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TRANSIENT FLOW IN GAS NETWORKS: TRAVELING WAVES
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In the context of gas transportation, analytical solutions are helpful for the understanding of the underlying dynamics gov-
erned by a system of partial differential equations. We derive traveling wave solutions for the one-dimensional isothermal
Euler equations, where an affine linear compressibility factor is used to describe the correlation between density and pres-
sure. We show that, for this compressibility factor model, traveling wave solutions blow up in finite time. We then extend
our analysis to networks under appropriate coupling conditions and derive compatibility conditions for the network nodes
such that the traveling waves can travel through the nodes. Our result allows us to obtain an explicit solution for a certain
optimal boundary control problem for the pipeline flow.
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1. Introduction

The transportation of gas plays an important role in
today’s energy market. For the control of the gas flow
in a pipeline system, a model for the flow is essential.
A well-established model is given by one-dimensional
isothermal Euler equations, a hyperbolic system of two
partial differential equations (PDEs) (see Osiadacz, 1984;
1989; Banda et al., 2006). In the case of ideal gas the
correlation between pressure and density is given by the
constant speed of sound. This is not true in the more
realistic case of the so-called real gas, where the speed
of sound is not constant. Instead, a pressure dependent
compressibility factor (the so-called z-factor) appears in
the model. Like de Almeida et al. (2014) or Starling and
Savidge (1992), we consider a compressibility factor that
depends on the pressure in an affine linear way.

For the understanding of the PDE model and for the
evaluation of discretizations, analytical solutions of the
PDEs are extremely useful. The steady state solutions
on gas networks are already available; see the works of
Gugat et al. for the case of ideal gas (2015) and for
an affine linear z-factor (2016). In the application of
gas networks, the transient solutions are of particular
interest (see Osiadacz, 1984). In this paper we provide
analytical transient solutions for the PDE model. To be
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precise, we construct solutions that move with constant
speed, that is we study traveling waves. It is well
known that for many PDE systems, traveling waves can
be constructed, for example for the Korteweg–de Vries
equation (Whitham, 1974). Traveling waves on networks
have already been considered for various models (see,
e.g., Caputo and Dutykh, 2014; Mugnolo et al., 2014).
Our result allows us to obtain an explicit solution for a
certain optimal boundary control problem for the pipeline
flow. This is useful not only for the understanding of
the system, but also to test the performance of numerical
schemes.

It turns out that the isothermal Euler equations with
affine linear z-factor generate traveling waves that blow
up at a finite critical time. The reason is that as the
wave is traveling, the pressure is strictly increasing until
it reaches a critical value where the expression for the
z-factor has a root. At this point the model no longer
makes sense physically and the density of the solution
blows up to infinity. Note that while the solution blows
up after a finite time, depending on the initial state, the
time interval where the solution exists can be arbitrarily
long. Thus, depending on the parameter settings, we
provide analytical reference solutions for arbitrarily long
time intervals. In fact, in the operation of gas pipeline
networks there are usually upper bounds v̄ ∈ (0,∞)
on the admissible velocities v, that is, state constraints
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|v| ≤ v̄ have to be valid everywhere at all times, for
example, in order to avoid noise pollution by vibrating
pipes. As v̄ → 0, the blow up time for the traveling waves
tends to infinity.

Interestingly, our construction shows that for all
velocities v ∈ (−∞, ∞), waves that travel with the
velocity v exist. This is due to the nonlinearity of
the model and in contrast, for example, to the linear
wave equation where the wave speed is a unique fixed
constant. Let us also note that before the blow up time,
the constructed solutions are smooth. For the case of
ideal gas, global smooth product solutions and traveling
waves that do not blow up are presented in (Gugat and
Ulbrich, 2017). This is in contrast to the blow up after
finite time that occurs for the real gas model that is
considered in this paper.

We also consider the solutions on networks under
standard coupling conditions. We establish compatibility
conditions for the network data that allow us to extend the
traveling waves to the network.

This paper is structured as follows. In Section 2
we state the model of the isothermal Euler equations
and introduce a nonconstant compressibility factor. In
Section 3 we derive analytical traveling wave solutions
and show that they blow up in finite time. In Remark 2,
we present the solution of a certain optimal boundary
control problem. The extension to networks by standard
coupling conditions is described in Section 4. We con-
sider a network with three edges for which we obtain
compatibility conditions on the network data. We also
consider a more general case of a star-shaped network
with N edges and discuss networks with cycles. At the
end of the paper, we present an example that fulfills these
conditions and illustrates the behavior of the solution.

