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The paper deals with the problem of designing sensor-fault tolerant control for a class of non-linear systems. The scheme
is composed of a robust state and fault estimator as well as a controller. The estimator aims at recovering the real system
state irrespective of sensor faults. Subsequently, the fault-free state is used for control purposes. Also, the robust sensor
fault estimator is developed in a such a way that a level of disturbances attenuation can be reached pertaining to the fault
estimation error. Fault-tolerant control is designed using similar criteria. Moreover, a separation principle is proposed,
which makes it possible to design the fault estimator and control separately. The final part of the paper is devoted to the
comprehensive experimental study related to the application of the proposed approach to a non-linear twin-rotor system,
which clearly exhibits the performance of the new strategy.
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1. Introduction

As emerging subjects of modern control engineering,
fault diagnosis (FD) and fault-tolerant control (FTC)
receive constantly growing attention. Just to name a few,
the work of Isermann (2011) deals with the software-
and hardware-like redundancy based FTC. The book by
Mahmoud et al. (2003) deals with passive FTC under
inaccurate FD. There are also approaches that deal with
the fault estimation issue using combined analytical and
soft computing strategies (Witczak, 2014; Mrugalski,
2014). Another important problem is the fact that in
real applications it is not easy to apply the existing
FDI schemes because of the presence of uncertainties,
disturbances, and noise (Witczak, 2014). In addition, it is
not always possible to get information about disturbances
and noise acting on the system. It should be also
underlined that the use of on-line fault estimation is
essential for all active fault compensation approaches.

A number of suitable fault estimation methods,
essentially observer-based (Aouaouda et al., 2015;
López-Estrada et al., 2015; Byrski and Byrski, 2016),
Kalman filter-based (Foo et al., 2013; Pourbabaee et al.,
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2016), or parameter identification-based (Cai et al., 2016)
are used. In the work of Seron and De Doná (2015), a
fault estimation scheme for non-linear systems that can be
modeled in a linear parameter varying form is presented.
The max-plus algebra is proposed by Seybold et al. (2015)
and Majdzik et al. (2016) to deal with the fault-tolerant
control problem. In the work of Tabatabaeipour and Bak
(2014), an observer scheme that simultaneously estimates
the state and a fault is considered. Witczak et al. (2015)
present a robust fault estimation approach for non-linear
discrete-time systems using an unknown input observer.

A class of non-linear systems of special attention
is the so-called Lipschitz one (Nguyen and Trinh,
2016b; 2016a), in which the mathematical model of
the system satisfies the Lipschitz continuity condition.
Many observer-based FDI approaches have been reported
for this class of non-linear systems, such as unknown
input observers (Zhang et al., 2015), adaptive observers
(Defoort et al., 2016), descriptor system approaches
(Zhang et al., 2014a), and high-gain observers (Khalil and
Praly, 2014). In the work of He and Liu (2014), a sliding
mode observer has been designed for non-linear Lipschitz
bounded systems, and recently, non-linear observers for
one-sided Lipschitz systems have been considered (see,
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e.g., Li et al., 2014; Zhang et al. , 2014b; Song, 2015).
It is important to underline that the above works

consider unknown but bounded disturbances, which
constitute the main source of uncertainty. The
non-linearity is treated as a disturbance, which is suitably
decoupled. A further extension of the above general
framework was recently proposed by Nguyen and Trinh
(2016b). In contrast to the approach by Ha and
Trinh (2004), the usual Lipschitz condition is replaced
here by one-sided and quadratically inner-bounded ones,
which extends its applicability to a wider class of
non-linear systems. A similar strategy was realized for
a reduced-order observer by Nguyen and Trinh (2016a).
Taking into account the fact that the estimated unknown
input can be perceived as unknown faults, the above
approach can be adapted for simultaneous state and fault
estimation.

