normal control. Therefore, this shows the needs for the
development of engineering methods that allow iterating
diagnosability analysis, followed by the modification of
the system model, until it becomes diagnosable.

We suppose that the LPN system is initially
nondiagnosable. Hence, we need to develop an
engineering approach as mentioned above. Most of
the approaches to diagnosability analysis proposed in
literature are based on an a-priori construction of the
state space. However, if the model is changed in order
to make it diagnosable, we must rebuild the state space,
which is very large for a complex system. To overcome
this problem, we choose to use a standard technique in
model checking called “on-the-fly analysis.” The state
space is constructed on the fly. As soon as a stop
condition is found, the construction and the analysis are
stopped immediately. This technique increases slightly
the computational complexity, but it reduces the memory
cost.

In this study, the idea of on-the-fly analysis is
applied. A new approach is developed in order to reduce
the combinatorial explosion and to save the memory
cost, while analyzing the diagnosability of bounded
and unbounded LPNs. This approach is based on
the depth-first search. The VN and its RG/CG are
built on-the-fly and in parallel with stop conditions.
The computational complexity of this approach is
analyzed. This approach achieves a compromise between
computational efficiency and limitations of combinatorial
explosion.

This paper is an extended version of our earlier work
(Li et al., 2016). It is structured as follows. In Section 2,
the idea of the on-the-fly diagnosability analysis is
explained. In Section 3, some preliminary notions used
in this paper are given. Section 4 recalls the VN
approach. The on-the-fly diagnosability analysis using
VNs is proposed in Section 5. In Section 6, a comparative
analysis of our approach and the VN approach is given.
Finally, conclusions and some perspectives of this work
are given in Section 7.

On-the-fly diagnosability analysis of bounded and unbounded labeled Petri nets . . . 271

2. On-the-fly diagnosability analysis

In practice, the initial design of an LPN model is
based on the requirement of supervisory control without
considering the diagnosability property. Once the LPN
model is built, the diagnosability is checked by using
the proposed diagnosability analysis approaches. If the
system is not diagnosable, the DES model needs to
be modified and its diagnosability is checked again.
The above process is iterated until the LPN becomes
diagnosable.

The process of most diagnosability analysis
approaches in literature is shown in Fig. 1. For a given
LPN, the diagnosability analysis is transferred to the study
of its reachability graph (RG) or some kinds of modified
RG (e.g., MBRG (Cabasino et al., 2014)). Therefore, the
whole RG is necessarily built. Then, a diagnoser is built
based on the RG for the diagnosability analysis. The idea
of the VN approach by Cabasino et al. (2012) is similar,
and the reachability graph (for a bounded LPN) or the
coverability graph (for an unbounded LPN) of the VN
is the model that is analyzed to make the diagnosability
decision.

Start

Input LPN model

Construction of state space

Construction of diagnoser

Diagnosable?

Finish

Modification
of model

No

Yes

Fig. 1. Process of most approaches to diagnosability analysis.

If the LPN model is nondiagnosable, the model is
modified and then its VN and its RG/CG of the modified
model are built once again. This “serial” process is not
favorable for industrial use, because the state space of the
monolithic model is rebuilt each time when the system is
modified. Hence, for a large-scale LPN, these approaches
based on this process are not efficient for iterating the
diagnosability analysis and there exists a combinatorial
explosion problem.

To overcome the combinatorial explosion problem
while iterating the diagnosability analysis, the process
of the proposed technique is different, which is shown

Start

Input LPN model

Construction of
state space

Construction of
diagnoser

Diagnosable?

Finish

Modification
of model

No

On-the-fly analysis

Yes

Fig. 2. Process of on-the-fly diagnosability analysis

in Fig. 2. The on-the-fly diagnosability analysis does
not build entirely the state space a priori, nor the model
for diagnosis: they are built on the fly and in parallel
with stop conditions, which stop building some of their
branches. Along with their on-the-fly construction, the
diagnosability and is analyzed. When the condition of
undiagnosability is satisfied, the result that the LPN model
is not diagnosable is immediately given. This technique
shows that a part of the state space could suffice for
diagnosability analysis, particularly when the system is
nondiagnosable, in order to reduce the memory cost and
solve the combinatorial explosion problem. In this paper,
the VN approach is improved by applying the on-the-fly
diagnosability analysis. The VN and its RG/CG are built
on-the-fly and in parallel. The construction is stopped,
when the condition of undiagnosability is satisfied. This
approach is favorable for iterating the diagnosability
analysis for industrial use.

3. Preliminaries

3.1. Labeled Petri nets. Petri nets are a mathematical
and graphical modeling notation for DESs, which are
presented by the quadruple N = (P, T, Pre, Post),
where P is a finite set of places; T is a finite set of
transitions; Pre and Post are the pre- and post-incidence
matrices. A marking is a vector M ∈ N

|P |, which assigns
a nonnegative integer to each place. The markings of a
Petri net represent different states and dynamic behaviors
of the system. M(p) denotes the number of tokens in
place p and Mo is the initial marking of N . (N,M0) is a
marked PN with initial markingM0. The incidence matrix
is C = Post− Pre.

A transition t is enabled at M iff M ≥ Pre(·, t),

272 B. Li et al.

denoted by M [t >. M [σ > denotes that the sequence
of transitions σ ∈ T ∗ is enabled at M , where T ∗ is the
Kleene closure of the set T . Here λ denotes an empty
sequence of transitions, i.e., ∀σ ∈ T ∗, σλ = σ.

For a given sequence σ ∈ T ∗, π : T ∗ → N
|T |

is the function that assigns a vector −→y ∈ N
|T | to σ.

Furthermore, −→y = π(σ) is called the firing vector of
σ, and −→y (t) = k means that transition t is contained
k times in σ. The reached marking M ′ is computed by
M ′ = M +C ·−→y . A marking M is reachable in (N,M0)
iff a sequence σ exists such that M0 [σ > M . The
set of all the reachable markings from M0 is denoted by
R(N,M0) and called the reachability set of (N,M0).

A PN (N,M0) is said to be bounded if there exists a
positive number m such that ∀M ∈ R(N,M0), M(p) ≤
m. The reachability space of a bounded PN is finite and
it is represented by a graph called the reachability graph
(RG). If the number of tokens in one or more places can be
arbitrarily large, the PN is unbounded and the coverability
graph (CG) is used to represent the infinite state space.

Definition 1. Given a PN (N,M0), a transition t is

• dead: if there does not exist a reachable marking
M ∈ R(N,M0) that enables t;

• semilive: if there exists at least one reachable
marking M ∈ R(N,M0) that enables t;

• live: if for each reachable marking M ∈ R(N,M0),
t is semilive in (N,M);

A PN (N,M0) is live if each transition t ∈ T is
live. In other words, a PN is live if, from any marking
in R(N,M0), it is possible to fire any transition by
progressing through some further firing sequences. A
deadlock occurs at marking M if no transition can be
enabled at M .