2. Isothermal Euler equations with friction

The isothermal gas flow through a pipeline can be
described by the conservation of mass and the balance of
momentum. Together they form a quasilinear system of
hyperbolic balance laws known as the isothermal Euler
equations with friction. Let a length L > 0 be given. For
t > 0, x ∈ [0, L], we have

⎧
⎪⎨

⎪⎩

∂tρ+ ∂xq = 0,

∂tq + ∂x

(

p+
q2

ρ

)

= −1

2
θ
q|q|
ρ

.
(ISO)

There are three functions of time and space: the mass flow
per cross sectional area q, the density ρ and the pressure p.
The constant θ := λ/D is defined through the friction
factor λ > 0 and the pipe diameter D > 0. We model the
compressibility factor as suggested by the American Gas
Association (Starling and Savidge, 1992) using

z(p) := 1 + α p, (AGA)

where α < 0 constitutes a negative constant. It is
sufficiently accurate within the network operating range
(de Almeida et al., 2014). We use the state equation for
real gas given by

p = T̂ ρz(p), (1)

where T̂ := RT with the specific gas constant R > 0 and
the temperature T > 0.

Liu et al. (2005) proposed a method for the detection
of leaks in gas pipelines that was based upon a semilinear
model for the flow that is obtained from (ISO) by
deleting the term q2/ρ. Note that (ISO) is similar to the
Saint-Venant equations for the flow in open channels (see
Dos Santos Martins et al., 2012). The stability of an
irrigation canal system was studied by Bounit (2003).

3. Traveling wave solutions

In this section, we present traveling wave solutions for
the isothermal Euler equations. The following theorem
gives explicitly solutions where the speed v := q/ρ
is constant in time and space. In the representation,
the Lambert W function W0 appears that has been
introduced by Lambert (1758) as the inverse function of
the function f : (−1,∞) �→ (−1/e,∞), x �→ x exp(x)
(see also Corless et al., 1996; Veberic, 2010).

Theorem 1. (Traveling waves) Choose a speed v �= 0. If
v > 0, choose a real constant C > 1 and if v < 0, choose

C > 1 +
θv2

2T̂
L.

Define the critical time

tcrit =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2T̂

θ|v|3 (C − 1) if v > 0,

2T̂

θ|v|3 (C − 1) +
L

v
if v < 0.

(2)

For x ∈ [0, L] and t ∈ [0, tcrit) define

g(t, x) := W0

(

− exp

(
θ|v|3
2T̂

t− θv|v|
2T̂

x− C

))

.

(3)
For α < 0 as in (AGA) consider the initial boundary value
problem with the partial differential equation (ISO), the
initial conditions

ρ(0, x) =
1

α T̂

g(0, x)

1 + g(0, x)
for x ∈ [0, L], (IC1)

q(0, x) =
v

α T̂

g(0, x)

1 + g(0, x)
for x ∈ [0, L], (IC2)



Transient flow in gas networks: Traveling waves 343

and the boundary conditions

ρ(t, 0) =
1

α T̂

g(t, 0)

1 + g(t, 0)
for t ∈ (0, tcrit), (BC1)

q(t, L) =
v

α T̂

g(t, L)

1 + g(t, L)
for t ∈ (0, tcrit), . (BC2)

Then for (t, x) ∈ [0, tcrit)× [0, L],

ρ(t, x) =
1

α T̂

g(t, x)

1 + g(t, x)
, (4)

q(t, x) =
v

α T̂

g(t, x)

1 + g(t, x)
, (5)

is a classical solution of the initial boundary value prob-
lem (ISO), (IC1), (IC2), and (BC1), (BC2). Moreover, it
is the unique traveling wave solution that satisfies (IC1),
(IC2) and the partial differential equation (ISO). We have

p(t, x) =
1

α
g(t, x). (6)

Remark 1. Note that the pressure p and the density ρ
remain positive as long as the solution does not blow up,
since α < 0 and g has values in (−1, 0).