Thus, the objective of this paper is to propose a
novel approach to simultaneous state and sensor fault
estimation, which can be applied for the purpose of FTC.
It is worth mentioning that the proposed technique for
state and fault reconstruction is different from the one
presented by Witczak et al. (2015) where the objective
was to determine an optimal state and actuator fault
estimation in the sense of the H∞ norm. This work
is solely devoted to sensor fault estimation with an
application to FTC. Sufficient conditions for the existence
and stability of the proposed state and actuator fault
estimator are expressed in the form of linear matrix
inequalities (LMIs), which can be solved using available
computational packages (Löfberg, 2004). Subsequently,
the controller design procedure is formed in a similar
fashion. Moreover, a separation principle is proposed,
which makes it possible to design the state-fault estimator
and FTC separately.

The paper is organized as follows. Section 2
presents preliminaries, which are necessary to undertake
the problem being investigated. Section 3 proposes a
novel strategy for integrated sensor fault estimation and
FTC. Section 4 presents application of the proposed
strategy to the non-linear twin-rotor system. Finally, the
last section concludes the paper.

2. Preliminaries

Let us consider a non-linear discrete-time system:

xk+1 = Axk +Buk + g (xk,uk) +W 1wk, (1)

yk = Cxk + fs,k +W 2wk, (2)

where xk ∈ X ⊂ R
n, uk ∈ R

r, yk ∈ R
m, are the

state, control input and output vectors, respectively. The
non-linear function g (xk,uk) describes the behaviour
of the system with respect to the state and input.
Moreover fs,k ∈ Fs ⊂ R

m is the sensor fault vector.

Furthermore, W 1 and W 2 denote distribution matrices
of an exogenous disturbance vector wk obeying

l2 = {w ∈ R
n| ‖w‖l2 < +∞}, (3)

‖w‖l2 =

( ∞∑
k=0

‖wk‖2
) 1

2

. (4)

It can be easily shown that wk can be split in such a way
as

wk =
[
wT

1,k,w
T
2,k

]T
,

where w1,k and w2,k are process and measurement
uncertainties, respectively.

The problem is to control the system irrespective of
the sensor faults. An integrated strategy of control and
fault diagnosis should be able to tolerate the sensor faults,
which may occur in the system. The general idea behind
this approach is to estimate the faults. Based on this
knowledge, the state estimate can be used to guide the
system towards a fault-free behaviour.

For further derivations, let us recall the following
result (de Oliveira et al., 1999).

Lemma 1. The following statements are equivalent:

1. There exist X � 0 and W � 0 such that

V T
i XV i −W ≺ 0. (5)

2. There exist X � 0, W � 0 and U such that[−W V T
i U

T

UV i X −U −UT

]
≺ 0. (6)

Remark 1. For the purpose of further deliberations, it
is important to note that the regularity of U implies U +
UT � X � 0. Thus, the existence of (6) implies that it
is possible to calculate U−1.

3. Sensor FTC strategy

The main objective of this section is to design a controller
and a fault estimator which will make it possible to
estimate all states and sensor faults as well as to
compensate the fault effect. As a consequence, it allows
controling the system in a faulty sensor case.

3.1. Sensor fault estimator. The following state and
sensor fault estimator is proposed:

x̂k+1 = Ax̂k +Buk + g (x̂k,uk)

+Kx

(
yk −Cx̂k − f̂s,k

)
,

(7)

f̂ s,k+1 = f̂s,k +Ks

(
yk −Cx̂k − f̂ s,k

)
, (8)

where x̂k and f̂ s,k are state and fault estimates,
respectively.
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Instead of using a set of observers, the idea is to use
one single observer (7)–(8) to estimate all sensor faults.