Definition 2. A sequence σ ∈ T ∗ is called repetitive if
there exists a markingM1 ∈ R(N,M0) such that M1[σ >
M2[σ > · · · , i.e., if it can fire infinite times starting from
M1. A repetitive sequence is called

(i) stationary: if Mi+1 = Mi for all i = 1, 2, . . . ;

(ii) increasing: if Mi+1 � Mi for all i = 1, 2, If
there exists an increasing repetitive sequence, the PN
system is unbounded.
A labeled Petri net (LPN), an extension of the PN,

is the quadruple NL = (N,Mo,Σ,L), where (N,Mo) is
a marked PN. Σ is a finite set of events, Σ = Σo � {ε}
(“�” is used to emphasize that the two sets are disjoint).
Σo is the set of observable events that are associated to
observable transitions and the label of all unobservable
transitions is ε. L : T → Σ is the transition labeling
function which assigns a label to every transition. The
same label could be shared by different transitions. L can
be extended to L : T ∗ → Σ∗.

Definition 3. Given a Petri net N = (P, T, Pre, Post).
T ′ ⊆ T is a subset of the transitions in T . The
T ′-induced subnet of N is defined as the new Petri net
N ′ = (P, T ′, P re′, Post′), where Pre′, Post′ are the
restrictions of Pre, Post. In this case, we write N ′ ≺T ′

N . The net N ′ can be considered as being obtained by
removing all transitions in T \ T ′ and all related arcs.

3.2. Diagnosability. In event-based diagnosis of DESs
using LPN models, the set of transitions is partitioned into
two disjoint sets, T = To � Tu, where To is the set of
observable transitions, and Tu is the set of unobservable
transitions. The label of an observable transition can
be observed when it fires. The fault transitions are
unobservable. The set of unobservable transitions is
partitioned into two disjoint sets, Tu = Tf � Treg, where
Tf includes all fault transitions, while Treg = Tu\Tf is
the set of regular unobservable transitions. The set Tf can
be further partitioned into k different subsets T i

f , where
i = 1, . . . , k, which represents different classes of faulty
transitions. |T | is the size of T which indicates the number
of transitions in T .

p1

p2 p3

p4 p5

f2, εε1, ε

t3, at4, b t5, a t6, b

Fig. 3. Example of the LPN.

Example 1. Consider the example of the LPN in Fig. 1,
where To = {t3, t4, t5, t6}, Treg = {ε1} and Tf = {f2}.
a and b are observable events such that L(t3) = L(t5) =
a and L(t4) = L(t6) = b. The label of all unobservable
transitions is ε. This LPN is unbounded. At the initial
marking [1 0 0 0 0]τ , if the transition ε1 is fired, then
the transition t3 can be fired infinite times. Therefore, the
number of tokens in place p4 can be arbitrarily large. �

The definition of the diagnosability of a system
modeled by an LPN is given as follows:

Definition 4. (Diagnosability) Given a live LPN NL =
(N,Mo,Σ,L), NL is diagnosable with respect to a fault
class T i

f if there are not two sequences σ1 and σ2 which
satisfy the following conditions: (i) ∀tf ∈ T i

f , tf /∈ σ1;
(ii) ∃tf ∈ T i

f such that tf ∈ σ2 and σ2 can be arbitrarily
long after the occurrence of tf ; (iii) L(σ1) = L(σ2).

On-the-fly diagnosability analysis of bounded and unbounded labeled Petri nets . . . 273

In other terms, in a diagnosable LPN, two sequences
of transitions with the same observation cannot be found,
such that one contains a fault transition and can be
arbitrarily long after its occurrence; the other does not
contain a fault transition.

The following assumptions are given for all the
approaches mentioned in this paper: (i) the LPN does not
deadlock after firing any fault transition; (ii) no cycle of
unobservable transitions exists; (iii) the same label may
be associated with different transitions; (iv) the structure
of LPN and the initial marking M0 are well known.

4. Verifier net

In the work of Cabasino et al. (2012), the concept of a
verifier net (VN) is developed for diagnosability analysis
of bounded and unbounded PNs. In this section, the VN
approach is recalled. Without loss of generality, in the
current paper, the diagnosis issue is discussed for a single
class of faults. For simplicity, the superscript i in T i

f

will be omitted. The VN approach cannot analyze the
diagnosability of an LPN system with several fault classes
at the same time. For each fault class, one VN and its
RG/CG need to be built.

Given an LPN system, NL = (N,Mo,Σ,L), where
N = (P, T, Pre, Post). Let N ′ = (P ′, T ′, P re′, Post′)
be the T ′-induced subnet, where T ′ = T \Tf = To∪Treg.
P and P ′ are used to distinguish among places of N and
N ′, and they are disjoint even if they represent the same
places. Analogously, T and T ′ are used to distinguish
among transitions of N and N ′, and they are disjoint even
if they represent the same transitions. The LPN system
associated with N ′ is called T ′−induced sub−LPN and
denoted by N ′

L = (N ′,M ′
o,Σ

′,L′), where M ′
o = Mo,

Σ′ = Σ and the labeling function L′ is defined by L but
restricted to T ′.

p′1

p′2 p′3

p′4 p′5

ε1, ε

t′3, at′4, b t′5, a t′6, b

Fig. 4. T ′-induced sub-LPN of the LPN in Fig. 3.

Example 2. For the LPN system NL in Fig. 3, its
T ′-induced sub-LPN N ′

L is depicted in Fig. 4. N ′
L is

obtained by removing the fault transition f2, ε and the
corresponding arcs. �

The VN is an LPN system constructed by composing
N ′

L with NL with the synchronization on the observable

transition labels. The VN is denoted by ˜NL =

(˜N, ˜Mo, ˜Σo, ˜L). ˜N = (˜P , ˜T , ˜Pre, ˜Post), where ˜P =

P ′∪P , ˜T = ˜To∪(T ′
reg×{λ})∪({λ}×Treg)∪({λ}×Tf)

and ˜To = {(t′, t) |t′ ∈ T ′
o, t ∈ To,L′(t′) = L(t)}.

Furthermore,

˜M0 =

[

M ′
0

M0

]

,

˜Σo = {(Σ′
o×Σo)∪{ε}} and ˜L : ˜T → ˜Σo. The incidence

matrix of VN is ˜C = ˜Post− ˜Pre.

Example 3. For the LPN system NL displayed
in Fig. 3, the VN is depicted in Fig. 5. ˜To =
{(t′3, t3), (t′3, t5), (t′5, t3), (t′5, t5), (t′4, t4), (t′6, t4),
(t′4, t6), (t

′
6, t6)}, T ′

reg ×{λ} = {(ε′1, λ)}, {λ}× Treg =
{(λ, ε1)} and {λ} × Tf = {(λ, f2)}. �

To analyze the diagnosability of an LPN, the VN is
constructed. Afterwards, its RG (for a bounded LPN) or
CG (for an unbounded LPN) is built. A sufficient and
necessary condition for diagnosability is proposed. Let
F (V N) denote the set of faulty nodes in the RG/CG of
the VN. A node belongs to F (V N), if it can be reached
by firing a sequence that contains a fault transition.