If v > 0, for fixed t the pressure p(t, x) as defined
in (6) is strictly decreasing along the pipe. Note that the
case v < 0 becomes symmetric to the case v > 0 if the
orientation of the interval is switched, that is, x ∈ [0, L]

is replaced by L− x and C is replaced by C + θ v |v|L
2T̂

.
Theorem 1 implies that for all velocities v �= 0,

traveling waves exist. The corresponding solutions for
v = 0 are steady states with q = 0 and constant pressure
and density.

Remark 2. (Optimal boundary control problem) For a
given constant velocity v, consider the optimal boundary
control problem

min

∫ T

0

∫ L

0

∣
∣
∣
∣
q(t, x)

ρ(t, x)
− v

∣
∣
∣
∣

2

dxdt

subject to (ISO), (IC1), (IC2), and the boundary
conditions p(t, 0) = u1(t) and p(t, L) = u2(t), where
the aim is to keep the gas velocity constant.

Suppose that there exist controls u1 and u2 such that

q(t, x)

ρ(t, x)
− v = 0.

Then q = ρ v. Due to the first equation in (ISO)
this implies that ρ satisfies the transport equation ∂tρ +
v ∂xρ = 0. Since q = ρ v, this implies that q and ρ are
a traveling waves solution that satisfies (ISO) and (IC1),
(IC2). Theorem 1 states that if T < tcrit, these conditions
already determine uniquely the solution defined in (4)
and (5). Hence the unique optimal controls are u1(t) =
g(t, 0)/α and u2(t) = g(t, L)/α with g as defined in (3).

Proof. (Theorem 1) Let

z =
θ|v|3
2T̂

t− θv|v|
2T̂

x.

The domain of W0 is (−1/e,∞). This means in (3) we
need

− exp(z − C) > − exp(−1)

or
z − C < −1.

Setting t = 0, we see that

z = −θv|v|
2T̂

x

and deduce that C > 1+ z for all x ∈ [0, L] is equivalent
to the conditions for the choice of C stated in Theorem 1.
This ensures that the function g is well defined for t = 0
and x ∈ [0, L]. Thus the solutions are well-defined locally
around t = 0. In fact, they are well defined as long as
g(x, t) > −1. However, due to the definition (2) of tcrit

for t < tcrit we have z −C < −1, hence − exp(z−C) >
− exp(−1) and thus W0(− exp(z − C)) > −1. Thus the
solutions are well defined for t ∈ [0, tcrit).

It is obvious that the functions given by (4) and (5)
satisfy the initial conditions (IC1), (IC2) and the boundary
conditions (BC1), (BC2). It remains to verify that they
also satisfy (ISO). The definition of g yields

∂tg(t, x) + v ∂xg(t, x) = 0. (7)

Since q = v ρ, this implies that the first equation in
(ISO) holds. Now we check that also the second equation
in (ISO) holds. We substitute the pressure and its
space derivative by a function of the density via the state
equation (1) and obtain

p =
T̂ ρ

1− αT̂ ρ
, ∂xp =

T̂ ∂xρ

(1− αT̂ρ)2
.

Since q/ρ = v is constant, with the second equation in
(ISO) (the balance of momentum), this leads to

∂tq + ∂x

(

p+
q2

ρ

)

= ∂tq +

[
T̂

(1− αT̂ ρ)2
− q2

ρ2

]

∂xρ+
2q

ρ
∂xq

= ∂tq +

[
T̂

(1− αT̂ ρ)2
− v2

]

∂xρ+ 2 v ∂xq.

Since q = v ρ, we have ∂xq = v ∂xρ and obtain

∂tq + ∂x

(

p+
q2

ρ

)

= v ∂tρ+

[
T̂

(1− αT̂ ρ)2
+ v2

]

∂xρ.
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Due to (4) and (7), in terms of g this yields

∂tq + ∂x

(

p+
q2

ρ

)

= −v2
1

α T̂

1

(1 + g)2
∂xg

+
[
T̂ (1 + g)2 + v2

] 1

α T̂

1

(1 + g)2
∂xg

=
1

α
∂xg.

Hence the second equation in (ISO) holds if g satisfies the
ordinary differential equation

1

α
∂xg = −1

2
θv |v| 1

α T̂

g

1 + g
.