The problem is to find Kx and Ks which represent
gain matrices for the state and fault estimate, respectively.
To handle this issue, from (1)–(7) a state estimation error
can be derived as

ek+1 = xk+1 − x̂k+1

= Axk +Buk + g (xk,uk)

+W 1wk −Ax̂k −Buk − g (x̂k,uk)

−Kxyk +KxCx̂k +Kxf̂ s,k

= [A−KxC] ek + g (xk,uk)− g (x̂k,uk)

−Kxes,k + [W 1 −KxW 2]wk,

(9)

where es,k = f s,k − f̂ s,k is the fault estimation error.
Subsequently, using (2) and (8), the fault estimation error
can be rewritten as follows

es,k+1 = f s,k+1 − f̂s,k+1

= f s,k+1 + fs,k − fs,k − f̂ s,k

−Ksyk +KsCx̂k +Ksf̂s,k

= εk + [I −Ks] es,k

−KsCek −KsW 2wk,

(10)

with εk = f s,k+1 − fs,k. For the purpose of further
deliberations it is assumed that εk ∈ l2.

Using the differential mean value theorem (DMVT)
(Zemouche and Boutayeb, 2006) it can be shown that

g (xk,uk)− g (x̂k,uk) = Mk (xk − x̂k) , (11)

with

Mk =

⎡
⎢⎢⎢⎢⎣
∂g1
∂x

(c1,uk)

...
∂gn
∂x

(cn,uk)

⎤
⎥⎥⎥⎥⎦ , (12)

where c1, . . . , cn ∈ Co(xk, x̂k), ci �= xk, ci �= x̂k,
i = 1, . . . , n. Having in mind the fact that all states are
bounded in a real system, xk ∈ X satisfies

xi,j ≤
∂gi(x)

∂xj
≤ x̄i,j ,

i = 1, . . . , n, j = 1, . . . , n, (13)

and hence it is clear that there exist Mk ∈ M such that

M =
{
Mk ∈ R

n×n|xi,j ≤ mk,i,j ≤ x̄i,j ,

i, j = 1, . . . , n,
}
. (14)

Thus, the state estimation error (9) can be rewritten
in the following form:

ek+1 = xk+1 − x̂k+1

= [A+Mk −KxC] ek

−Kxes,k + [W 1 −KxW 2]wk.

(15)

By defining

ēk+1 =

[
ek+1

es,k+1

]
, vk =

[
wk

εk

]
, (16)

it can be shown that the state and fault estimation error can
be presented in a compact form

ēk+1 = Xkēk +Zvk

= (Āk − K̄C̄ )ēk + (W̄ − K̄ V̄ )vk,
(17)

where

Āk =

[
A+Mk 0

0 I

]
, C̄ =

[
C I

]
,

W̄ =

[
W 1 0
0 I

]
, V̄ =

[
W 2 0

]
, (18)

K̄ =

[
Kx

Ks

]
.

Remark 2. It should be noted that the feasibility of the
proposed scheme is dependent on the observability of (1)
and (2), which can be impaired by sensors faults. Indeed,
the total failure of ith sensor means that fs,i,k = −yi,k.
In this situation the observation matrix C has its i-th
row equal to zero. Thus, the further performance of
the proposed scheme depends solely on the observability
of (1)–(2) under the updated observation matrix C .
Under such an observability condition, the convergence
of (7)–(8) is guaranteed by Theorem 1.

Taking into account the estimation error for both state
and fault, the following result is proposed:

Theorem 1. For a prescribed attenuation level μs of vk,
the H∞ estimator design problem for the system (1)–(2)
is solvable if there exist N , U and P � 0 such that for
all Mk ∈ M, the following condition is satisfied:

⎡
⎢⎣ I − P 0 Ā

T
k U

T − C̄
T
NT

0 −μ2
sI W̄

T
UT − V̄

T
NT

UĀk −NC̄ UW̄ −NV̄ P −U −UT

⎤
⎥⎦

≺ 0. (19)

Proof. The problem of designing the H∞ observer (Li
and Fu, 1997; Zemouche et al., 2008) is to obtain matrices
N ,U and P such that

lim
k→∞

ēk = 0 for vk = 0, (20)

‖ēk‖l2 < μs‖vk‖l2 for vk �= 0, ē0 = 0. (21)