Theorem 1. (Cabasino et al., 2012) An LPN system
NL = (N,Mo,Σ,L) is diagnosable iff there does not ex-
ist any cycle associated with a firable repetitive sequence
in the VN that is reachable starting from any node in the
set F (V N).

For a bounded LPN, the cycle in the RG of the
VN corresponds to a firable repetitive sequence. For an
unbounded PN, if a cycle in the CG is reachable starting
from a node in the set F (V N), it is necessary to check
if it is a real cycle, i.e., if the cycle is associated with a
repetitive sequence, i.e., if ˜C · −→y ≥ −→0 , where −→y is the
firing vector that contains all the transitions of the cycle.

Example 4. For the LPN system NL in Fig. 3, the VN is
depicted in Fig. 5. Since NL is unbounded, its CG is built
in Fig. 6. The markings in Fig. 6 are shown in Table 1.
There exists a cycle after the occurrence of the fault:

˜M9
(t′3,t5),a−−−−−→ ˜M10

(t′4,t6),b−−−−−→ ˜M9 · · ·

One can check that the sequence of transitions
((t′3, t5)(t′4, t6))∗ corresponds to a repetitive sequence.
According to Theorem 1, the LPN is not diagnosable.

�

5. On-the-fly diagnosability analysis using
verifier nets

In this section, a new approach is developed for the
on-the-fly diagnosability analysis using VNs. The
algorithm, which is based on the depth-first search, is

274 B. Li et al.

p1 p′1

p2 p′2 p3 p′3

p4 p′4 p5 p′5

(λ, f2), ε(ε′1, λ), ε(λ, ε1), ε

(t′3, t3), a(t′4, t4), b (t′3, t5), a (t′6, t4), b (t′4, t6), b(t′5, t3), a (t′5, t5), a (t′6, t6), b

Fig. 5. VN of the LPN in Fig. 3.

Table 1. Markings in Fig. 6.
j ˜Mj

0 [1 0 0 0 0 | 1 0 0 0 0]τ

1 [1 0 0 0 0 | 0 1 0 0 0]τ

2 [0 1 0 0 0 | 1 0 0 0 0]τ

3 [1 0 0 0 0 | 0 0 1 0 0]τ

4 [0 1 0 0 0 | 0 1 0 0 0]τ

5 [0 1 0 0 0 | 0 0 1 0 0]τ

6 [0 1 0 ω 0 | 0 1 0 ω 0]τ

7 [0 1 0 1 0 | 0 0 1 0 0]τ

8 [0 ω 0 ω 0 | 0 ω 0 ω 0]τ

9 [0 ω 0 0 0 | 0 0 1 0 0]τ

10 [0 ω 0 1 0 | 0 0 0 0 1]τ

given for the on-the-fly construction and analysis of the
VN and its RG/CG.

For a given LPN model, the LPN N ′
L =

(N ′,M ′
o,Σ

′,L′) associated with the T ′-induced subnet of
the considered LPN system NL = (N,Mo,Σ,L) is built,
as presented in Section 4.

In order to distinguish from the symbols of VN
in Section 4, the partial VN is denoted by ̂NL =

(̂N, ̂Mo, ̂Σo, ̂L), where ̂N = (̂P , ̂T , ̂Pre, ̂Post). The set
of places is ̂P = P ∪ P ′ and the initial marking is

̂M0 =

[

M ′
0

M0

]

.

The transitions of the VN ̂T are built on the fly.

Proposition 1. At a marking

̂M =

[

M ′

M

]

of the VN, a transition ̂t is enabled iff one of the following
conditions is satisfied:

(i) ̂t = (λ, tf), the transition tf ∈ Tf is enabled in N at
the marking M ;

(ii) ̂t = (λ, treg), the transition treg ∈ Treg is enabled in
N at the marking M ;

(iii) ̂t = (t′reg, λ), the transition t′reg ∈ T ′
reg is enabled in

N ′ at the marking M ′;

(iv) ̂t = (t′o, to), the transition t′o ∈ T ′
o is enabled inN ′ at

the marking M ′ and the transition to ∈ To is enabled
in N at the marking M . Meanwhile, L′(t′o) = L(to).

Proof.
(If) Given a transition ̂t = (t′, t) (one of t′ and t can be
λ). According to the construction of transitions in the VN
(Cabasino et al., 2012),

̂Pre(·,̂t) =
[

Pre′(·, t′)
Pre(·, t)

]

.

For the condition (i), ̂t = (λ, tf), tf ∈ Tf and tf
is enabled in N at the marking M i.e., M ≥ Pre(·, tf).
Therefore,

[

M ′

M

]

≥
[

Pre′(·, λ)
Pre(·, tf)

]

(where Pre′(·, λ) =
−→
0), i.e., ̂M ≥ ̂Pre(·,̂t). The

transition ̂t = (λ, tf) is enabled at ̂M . The conditions
(ii) and (iii) can be proved in the same way.

For the condition (iv), ̂t = (t′o, to), the transition t′o ∈
T ′
o is enabled in N ′ at the marking M ′ and the transition

to ∈ To is enabled in N at the marking M , i.e., M ′ ≥
Pre′(·, t′0) and M ≥ Pre(·, t0). Therefore,

[

M ′

M

]

≥
[

Pre′(·, t′o)
Pre(·, to)

]

,

On-the-fly diagnosability analysis of bounded and unbounded labeled Petri nets . . . 275

˜M0

˜M1

˜M2

˜M3

˜M4
˜M5

˜M6
˜M7

˜M8
˜M9

˜M10

(λ
,
ε 1

),
ε (

ε ′1
,
λ
)
,
ε

(λ
,
f
2),

ε

(
ε ′1

,
λ
)
,
ε

(λ
,
ε 1

),
ε

(λ
,
f
2),

ε

(
ε ′1

,
λ
)
,
ε

(
t ′3

,
t
3
)
,
a

(
t ′3

,
t
5
)
,
a

(
t
′ 3
,
t
3
)
,
a

(
t ′4

,
t
4
)
,
b

(
t ′4

,
t
6
)
,
b

(
t
′ 4
,
t
4
)
,
b (
t
′ 3
,
t
3
)
,
a

(
t ′3

,
t
5
)
,
a

(
t
′ 4
,
t
6
)
,
b

Fig. 6. CG of the VN in Fig. 5.

i.e., ̂M ≥ ̂Pre(·,̂t). The transition ̂t = (t′o, to) is enabled
at ̂M .

(Only if) Assuming that, in VN, a transition ̂t = (t′, t)
(one of t′ and t can be λ) is enabled. Hence, ̂M ≥
̂Pre(·,̂t) i.e.,

[

M ′

M

]

≥
[

Pre′(·, t′)
Pre(·, t)

]

.

It can be deduced that M ′ ≥ Pre′(·, t′) and M ≥
Pre(·, t). Therefore, the transition t′ ∈ T ′ is enabled in
N ′ at the marking M ′ and the transition t ∈ T is enabled
in N at the marking M . �

Algorithm 1 is given to calculate the enabled
transition at a marking ̂M according to Proposition 1.
This algorithm is called in Algorithm 3 for the on-the-fly
construction of the VN and its RG/CG.