After multiplication by α, separation of variables
yields

∫ (

1 +
1

g

)

dg = D − θv |v|
2 T̂

x

with a real constant D. By integration we obtain

g + ln(|g|) = D − 1

2
θv |v| 1

T̂
x.

By applying the exponential function this yields

|g| exp(g) = exp

(

D − θv |v|
2 T̂

x

)

.

Since g < 0, due to the definition of the Lambert W
function, the function g as defined in (3) satisfies this
equation.

For initial and boundary data with a sufficiently
small C1–norm, the uniqueness of the solution of the
initial boundary value problem follows from the theory
of semi-global classical solutions (Li, 2010).

Suppose that a classical traveling wave solution
of (ISO) is given by ρ(t, x) = f1(v t − x) and q(t, x) =
f2(v t − x). Then f1 and f2 are defined on the
interval [−L, v tcrit). The first equation in (ISO) implies
v f ′

1(s) = f ′
2(s) for all s ∈ [−L, v tcrit). The initial

conditions (IC1), (IC2) imply that f2(x) = v f1(x) for
all x ∈ [−L, 0]. Hence f2(0) = v f1(0). Since f ′

2 = v f ′
1

on [0, tcrit), this yields f2 = v f1 on [0, v tcrit). By (IC1)
and (IC2), the values of f1 and f2 on the interval [−L, 0]
are uniquely determined. Since f2 = v f1, the second
equation in (ISO) yields the ordinary differential equation

f ′
1 =

1

2 T̂
θ v |v| f1 (1− α T̂ f1)

2. (8)

The value of f1(0) is determined by (IC1). Hence f1 is
uniquely determined as the solution to the initial value
problem with the corresponding initial condition and the

differential equation (8) on the maximal interval of the
existence of this solution, which is [0, v tcrit). Since
f2 = v f1, this implies that the traveling wave solution
is uniquely determined by (IC1), (IC2) and (ISO). �

The next lemma states that for the model that we
consider here all non stationary traveling waves blow up
in finite time.

Lemma 1. Assume that v �= 0. There exists a finite time
tcrit such that the solution ρ(t, x) as in (4) goes to infinity
as t approaches tcrit for either x = 0 or x = L.

Proof. Clearly, the blow-up occurs for g(x, t) → −1.
This happens for

− exp

(
θ|v|3
2T̂

t− θv|v|
2T̂

x− C

)

→ − exp(−1).

Hence, since the exponential function is injective, we
consider

θ|v|3
2T̂

t− θv|v|
2T̂

x− C = −1.

Solving for t yields

t =
x

v
+

2 T̂

θ |v|3 (C − 1).

The critical time tcrit is the minimum of the right-hand
side over [0, L]. Depending on the sign of v, it is attained
at either x = 0 or x = L, and we retain tcrit as defined
in (2). The choice of C in Theorem 1 implies that we
have tcrit > 0. �

4. Coupling conditions and compatibility
conditions for networks

We consider the flow on networks that are given by a
graph G = (V , E) with the set of nodes V and the set of
edges E . For a given node u ∈ V the set of ingoing edges
(where the end Le of the interval [0, Le] that corresponds
to the edge e is at the node u) is denoted by E+(u) and
the set of outgoing edges (where the end 0 is at the node
u) is denoted by E−(u). On each edge e we denote the
corresponding quantities by an index e. For each node
u ∈ V , and t > 0 we have the conservation of mass,
i.e.,

∑

e∈E+(u)

D2
e qe(t, Le) =

∑

f∈E−(u)

D2
f qf (t, 0). (9)

Furthermore, for every node u we have the continuity of
pressure for all e, f ∈ E+(u), g, h ∈ E−(u),

pe(t, Le) = pf (t, Lf ) = pg(t, 0) = ph(t, 0). (10)

Condition (9) is also known as Kirchhoff’s law (cf.
Kirchhoff, 1847).
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u1 u2

u3

u4

e1

e2

e3

Fig. 1. Three-pipe network.

Now our aim is to develop nontrivial algebraic
compatibility conditions for a small network that allow
the traveling waves to travel through the nodes without a
change in their structure such that the coupling conditions
(9) and (10) hold.