To solve the problem, it is satisfactory to find a Lyapunov
function such that

ΔVs,k + ēTk ēk − μ2
sv

T
k vk < 0, (22)
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where ΔVs,k = Vs,k+1 − Vs,k, Vs,k = ēTkP ēk and P �
0. If vk = 0, then the Lyapunov function (22) takes the
following simplified form:

ΔVs,k + ēTk ēk < 0, (23)

and hence ΔVs,k < 0, which leads to (20). If vk �= 0 and
we take into account the fact that

∞∑
k=0

(ΔVs,k) = Vs,∞ − Vs,0, Vs,∞ = Vs,0 = 0,

then (22) yields

∞∑
k=0

(ΔVs,k) +

∞∑
k=0

(
ēTk ēk

)− μ2
s

∞∑
k=0

(
vT
k vk

)
< 0

=⇒ −V0 +
∞∑
k=0

(
ēTk ēk

)− μ2
s

∞∑
k=0

(
vT
k vk

)
< 0

=⇒
∞∑
k=0

(
ēTk ēk

)− μ2
s

∞∑
k=0

(
vT
k vk

)
< 0

=⇒
∞∑
k=0

(
ēTk ēk

)
< μ2

s

∞∑
k=0

(
vT
k vk

)
=⇒ ‖ēk‖l2 < μs‖vk‖l2 ,

which leads to (21). As a consequence by using (17) it is
easy to show that

ΔVs,k + ēTk ēk − μ2
sv

T
k vk

= ēTk

(
XT

k PXk + I − P
)
ēk

+ ēTk

(
XT

kPZ
)
vk

+ vT
k

(
ZTPXk

)
ēk

+ vT
k

(
ZTPZ − μ2

sI
)
vk < 0.

(24)

By introducing

v̄k =

[
ēk
vk

]
, (25)

it can be shown that (24) can be rewritten in the following
form:

v̄T
k

[
XT

kPXk + I − P XT
kPZ

ZTPXk ZTPZ − μ2
sI

]
v̄k ≺ 0,

(26)
which is equivalent to[

XT
k

ZT

]
P
[
Xk Z

]
+

[
I − P 0

0 −μ2
sI

]
≺ 0. (27)

Applying Lemma 1 to (27) gives⎡
⎣I − P 0 XT

k U
T

0 −μ2
sI ZTUT

UXk UZ P −U −UT

⎤
⎦ ≺ 0. (28)

Substituting

UXk = UĀk −UK̄C̄ = UĀk −NC̄ , (29)

UZ = UW̄ −UK̄V̄ = UW̄ −NV̄ , (30)

completes the proof. �

Note that M specified by (14) can be equivalently
expressed by

M =
{
M (α) : M (α) =

N∑
i=1

αiMk,
N∑
i=1

αi = 1, αi ≥ 0
}
,

(31)
where N = 2n

2

. Note that, this is a general description,
which does not take into account that some elements of
M may be constant. In such cases, N is given by
N = 2(n−c)2 , where c stands for the number of constant
elements of M . Thus, the system can be described in
a linear parameter varying (LPV) form. Solving (19) is
equivalent to (for i = 1, . . . , N )

⎡
⎢⎣ I − P 0 Ā

T
i U

T − C̄
T
NT

0 −μ2
sI W̄

T
UT − V̄

T
NT

UĀi −NC̄ UW̄ −NV̄ P −U −UT

⎤
⎥⎦

� 0. (32)

As a result, the gain matrices are obtained as follows:

K̄ =

[
Kx

Ks

]
= U−1N . (33)

3.2. Controller design. Before proceeding with the
controller design procedure, it is important to underline
the fact, proven in the former section, that the state
estimate x̂k provided by (7) converges to the real state
irrespective of sensor faults with the state estimation error
given by (10).