Example 5. For the LPN system NL in Fig. 3, its
T ′-induced sub-LPN N ′

L is built in Fig. 4. The initial
marking of NL is M0 = [1 0 0 0 0]τ and the initial
marking of N ′

L is M ′
0 = [1 0 0 0 0]τ . At M0, ε1 and

f2 are enabled. At M ′
0, only the transition ε′1 is enabled.

According to Proposition 1, at the initial marking of the
VN

̂M0 =

[

M ′
0

M0

]

,

Algorithm 1. Algorithm for EnabledT function: find the
enabled transitions at a marking ̂M .

1: Input: N , N ′ and ̂M =

[

M ′

M

]

;

2: Output: (̂Tf , ̂Treg, ̂T
′
reg, ̂To);

3: Function EnabledT (N,N ′, ̂M)
4: ̂Tf , ̂Treg, ̂T

′
reg, ̂To ← ∅;

5: T ′
con,o, Tcon,o ← ∅; {Local variables}

6: for all t′ ∈ T ′ do
7: if t′ is enabled at M ′ then
8: if t′ ∈ T ′

reg then
9: ̂T ′

reg ← ̂T ′
reg ∪ {(t′, λ)};

10: else
11: T ′

con,o ← T ′
con,o ∪ {t′};

12: end if
13: end if
14: end for
15: for all t ∈ T do
16: if t is enabled at M then
17: if t ∈ Treg then
18: ̂Treg ← ̂Treg ∪ {(λ, t)};
19: else if t ∈ Tf then
20: ̂Tf ← ̂Tf ∪ {(λ, t)};
21: else
22: Tcon,o ← Tcon,o ∪ {t};
23: end if
24: end if
25: end for
26: for all t′o ∈ T ′

con,o and to ∈ Tcon,o s.t. L(t′o) = L′(to) do
27: ̂To ← ̂To � {(t′o, to)};
28: end for
29: return (̂Tf , ̂Treg, ̂T

′
reg, ̂To);

(λ, f2) (condition (i)), (λ, ε1) (condition (ii)) and (ε′1, λ)
(condition (iii)) are enabled. Therefore, the output of the
function EnabledT (N,N ′, ̂M0) is (̂Tf , ̂Treg, ̂T

′
reg, ̂To),

where ̂Tf = {(λ, f2)}, ̂Treg = {(λ, ε1)}, ̂T ′
reg =

{(ε′1, λ)} and ̂To = ∅. �

It is worth noticing that if the entire VN is built
(in Fig. 5), the transitions, which are never enabled, are
also built such as (t′5, t3), (t′5, t5), (t′6, t4) and (t′6, t6).
However, since these transitions are never enabled, they
will never be generated by Algorithm 1. Therefore, these
transitions will not be built in the on-the-fly construction
of the VN and it can be proposed that ̂T ⊆ ˜T .

Algorithm 2 is developed to build on-the-fly the VN
and it is called in Algorithm 3. Algorithm 3 which is
called in Algorithm 4, is developed to build on-the-fly the
RG/CG of the VN and gives the diagnosability verdict.

Initially, the VN contains only all the places but no
transitions. The RG/CG contains one node with the initial
marking of the VN. From the initial marking, Algorithm 1
is used to calculate all the enabled transitions. Since the
approach is based on a depth-first search, selecting one

276 B. Li et al.

enabled transition and build it by using Algorithm 2. After
firing the chosen transition, the new marking is calculated
and built by Algorithm 3. The above process is iterated
until the undiagosability condition is fulfilled or the whole
RG/CG is built. Proposition 2 is provided to prove the
correctness of our approach.

Proposition 2. For an LPN system, the MAIN function
in Algorithm 4 terminates and its diagnosability verdict is
correct.

Proof. The on-the-fly diagnosability using a VN is
presented by Algorithm 4. Algorithm 3 is called in
Algorithm 4 and Algorithm 2 is called in Algorithm 3.

First, we will prove that the algorithm terminates for
both bounded and unbounded LPNs. The investigation
of a branch of the RG/CG is stopped, when one of the
following conditions is satisfied:

1. There exists a deadlock at the new node (Line 9 of
Algorithm 3);

2. A new node in RG/CG is equal to a previous one
(Lines 31–42 of Algorithm 3).

In an unbounded case, the unbounded places are
treated in Lines 15–20 of Algorithm 3.

In the on-the-fly construction of the RG/CG, for any
branch, these two conditions will be met sooner of later.
Therefore, the algorithm terminates well.

Second, when the above stop condition is satisfied,
the following three cases can occur: (i) a deadlock is
found; (ii) the cycle is reachable starting from a node in
the set F (V N); (iii) the cycle is not reachable starting
from any node in the set F (V N).

In Case (i), if there exists a deadlock, the
investigation of this branch is stopped. However, the
diagnosability of the LPN system cannot be determined.
The construction needs to be continued. It restarts from
its previous node, and the other branches are investigated
(Lines 9 and 10 of Algorithm 3). In Case (ii), if the
cycle corresponds to a firable repetitive sequence, the
result that the LPN system is nondiagnosable can be
obtained immediately according to Theorem 1 (Lines 39
and 40 of Algorithm 3). Otherwise, it needs to investigate
other branches. In Case (iii), the construction need to be
continued.

If the LPN system is diagnosable or a cycle is
reachable starting from a node in the set F (V N) in the
end of the construction, all the semilive and live transitions
(Algorithm 2) of the VN are built and the whole RG/CG
is built.

Since all the possible cases are considered, it can
be guaranteed that Algorithm 4 terminates well and its
diagnosability verdict is correct. �

Proposition 2 guarantees the correctness of this
approach. When a cycle corresponding to a firable

Algorithm 2. Algorithm for BuildV NTransition
function.

1: Input: ̂NL = (̂N, ̂Mo, ̂Σo, ̂L), where ̂N =

(̂P , ̂T , ̂Pre, ̂Post); a transition ̂t ∈ ̂Tcon, where
̂Tcon = ̂Tcon,f ∪ ̂Tcon,reg ∪ ̂T ′

con,reg ∪ ̂Tcon,o, where
(̂Tcon,f , ̂Tcon,reg, ̂T

′
con,reg, ̂Tcon,o) is the output of

EnabledT function;
2: Output: ̂N ′

L = (̂N ′, ̂Mo, ̂Σo, ̂L′), where ̂N ′ =

(̂P ′, ̂T ′, ̂Pre′, ̂Post)′;
3: Function BuildV NTransition(̂NL,̂t)
4: if ̂t ∈ ̂T then
5: return ̂NL;
6: else
7: if (̂t = (λ, tf) ∈ ̂Tcon,f) then
8: for all p ∈ P ′ do
9: ̂Pre′(p,̂t) = ̂Post′(p,̂t) = 0;

10: end for
11: for all p ∈ P do
12: ̂Pre′(p,̂t) = Pre(p, tf), ̂Post′(p,̂t) =

Post(p, tf);
13: end for
14: ̂L(̂t) = ε;
15: else if (̂t = (λ, treg) ∈ ̂Tcon,reg) then
16: for all p ∈ P ′ do
17: ̂Pre′(p,̂t) = ̂Post′(p,̂t) = 0;
18: end for
19: for all p ∈ P do
20: ̂Pre′(p,̂t) = Pre(p, treg), ̂Post′(p,̂t) =