Thus, a natural control strategy is

uk = −Kcx̂k +Krrk, (34)

where Kc, Kr and rk are a control gain matrix, a
pre-filter matrix and a reference vector, respectively.
Based on the fault-free state estimate, a classical state
feedback controller is proposed. Without loss of
generality, let us assume that the reference signal is equal
to 0, and hence, (34) boils down to

uk = −Kcx̂k. (35)

Having in mind that the state estimation error is

ek = xk − x̂k, (36)

introducing (36) into (35) gives

uk = −Kcxk +Kcek. (37)
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Substituting the above equation into (1) yields

xk+1 = (A−BKc)xk +BKcek

+ g (xk,uk) +W 1wk.
(38)

Let us assume that g (0,uk) = 0. Since the system
is controlled to the origin, using DMVT and substituting
x̂k = 0 in (11), it can be shown that

g (xk,uk) = Mkxk, (39)

with

Mk =

⎡
⎢⎢⎢⎢⎣
∂g1
∂x

(c1,uk)

...
∂gn
∂x

(cn,uk)

⎤
⎥⎥⎥⎥⎦ , (40)

Thus, the closed-loop system (38) can be rewritten in the
following form:

xk+1 = X̃kxk + Ỹ ēk + Z̃vk, (41)

where

X̃k = Ãk −BKc, Ãk = A+Mk,

Ỹ = [BKc 0] , Z̃ = [W 1 0]. (42)

Remark 3. At this point, an obvious question arises:
Is it possible to design the state/fault estimator and
controller separately? The objective of the remaining
part of this section is to provide a positive answer to this
question (separation principle) along with suitable design
procedure.

Let us start with developing an augmented system
composed of (17) and (41) that can be expressed as[

xk+1

ēk+1

]
=

[
X̃k Ỹ
0 Xk

] [
xk

ēk

]
+

[
Z̃ 0
0 Z

]
vk. (43)

Moreover, define z̃k =
[
xT
k , ē

T
k

]T
and

ΔVk + z̃T
k z̃k − μ2vT

k vk < 0, (44)

where Vk signifies a Lyapunov function. It can be easily
observed from (43) that the separation principle holds for
vk = 0. Indeed, the convergence of the system is defined
by a union of eigenvalue sets of X̃k and Xk. They can,
of course, depend on k, which means that for any k all
eigenvalues should lie within a unit circle. In this case,
the fault/state estimator and the controller can be designed
separately. For vk �= 0, the fault/state estimator design
procedure guarantees that the inequality (22) is satisfied.
A similar condition can be defined for the controller:

ΔVc,k + xT
k xk − μ2

cv
T
k vk < 0. (45)

Thus, if ΔVk = ΔVs,k + ΔVc,k and (22) as well as (45)
are satisfied, then (43) obeys

ΔVs,k +ΔVc,k + z̃T
k z̃k −

(
μ2
s + μ2

c

)
vT
k vk < 0, (46)

which is equivalent to (44) with μ2 = μ2
s + μ2

c . The
above reasoning clearly shows that the separation prin-
ciple holds for vk �= 0 as well. As a result, the state
feedback controller of the form

uk = −Kcxk, (47)

can be designed in order to satisfy (45).
To solve the controller design problem, the following

result is proposed:

Theorem 2. For a prescribed attenuation level μc of vk,
the H∞ controller design problem for the system (1)–(2)
is solvable if there exist N , U and P � 0 such that for
all Mk ∈ M, the following condition is satisfied:

⎡
⎢⎢⎢⎣

−P 0 UT Ã
T

k −NTBT UT

0 −μ2
cI Z̃

T
0

ÃkU −BN Z̃ P −U −UT 0
U 0 0 −I

⎤
⎥⎥⎥⎦

≺ 0, (48)

Proof. The problem of designing the H∞ controller is to
obtain matrices N , U and P such that

lim
k→∞

xk = 0 for vk = 0, (49)

‖xk‖l2 ≤ μc‖vk‖l2 for vk �= 0, x0 = 0. (50)