Post(p, treg);
21: end for
22: ̂L(̂t) = ε;
23: else if (̂t = (t′reg, λ) ∈ ̂T ′

con,reg) then
24: for all p ∈ P ′ do
25: ̂Pre′(p,̂t) = Pre′(p, t′reg),

̂Post′(p,̂t) = Post′(p, t′reg);
26: end for
27: for all p ∈ P do
28: ̂Pre′(p,̂t) = ̂Post′(p,̂t) = 0;
29: end for
30: ̂L(̂t) = ε;
31: else
32: for all p ∈ P ′ do
33: ̂Pre′(p,̂t) = Pre′(p, t′o), ̂Post′(p,̂t) =

Post′(p, t′o);
34: end for
35: for all p ∈ P do
36: ̂Pre′(p,̂t) = Pre(p, to), ̂Post′(p,̂t) =

Post(p, to);
37: end for
38: ̂L(̂t) = (l, l); {L(to) = L′(t′o) = l}
39: end if
40: ̂T ′ ← ̂T ∪ ̂t;
41: Update ̂Pre′ by adding the column ̂Pre′(·,̂t) to ̂Pre;
42: Update ̂Post′ by adding the column ̂Post′(·,̂t) to ̂Post;

43: return ̂NL

′
;

44: end if

On-the-fly diagnosability analysis of bounded and unbounded labeled Petri nets . . . 277

Algorithm 3. Algorithm for DIAG function.

1: Input: (NL, N
′
L, ̂NL, ̂M,n);

2: Output: (̂N ′
L,

̂M ′, n′);
3: Function DIAG(NL, N

′
L, ̂NL, ̂M,n)

4: ̂Tcon,f , ̂Tcon,reg, ̂T
′
con,reg, ̂Tcon,o ← ∅;

5: ̂N ′′
L ,

̂M ′′ ← ∅, n′′ ← 1; {n′′ is a local Boolean variable}
{ ̂N , ̂A and F (V N) are global, cf.in Algorithm 4.}

6: (̂Tcon,f , ̂Tcon,reg, ̂T
′
con,reg, ̂Tcon,o) ←

EnabledT (NL, N
′
L, ̂M);

7: ̂Tcon ← ̂Tcon,f ∪ ̂Tcon,reg ∪ ̂T ′
con,reg ∪ ̂Tcon,o;

8: n′ ← 1; {Local Boolean variable}
9: if ̂Tcon = ∅ then

10: return (̂NL, ̂M,n′);
11: else if ̂Tcon �= ∅ then
12: for all ̂t ∈ ̂Tcon do
13: ̂NL

′ ← BuildV NTransition(̂NL,̂t);
{for BuildV NTransition function, see Algo-
rithm 2}

14: ̂M ′ ← ̂M + ̂C′(·,̂t); { ̂C′ is the incidence matrix of
̂NL

′}
15: Let ̂Mα be the first node met on the backward path

from ̂M ′ to the initial marking ̂M0 s.t. ̂Mα < ̂M ′;
{As it was presented in Karp and Miller (1969)}

16: if ̂Mα exists then
17: for all p ∈ ̂P s.t. ̂Mα(p) < ̂M ′(p) do
18: ̂M ′(p) = ω;
19: end for{Lines 39–42 are only for an unbounded

LPN.}
20: end if
21: if (∀̂M∗ ∈ ̂N , ̂M∗ �= ̂M ′) (̂M∗ is the node already

built in ̂N) then
22: if (̂M ∈ F (V N)) ∨ (̂t ∈ ̂Tcon,f) then
23: F (V N)← F (V N) ∪ ̂M ′;
24: end if
25: ̂N ← ̂N ∪ ̂M ′;
26: ̂A ← ̂A∪ (̂M, ̂L(̂t), ̂M ′);
27: (̂N ′′

L ,
̂M ′′, n′′)← DIAG(NL, N

′
L, ̂N

′
L,

̂M ′, n′);
28: if n′′ = 0 then
29: return (̂N ′′

L ,
̂M ′′, n′′);

30: end if
31: else if (∃̂M∗ ∈ ̂N , ̂M∗ = ̂M ′) then
32: ̂A ← ̂A∪ (̂M, ̂L(̂t), ̂M∗);
33: if ((̂M ∈ F (V N)) ∨ (̂t ∈ ̂Tcon,f)) ∧ (̂M∗ /∈

F (V N)) then
34: F (V N)← F (V N) ∪ ̂M∗

35: for all ̂Mo can be reached from ̂M∗ do
36: F (V N)← F (V N) ∪ ̂Mo;
37: end for
38: end if
39: if There exists a cycle associated with a firable

repetitive sequence from a node in F (V N) then
40: return (̂N ′

L,
̂M ′, n′ ← 0); {path exists in the

library digraph (Rushton (2012)).}
41: end if
42: end if
43: end for
44: return (̂N ′

L,
̂M ′, n′); {n′ = 1⇒ NL is diagnosable.}

45: end if

Algorithm 4. Algorithm for MAIN function.
1: Input: NL;
2: Output: Diagnosability analysis of the NL;
3: Function MAIN (NL)
4: ̂N ← ∅; { ̂N is the set of RG/CG nodes;}
5: ̂A ← ∅; { ̂A is the set of RG/CG arcs;}
6: F (V N)← ∅; {F (V N) is the set of fault nodes;}
7: { ̂N , ̂A and F (V N) are global variables;}
8: ̂N ′

L,
̂M ′ ← ∅, n′ ← 1; {n′ is a local boolean variable}

9: n ← 1; {n is the tag to indicate the diagnosability of the
system;}

10: build N ′
L =< N ′,M ′

0,Σ
′,L′ >;

11: initialize ̂NL, where ̂P = P ′ ∪ P , ̂M0 =

[

M ′
0

M0

]

;

12: ̂N ← ̂N ∪ ̂M0;
13: (̂N ′

L,
̂M ′, n′)← DIAG(NL, N

′
L, ̂NL, ̂M0, n);

14: if n′ = 1 then
15: assert (The LPN system NL is diagnosable);
16: else if n′ = 0 then
17: assert (The LPN system NL is non-diagnosable);
18: end if

repetitive sequence is found and is reachable starting from
any node in the set F (V N), the LPN is determined
immediately as nondiagnosable.

It is worth noticing that our approach does not define
priorities in the investigation of branches. In the work of
Li et al. (2015a), a kind of heuristic is proposed for the
on-the-fly diagnosability analysis by using the T-invariant
to define the priorities in the investigation of the branches.
However, this heuristic is not available for the approach
in this paper. Since we build on-the-fly the VN and its
RG/CG, we cannot get the T-invariants of the VN from
the beginning. This problem will not be addressed in this
paper and we define the priorities as follows.