To solve the problem, it is satisfactory to find a Lyapunov
function such that

ΔVc,k + xT
k xk − μ2

cv
T
k vk < 0, (51)

where ΔVc,k = Vc,k+1−Vc,k, Vc,k = xT
k U

−TPU−1xk,
P � 0. In much the some way as for the estimator design,
if vk = 0, then the Lyapunov function (51) takes the
following simplified form:

ΔVc,k + xT
k xk < 0, (52)

and hence ΔVc,k < 0, which leads to (49). If vk �= 0 and
we take into account that

∞∑
k=0

(ΔVc,k) = Vc,∞ − Vc,0, Vc,∞ = Vc,0 = 0,
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then (51) yields

∞∑
k=0

(ΔVc,k) +

∞∑
k=0

(
xT
k xk

)− μ2
c

∞∑
k=0

(
vT
k vk

)
< 0

=⇒ −V0 +

∞∑
k=0

(
xT
k xk

)− μ2
c

∞∑
k=0

(
vT
k vk

)
< 0

=⇒
∞∑
k=0

(
xT
k xk

)− μ2
c

∞∑
k=0

(
vT
k vk

)
< 0

=⇒
∞∑
k=0

(
xT
k xk

)
< μ2

c

∞∑
k=0

(
vT
k vk

)
=⇒ ‖xk‖l2 < μc‖vk‖l2 ,

which leads to (50). As a consequence by using (41) it is
easy to show that

ΔVc,k + xT
k xk − μ2

cv
T
k vk

= xT
k

(
X̃

T

kU
−TPU−1X̃k

+ I −U−TPU−1
)
xk

+ xT
k

(
X̃

T

k U
−TPU−1Z̃

)
vk

+ vT
k

(
Z̃

T
U−TPU−1X̃k

)
xk

+ xT
k

(
Z̃

T
U−TPU−1Z̃ − μ2

cI
)
vk < 0.

(53)

By introducing

v̆k =

[
xk

vk

]
, (54)

it can be shown that (53) can be rewritten to the following
form

v̆k
T

[
S1 S2

S3 S4

]
v̆k ≺ 0, (55)

where

S1 = X̃
T

kU
−TPU−1X̃k + I −U−TPU−1,

S2 = X̃
T

kU
−TPU−1Z̃,

S3 = Z̃
T
U−TPU−1X̃k,

S4 = Z̃
T
U−TPU−1Z̃ − μ2

cI,

which is equivalent to

[
X̃

T

k U
−T

Z̃
T
U−T

]
P
[
U−1X̃k U−1Z̃

]

+

[
I −U−TPU−1 0

0 −μ2
cI

]
≺ 0. (56)

Pre- and post-multiplying it respectively by
diag(UT , I) and diag(U , I) and then applying Lemma 1

gives⎡
⎢⎣U

TU − P 0 UT X̃
T

k

0 −μ2
cI Z̃

T

X̃kU Z̃ P −U −UT

⎤
⎥⎦ ≺ 0. (57)

Subsequently, applying the Schur complement gives⎡
⎢⎢⎢⎣

−P 0 UT X̃
T

k UT

0 −μ2
cI Z̃

T
0

X̃kU Z̃ P −U −UT 0
U 0 0 −I

⎤
⎥⎥⎥⎦ ≺ 0. (58)

Substituting

X̃kU = ÃkU −BKcU = ÃkU −BN , (59)

completes the proof. �

In much the same way as for the estimator design,
solving (48) is equivalent to (for i = 1, . . . , N )

⎡
⎢⎢⎢⎣

−P 0 UT Ã
T

i −NTBT UT

0 −μ2
cI Z̃

T
0

ÃiU −BN Z̃ P −U −UT 0
U 0 0 −I

⎤
⎥⎥⎥⎦

≺ 0. (60)

Finally, the controller gain matrix is obtained as
follows:

Kc = NU−1. (61)

To recapitulate briefly, the FTC, which is able to
compensate all sensor faults can be illustrated as in Fig. 1.

Controller System

Estimator

rk
uk yk

f̂s,k

wk fk

x̂
k

Fig. 1. Sensor fault-tolerant control scheme.