In the paper, the transitions in ̂Tf have higher
priorities, because, according to Theorem 1, the
diagnosability analysis is based on finding the cycle after
firing a fault transition. For the transitions in ̂Treg, ̂T ′

reg

and ̂To, the priorities cannot be defined reasonably. To
analyze the example in this paper, the priorities between
the branches to be investigated are heuristically defined as
follows:

̂Tf > ̂Treg > ̂T ′
reg > ̂To

The priorities of the transitions in the same set are defined
by the numerical order of the transitions. For example,
for the transition in ̂To, (t′3, t3) > (t′3, t5) > (t′5, t3) >
(t′5, t5).

Example 6. Let us consider again the LPN NL =
(N,Mo,Σ,L) in Fig. 3. In this paper, we study an
unbounded LPN system, because a bounded LPN is
a special case of an unbounded LPN. The T ′-induced
sub-LPN N ′

L = (N ′,M ′
o,Σ

′,L′) is built in Fig. 4. The
places of VN are built as ̂P = P ∪ P ′ and the initial

278 B. Li et al.

marking is

̂M0 =

[

M ′
0

M0

]

.

At the initial marking ̂M0 = [1 0 0 0 0 | 1 0 0 0 0]τ ,
(λ, ε1), ε, (ε′1, λ), ε as well as (λ, f2), ε are enabled
(Algorithm 1). The transition (λ, f2), ε is built in the
VN (Lines 7–14, Algorithm 2) and is fired because
of its higher priority. The next node ̂M1 =
[1 0 0 0 0 | 0 0 1 0 0]τ is generated and built in the
CG (Lines 25–26, Algorithm 3). The set of fault nodes
F (V N) is updated (Line 36, Algorithm 3).

At ̂M1 (Line 27, Algorithm 3), only (ε′1, λ), ε
is enabled. This transition is built and by firing
this transition, the next node in CG is ̂M2 =
[0 1 0 0 0 | 0 0 1 0 0]τ . The set of fault nodes F (V N)
is updated.

At ̂M2, only (t′3, t5), a is enabled according to
Condition (iv) in Proposition 1. This transition is built
and the next node in CG is ̂M3 = [0 1 0 1 0 | 0 0 0 0 1]τ .
The set of fault nodes F (V N) is updated.

At ̂M3, only (t′4, t6), b is enabled. This transition is
built. By firing this transition, the computed marking is
̂M ′

4 = [0 2 0 0 0 | 0 0 1 0 0]τ . Since on the backward
path, the marking ̂M2 can be found such that ̂M ′

4 � ̂M2.
Therefore, the number of the token in place p′2 is set as ω
(Lines 15–19, Algorithm 3). The next node in the CG is
̂M4 = [0 ω 0 0 0 | 0 0 1 0 0]τ and it is put into F (V N).

At ̂M4, only (t′3, t5), a is enabled and ̂M5 =
[0 ω 0 1 0 | 0 0 0 0 1]τ is built in CG. The node is put
into F (V N).

At ̂M5, only (t′4, t6), b is enabled. The computed
node is [0 ω 0 0 0 | 0 0 1 0 0]τ , which is equal to ̂M4

(Lines 31–40, Algorithm 3). Therefore, a cycle from a
node in F (V N) is found. Since ̂C′ · ←−y =

←−
0 (where

̂C′ is the updated incidence matrix;←−y is the firing vector
that contains (t′3, t5) and (t′4, t6), i.e., ←−y ((t′3, t5)) =
←−y ((t′4, t6)) = 1 and for all other transitions ̂t ∈ ̂T ,←−y (̂t) = 0), the cycle is associated with a stationary
repetitive sequence. Therefore, the construction of VN
and its CG is stopped and the immediate result is that the
unbounded LPN system is nondiagnosable. �

Table 2. Markings in Fig. 8.
j ̂Mj

0 [1 0 0 0 0 | 1 0 0 0 0]τ

1 [1 0 0 0 0 | 0 0 1 0 0]τ

2 [0 1 0 0 0 | 0 0 1 0 0]τ

3 [0 1 0 1 0 | 0 0 0 0 1]τ

4 [0 ω 0 0 0 | 0 0 1 0 0]τ

5 [0 ω 0 1 0 | 0 0 0 0 1]τ

p1 p′1

p2 p′2 p3 p′3

p4 p′4 p5 p′5

(λ, f2), ε(ε′1, λ), ε

(t′3, t5), a (t′4, t6), b

Fig. 7. On-the-fly construction of the VN of the LPN in Fig. 3.

̂M0
̂M1

̂M2
̂M3

̂M4
̂M5

(λ, f2), ε (ε′1, λ), ε (t′3, t5), a

(
t ′4

,
t
6
)
,
b(t′3, t5), a

(t′4, t6), b

Fig. 8. On-the-fly construction of a CG.

6. Comparative analysis

6.1. Memory cost analysis. A comparison of the VN
approach by Cabasino et al. (2012) and our approach is
given for the diagnosability analysis of the LPN system in
Fig. 3. For the diagnosability analysis of this LPN system,
our approach generates fewer transitions in the on-the-fly
construction of the VN and fewer nodes in the CG. The
result that the system is non-diagnosable is immediately
given, when a cycle associated with a firable repetitive
sequence is found which is reachable starting from a node
in the set F (V N).

Table 3. Comparison of the VN approach in and the on-the-fly
diagnosability analysis using the VN.

Approach | ˜P |/| ̂P | |˜T |/| ̂T |
Number
of nodes

in CG

VN approach
(Cabasino et al., 2012)

10 11 11

On-the-fly
diagnosability analysis

using VN
10 4 6

If the removal of the fault transitions makes some
transitions blocked in a T-induced sub-LPN, fewer
transitions will be built in our approach compared with
the VN approach by Cabasino et al. (2012), because in
Section 5 we argued that ̂T ⊆ ˜T . Even for a diagnosable
system, the whole RG/CG needs to be built, but only the

On-the-fly diagnosability analysis of bounded and unbounded labeled Petri nets . . . 279

semi live and live transitions are built in the VN.
The on-the-fly diagnosability analysis using the VN

avoids building, a priori, the whole VN and its RG/CG.
The VN structure and its RG/CG are built on-the-fly and in
parallel with stop conditions. When a cycle corresponding
to a firable repetitive sequence is found which is reachable
by firing a fault, there is no need to continue the
construction and the LPN system is determined as non
diagnosable. Our approach is favorable for industrial
use, because it allows iterating the diagnosability analysis
without building each time the whole VN and its RG/CG.

6.2. Computational complexity analysis. In this
subsection, the computational complexity of our approach
is analyzed for both bounded and unbounded cases.

6.2.1. Analysis for bounded LPNs. In this section,
the computational complexity of the VN approach is
discussed at first, because the computational complexity
is not analyzed in detail by Cabasino et al. (2012). After
that, the computational complexity of our approach is
analyzed.

Let us denote by n1 = |P | the number of the places
of the initial LPN model NL, n2 = |T | the number of
the transitions of NL and n3 = |NRG| the number of the
nodes in the RG of NL.

Proposition 3. The computational complexity of the con-
struction of the VN of the LPN model NL is O(n1n

2
2).