4. Illustrative example

To verify the proposed approach, a twin-rotor
aero-dynamical system (Fig. 2) is employed. Such
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a system is designed to simulate the flight object in
laboratory conditions. The system can be described by a
highly non-linear model with cross coupled axes by using
the following equations:

dωv

dt
=

kbk2
JmrRb

uv −
(
Bmr

Jmr
+

k 2
b

JmrRb

)
ωv

− f4(ωv)

Jmr
,

(62)

dΩv

dt
=

lmf5 (ωv) + kgΩhf5 (ωv) cos(θv)− kovΩv

Jv

+
g ((KA −KB) cos(θv)−KC sin(θv))

Jv

− Ω 2
hKH sin(θv) cos(θv)

Jv

+
kt

(
kak1

Ra
uh −

(
Btr +

k 2
a

Ra

)
ωh − f1 (ωh)

)
JvJtr

,

(63)

dθv
dt

= Ωv, (64)

dωh

dt
=

kak1
JtrRa

uh −
(
Btr

Jtr
+

k 2
a

JtrRa

)
ωh

− f1(ωh)

Jtr
,

(65)

dΩh

dt

=
kohf2 (ωh) cos(θv)− kohΩh − f3 (θh) + f6 (θv)

Φ

+
kmωv sin(θv)Ωv

(−Φ− 2KE cos2(θv)
)

(Φ)2

+
km sin(θv)

(
kbk2

Rb
uv −

(
Bmr +

k 2
b

Rb

)
ωv − f4 (ωv)

)
JmrΦ

,

(66)

dθh
dt

= Ωh, (67)

where Φ = KD cos2(θv) +KE sin2(θv) + KF , ωv, Ωv,
θv, ωh, Ωh and θh are the rotational velocity of the main
rotor, the angular velocity around horizontal axes, the
pitch angle of the beam, the rotational velocity of the tail
rotor, angular velocity around vertical axes and the yaw
angle of the beam, respectively. The system state vector is

x =
[
ωT
v ,Ω

T
v , θ

T
v , ω

T
h ,Ω

T
h , θ

T
h

]T
,

and the system input vector is

u =
[
uT
v , u

T
h

]T
,

Fig. 2. Twin-rotor aero-dynamical system.

where uv and uh are the voltages of the main and tail
rotors. The rest of the parameters are inherited from
(Rotondo et al., 2013).

The non-linear model, which describes the behaviour
of the system, has been discretized with a sampling
time Ts = 0.01 [s] which leads to the state-space
representation (1)–(2). It is worth to emphasize that the
angular velocity around both, vertical and horizontal axes
were not measured directly during the experiment, which
implies the output equation

C =

⎡
⎢⎢⎣
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎦ . (68)

Moreover, consider a fault scenario

fs,k =
[
fT
s,1,k,f

T
s,3,k,f

T
s,4,k,f

T
s,6,k

]T
,

with

fs,1,k =

{
y1,k − 192, 3000 ≤ k ≤ 12000,
0, otherwise,

fs,3,k =

{
y2,k − 0.2, 5000 ≤ k ≤ 10000,
0, otherwise,

fs,4,k =

{
y4,k − 384, 6000 ≤ k ≤ 9000,
0, otherwise,

fs,6,k =

{
y6,k + 0.1, 8000 ≤ k ≤ 11000,
0, otherwise,

(69)

which means that intermittent faults occurred in all of four
sensors. In the above scenario, the faults overlap each
other, and at some time instances all sensors are faulty.
This means that all sensors give wrong measurements,
simultaneously.
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Fig. 3. State variable x1 and its estimate x̂1.

Fig. 4. State variable x2 and its estimate x̂2.

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

estimate FTC without FTC

1000 2000 3000
0.28

0.3

0.32

Fig. 5. State variable x3 and its estimate x̂3.