Proof. First it is evident that the number of the places in
the VN is | ˜P | = |P ′|+ |P | = 2n1.

Second, the set of transitions of NL is T = To �
Treg � Tf . As presented in Section 3.2, since To, Treg

and Tf are disjoint, |To| + |Treg| + |Tf | = |T | = n2.
The set of the transitions of the VN is ˜T = ˜To ∪ (T ′

reg ×
{λ}) ∪ ({λ} × Treg) ∪ ({λ} × Tf). It is intuitive that
|T ′

reg × {λ}| = |{λ} × Treg| = |Treg| and |{λ} × Tf | =
|Tf |. The number of the observable transitions in VN is
| ˜To| ≤ |To| · |T ′

o| = |To|2, and the equality is true in
the case when all the observable transitions have the same
label. Therefore, the number of transitions in the VN is

| ˜T | = | ˜To|+ |T ′
reg × {λ}|

+ |{λ} × Treg|+ |{λ} × Tf |
= |To|2 + 2 · |Treg|+ |Tf |
≤ 2 · |T |2 = 2 · n2

2.

�

Remark 1. The coefficient 2 is added to cover the case
when T contains only one regular unobservable transition.
Besides, the number of arcs built in the VN between the
places and transitions is at most 2 · | ˜T | · | ˜P | � 2 · (2 ·n2

2) ·
(2 · n1).

Above all, the computational complexity of the
construction of the VN of NL is O(n1n

2
2).

Proposition 4. The computational complexity of the con-
struction of the RG of the VN is O(n2

3n
2
2).

Proof. Assuming that the N V N
RG is the set of the nodes

in RG of the VN and the AV N
RG is the set of the arcs in the

RG of the VN. Since a marking in the VN is composed of

˜M =

[

M ′

M

]

,

the number of the nodes in N V N
RG is at most n2

3. The
numbers of arcs in the RG of the VN is |AV N

RG | ≤
|N V N

RG | · | ˜T | ≤ (n2
3) · (2n2

2). Above all, the computational
complexity of the construction of the RG of the VN is
O(n2

3n
2
2). �

Proposition 5. The existence of a cycle that is reachable
starting from a node in the set F (V N) can be decided in
O(n2

3n
2
2).

Proof. Deciding if there exists a cycle that is
reachable starting from a node in the set F (V N) takes
O(|F (V N)| + |AF (V N)|) as proposed by Cormen et al.
(1990), where AF (V N) is the set of arcs between the
nodes in F (V N). In the worst case (all nodes belong
to F (V N)), it can be determined that |F (V N)| ≤
|N V N

RG | ≤ n2
3 and |AF (V N)| ≤ |AV N

RG | ≤ (n2
3) · (2 · n2

2)
according to the proof of Proposition 3. Therefore, the
existence of a cycle that is reachable starting from a node
in the set F (V N) can be decided in O(n2

3n
2
2). �

From Theorem 1 and Proposition 3–5, the following
result can be deduced:

Theorem 2. The diagnosability of NL with respect to
a given fault class using the VN approach of (Cabasino
et al., 2012) can be decided in O(n1n

2
2 + n2

3n
2
2).

The result of the computational complexity analysis
of the VN approach is the same with the analysis
by Cabasino et al. (2012). The first term of the complexity
(n1n

2
2) is the complexity of the construction of the

VN, which is the same the on presented by Cabasino
et al. (2012). The second term (n2

3n
2
2) represents the

complexity of two steps: the construction of the RG
and the verification of the existence of cycles. Cabasino
et al. (2012) argued that the total complexity of these two
steps is linear in the sum of the numbers of states and
transitions of the RG of the VN, i.e., the complexity is
O(|N V N

RG |+ |AV N
RG |). The result is the same as our second

term, because |N V N
RG | + |AV N

RG | � n2
3 + (n2

3) · (2 · n2
2)

as presented in the proof of Proposition 4. Therefore, the
complexity of the VN approach is O(n1n

2
2 + n2

3n
2
2). Our

results define more precisely the complexity of the VN
approach of Cabasino et al. (2012). It is based on the size

280 B. Li et al.

of the initial model which makes it comparable to other
approaches, such as the diagnoser approach by Sampath
et al. (1995).

Theorem 3. The complexity of the diagnosability analy-
sis of NL using Algorithm 4 with respect to a given fault
class is O(n1n

2
2n

2
3 + n4

3n
4
2).

Proof. First, the complexity of Algorithm 1 is O(| ̂T |) =
O(n2

2) (Line 29 of Algorithm 1). Algorithm 1 is called
in Algorithm 3 but not in any iteration. The Algorithm
3 contains one main iteration that is indicated by Lines
13–42 of Algorithm 3 (in the worst case, the number
of iterations is O(| ̂T |)). The complexity of building a
transition of the VN is O(|P |) (Algorithm 2). To verify
the condition in Line 21 of Algorithm 3, the complexity
is O(| ̂NRG|). The verification of a cycle from a node
in F (V N) (Line 39 of Algorithm 3) has a complexity
of O(n2

3n
2
2) (Proposition 6). The other steps in the

main iteration can be neglected, because of their lower
complexity. In the worst case, Algorithm 3 is called
| ̂NRG| times (Line 27). Therefore, the entire complexity
is O(| ̂NRG| · (| ̂T | + | ̂T | · (|P | + | ̂NRG| + n2

3n
2
2))) =

O(n2
3 ·(n2

2+n2
2·(n1+n2

3+n2
3n

2
2))) = O(n1n

2
2n

2
3+n4

3n
4
2).
�

6.2.2. Analysis for unbounded LPN. Cabasino et al.
(2012) argued that the complexity of the VN approach for
unbounded LPNs cannot be given because the complexity
of the construction of the CG is still an open issue. In the
worst case, the on-the-fly diagnosability analysis using the
VN needs to build the whole VN and its CG. Moreover,
the on-the-fly diagnosability analysis using the VN builds
the transitions in the VN and the nodes in its CG and
analyze at the same time when a cycle in the CG is found.
Assume that |F (V N)| is the number of nodes in F (V N),
AF (V N) the number of arc between these nodes and the
complexity of the VN approach for unbounded LPN is
CV N . Deciding if there is a cycle that is reachable starting
from a node in the set F (V N) takes O(|F (V N)| +
|AF (V N)|). In the worst case (i.e., all the nodes belong to
F (V N)), O(|F (V N)| + |AF (V N)|) ≤ CV N . Therefore,
the complexity of the on-the-fly diagnosability analysis
using VN is (ncycle+1)·CV N , where ncycle is the number
of cycles in CG, which do not correspond to repetitive
sequences.

7. Conclusion

In this paper, a new approach to diagnosability analysis
of DESs modeled by bounded or unbounded LPNs
has been proposed. The VN approach by Cabasino
et al. (2012) is improved by applying the on-the-fly
diagnosability analysis. The VN and its RG/CG are
built on the fly and in parallel with stop conditions.