It should be noted that the results presented in
this section are based on the simulations with the
mathematical model (62)–(67). The main reason behind
it is that it is hard to introduce sensor and actuator
faults within the laboratory counterpart of (62)–(67).
Assume that the initial state for the system as well as

for the observer are x0 = [0, 0, 0.001, 0, 0, 0.001] and
x̂0 = [0, 0, 0.01, 0, 0, 0.01], respectively, while the fault
estimate is initialized by f̂s,0 = [0, 0, 0, 0].

By solving a set of LMIs (32) described in
Section 3.1, the following observer gain matrices have
been obtained:

Kx = 10−4

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0360 0.0014 0.0004 0.0000
0.0053 −0.0080 0.0014 0.0272
−0.0020 0.1961 −0.0003 0.0048
0.0016 −0.0023 0.0802 0.0081
−0.0031 0.0237 −0.0525 0.5181
0.0026 0.0072 0.0186 0.3602

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(70)

Ks =

⎡
⎢⎢⎣

0.9987 0.0000 −0.0000 −0.0000
0.0000 0.9995 −0.0000 0.0000
−0.0000 0.0000 0.9991 −0.0000
0.0000 0.0000 −0.0001 0.9996

⎤
⎥⎥⎦ . (71)

Solving a set of LMIs (60) described in Section 3.2,
the following controller gain matrix has been obtained:

Kc =

[ −35.6089 −8.7674 −4.4345
−0.2607 −21.6470 −1.8907

0.2404 −0.6062 1.8596
−118.5292 −53.2380 26.7607

]
,

(72)

The control goal was to achieve appropriate pitch and yaw
angles. Thus, the reference signal during the experiment
was

rk =

[
0.3
0.2

]
. (73)

Figures 3–8 present the response of the system in the
faulty case. The black solid line in these graphs represents
the system state with FTC and the dashed line represents
the system state controlled by a classical robust controller
without fault tolerance. Moreover, the dash-dot line
represent the state estimate. The controlled state variables
θv and θh are presented in Figs. 5 and 8, respectively.
It is easy to see that the system with FTC is following
the reference signal (grey line) in contrast to the response
without FTC. It should be also mentioned that it was
needed about 20 [s] for the pitch angle and about 15
[s] for the yaw angle to reach the reference signal. The
system is controlled properly even in case of faults thanks
to the knowledge about the fault estimate f̂ s,k and, as
a consequence the fault-free state estimate x̂k. In the
regular control without FTC, the values measured by the
faulty sensors are assumed as correct ones and the system
is guided according to the measurements. This may lead
to the total failure of the system. Figures 9–12 show
comparisons between real and estimated faults. It is easy
to see that the estimated faults are pursuing the real ones
highly satisfactory. This implies the accuracy of the state
estimate. Finally, Figs. 13 and 14 present the control
signal for the main and tail rotor, respectively, in the range
from−1 to 1. It can be seen that the control signal changes
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Fig. 6. State variable x4 and its estimate x̂4.

Fig. 7. State variable x5 and its estimate x̂5.
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FTC without FTC estimate
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0.18

0.2

0.22

Fig. 8. State variable x6 and its estimate x̂6.

adequately to what has been measured in the case without
fault tolerance while it is maintained at a constant level in
the case of FTC. This remains in contrast to the results
obtained without fault tolerance. The obtained results
confirm that FTC allows controlling the system correctly
even in the case of sensor faults.

5. Conclusions

The main aim of the paper was to handle the system
control problem while the sensor faults occur once. The
strategy for simultaneous estimation of the state and the
fault was proposed. The presented observer was able
to estimate the fault for all of the sensors in the system
simultaneously and thanks to that it is easy to compensate
the fault influence. The design strategy for the observer as
well as for the controller was based on the H∞ approach
which boils down to solving a set of LMIs. It can be easily
used in fault diagnosis for linear as well as non-linear
LPV-like systems. The final part of the paper shows an
illustrative example with an application to the twin-rotor
aero-dynamical system. The achieved results confirm the
correctness and effectiveness of the proposed approach.
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