As soon as the undiagnosability condition is fulfilled,
the construction and the analysis are stopped and the
result that the system is nondiagnosable is immediately
given. This approach allows iterating the diagnosability
analysis without building each time the whole state
space, until the system becomes diagnosable. The
computational complexity of our approach is analyzed,
which is slightly increased by using the on-the-fly analysis
(Schwoon and Esparza, 2005). Our approach achieves
a compromise between the computation efficiency and
limitation resulting from combinatorial explosion.

In future research, some heuristics need to be
defined in terms of priority between the branches to be
investigated while building the transitions of the VN and
the nodes of RG/CG, to make this approach more efficient.

Acknowledgment

This work was carried out thanks to the ELSAT2020
program co-financed by the European Union through the
European Regional Development Fund, by the French
State and the Hauts-de-France Region.

References

Basile, F., Chiacchio, P. and De Tommasi, G. (2012).
On K-diagnosability of Petri nets via integer linear
programming, Automatica 48(9): 2047–2058.

Basile, F., Chiacchio, P. and Tommasi, G. (2009). An efficient
approach for online diagnosis of discrete event systems,
IEEE Transactions on Automatic Control 54(4): 748–759.

Boussif, A., Ghazel, M. and Klai, K. (2015). Combining
enumerative and symbolic techniques for diagnosis of
discrete-event systems, 9th International Workshop on
Evaluation of Computer and Communication Systems,
Bucharest, Romania, pp.1–11.

Cabasino, M., Giua, A., Lafortune, S. and Seatzu, C. (2012).
A new approach for diagnosability analysis of Petri nets
using verifier nets, IEEE Transactions Automatic Control
57(12): 3104–3117.

Cabasino, M., Giua, A. and Seatzu, C. (2014). Diagnosis
of discrete event systems using labeled Petri nets, IEEE
Transactions on Automation Science and Engineering
11(1): 144–153.

Cabral, F., Moreira, M., Diene, O. and Basilio, J. (2015). A Petri
net diagnoser for discrete event systems modeled by finite
state automata, IEEE Transactions on Automatic Control
60(1): 59–71.

Cormen, T., Leiserson, C. and Rivest, R. (1990). Introduction of
Algorithms, MIT Press, Cambridge, MA.

Jiang, S., Huang, Z., Chandra, V. and Kumar, R. (2001). A
polynomial algorithm for testing diagnosability of discrete
event systems, IEEE Transactions on Automatic Control
46(8): 1318–1321.

On-the-fly diagnosability analysis of bounded and unbounded labeled Petri nets . . . 281

Karp, R. and Miller, R. (1969). Parallel program schemata: A
mathematical model for parallel computation, Journal of
Computer and System Sciences 3(2): 147–195.

Lefebvre, D. and Delherm, C. (2007). Diagnosis of DES with
Petri net models, IEEE Transactions on Automation Sci-
ence and Engineering 4(1): 114–118.

Li, B., Khlif-Bouassida, M. and Toguyéni, A. (2015a).
On-the-fly Diagnosability analysis of labeled Petri nets
using T-invariants, 5th International Workshop on Depend-
able Control of Discrete Systems, DCDS’2015, Cancun,
Mexico, pp. 64–70.

Li, B., Khlif-Bouassida, M. and Toguyéni, A. (2016). On-the-fly
diagnosability analysis of LPN using verifier nets, 3rd In-
ternational Conference on Control and Fault-Tolerant Sys-
tems, SYSTOL’16, Nice, France, pp. 305–312.

Li, B., Liu, B. and Toguyéni, A. (2015b). On-the-fly
diagnosability analysis of labeled Petri nets using minimal
explanations, 9th IFAC Symposium on Fault Detection, Su-
pervision and Safety for Technical Processes, SAFEPRO-
CESS’2015, Paris, France, pp. 326–331.

Liu, B., Ghazel, M. and Toguyéni, A. (2014). Toward an efficient
approach for diagnosability analysis of DES modeled by
labeled Petri nets, 13th European Control Conference,
ECC’2014, Strasbourg, France, pp. 1293–1298.

Moreira, M., Jesus, T. and Basilio, J. (2011). Polynomial
time verification of decentralized diagnosability of discrete
event systems, IEEE Transactions on Automatic Control
56(7): 1679–1684.

Rushton, A. (2012). STLplus C++ Library Collection,
stlplus.sourceforge.net.

Sampath, M., Sengupta, R. and Lafortune, S. (1995).
Diagnosability of discrete-event systems, IEEE Transac-
tions an Automatic Control 40(9): 1555–1575.

Schwoon, S. and Esparza, J. (2005). A note on on-the-fly
verification algorithms, 11th International Conference on
Tools and Algorithms for the Construction and Analysis of
Systems, Edinburgh, UK, pp. 174–190.

Yoo, T. and Lafortune, S. (2002). Polynomial-time verification
of diagnosability of partially observed discrete-event
systems, IEEE Transactions on Automatic Control
47(9): 1491–1495.

Ben Li was born in An Yang, China, in 1988.
He received the BEng and MSc degrees in con-
trol science and technology from Beihang Uni-
versity, China, in 2014. He is currently pursuing
the PhD degree in automation science at École
Centrale de Lille, France. His current interests
are fault diagnosis of discrete event systems, for-
mal verification methods and the theory of Petri
nets.

Manel Khlif-Bouassida was born in Ariana,
Tunisia. She received her MSc(Res) degree in
computer science in 2006 from Université de
Versailles Saint Quentin en Yvelines, France.
She obtained her PhD in computer engineering
from Université de Technologie de Compiègne,
France, in 2010. In 2010, she received a postdoc-
toral fellowship from the same university. She
has been an associate professor at École Centrale
de Lille since 2011. She is a researcher at the

CRIStAL lab (Research Center in Computer Science, Signal and Auto-
matic Control of Lille, France). Her research interests are in the field of
modeling and verification of discrete event systems, including diagnosis
and diagnosability analysis. One of the main applications of her research
is transportation systems.

Armand Toguyéni was born in Dakar, Sene-
gal, in 1964. He obtained the BEng degree in
1988 from Institut Industriel du Nord (French
Grande Ecole) and the MSc degree in computer
sciences in the same year. He obtained his PhD
in automatic control for manufacturing and dis-
crete events systems in 1992 and his accredita-
tion to supervise research (HdR) in 2001. He is
a full professor of industrial computer sciences
at École Centrale de Lille, France. He performs

his research at CRIStAL, a laboratory associated with CNRS. He is the
leader of the MOSES team of CRIStAL. His research interests are the
quality of service of discrete-event systems. He works in particular on
modeling, fault-tolerant control and diagnosis of such systems. His main
areas of application are railway systems, manufacturing systems and
computer networks.

Received: 15 March 2017
Revised: 9 November 2017
Accepted: 13 January 2018

stlplus.sourceforge.net

	Introduction
	On-the-fly diagnosability analysis
	Preliminaries
	Labeled Petri nets
	Diagnosability

	Verifier net
	On-the-fly diagnosability analysis using verifier nets
	Comparative analysis
	Memory cost analysis
	Computational complexity analysis
	Analysis for bounded LPNs
	Analysis for unbounded LPN

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