4.1. n-Pointed star. Consider a star graph with one
ingoing and n − 1 outgoing edges as in Fig. 1 for
n = 3 and in Fig. 2 for n = 8. The index i =
1, 2, . . . , n refers to the edge ei and is used on constants
and functions. The ingoing edge is denoted by the index 1.
We assume that the constants α, R, T are equal on each
edge. The following lemma contains conditions on the
system parameters and the wave speeds that allow the
waves to travel through the nodes.

u1

u3

u9

u2

u4

u5

u6

u7

u8

Fig. 2. Eight-pointed star.

Lemma 2. The traveling wave solutions on the n-pointed
star with one ingoing edge fulfill the Kirchhoff condi-
tions (9) and (10) if and only if the following three con-
ditions hold:

(a) C1 +
θ1v1|v1|

2T̂
L1 = Ci for i = 2, . . . , n,

(b) θ1|v1|3 = θi|vi|3 for i = 2, . . . , n,

(c) sign(v1)
D2

1
3
√
θ1

=
n∑

i=2

sign(vi)
D2

i
3
√
θi
.

Proof. The continuity condition (10) at the middle node
states that

p1(t, L1) = pi(t, 0), ∀i = 2, . . . , n.

Hence, the injectivity of the Lambert W function and the
exponential function implies

θ1|v1|3
2T̂

t− θ1v1|v1|
2T̂

L1 − C1

=
θi|vi|3
2T̂

t− Ci, ∀i = 2, . . . , n.

For t = 0, this leads to (a). In turn, t > 0 yields (b). The
first Kirchhoff condition (9) implies

D2
1v1 =

n∑

i=2

D2
i vi, (11)

which can be rewritten with (b) to get (c).
Also, (a)–(c) imply the Kirchhoff conditions (9)

and (10). By multiplying (b) with t and adding the result
to (a), we retain (10). From (b) and (c) we can get (11)
and by multiplying with the density we arrive at (9). �

Remark 3. Condition (a) ensures the continuity of
pressure at t = 0. Condition (b) controls the growth of the
solution with time such that the continuity is preserved.
Equation (c) ensures the conservation of mass. Note that
conditions (a), (b) and (c) are independent since the Ci’s
only appear in (a) and the Di’s only appear in (c).

Example 1. We choose T̂ = 1, α = −0.1, θ1 =
0.13, θ2 = 0.23, θ3 = 0.13, L1 = 8, L2 = 10, L3 = 12.
Inserting the friction values in (c) yields D2

1 = 0.5D2
2 +

D2
3. The choice D1 = 1, D2 = 1, D2 = 1/

√
2 is valid.

Furthermore, we use v1 = 10, which gives, by (b),

|v2| = 3

√
θ1
θ2

|v1| = 5, |v3| = 3

√
θ1
θ3

|v1| = 10.

For C1 = 1 condition (a) requires C2 and C3 to be

C3 = C2 = C1 +
θ1v1|v1|

2T̂
L1 = 1.4 .

The critical time on each edge is given by

ticrit =
2T̂

θi|v3i |
(Ci − 1);

see (2). For our data we calculate te1crit = 2, te2crit =
11.2, te3crit = 2.8 . This means the state will blow up first
on edge e1 in node u1.

Figure 6 shows the three edges of the graph depicted
at the x-y-plane in different shades of gray. The z-axis
corresponds to the value of the density in a logarithmic
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scale. The flow is just the density scaled by the
constants vi. Therefore, it has a similar behavior, but it
is not continuous through the node u2. The pictures are
snapshots at different times up to 95% of the calculated
critical time te1crit = 2. �

Remark 4. It is a feature of the real gas model (1) that,
while the density blows up, the pressure does not. This can
be seen directly from (6) with the knowledge that the W0

function has a real limit at the point−1. Compare Fig. 6 to
Fig. 5, which shows the pressure solution for Example 1.
Although in principle the behavior seems similar, the blow
up at node u1 does not occur. However, remember that the
function g/(1 + g) is only defined up to the critical time.
Note that (AGA) only makes sense for p ∈ [0,−1/α).
As ρ blows up to infinity, p converges to −1/α. In the
example we have −1/α = 10.

A slight generalization of Lemma 2 can be made by
not imposing the number of ingoing edges to be restricted
to one. Let us consider now a star network of 1 ≤ k <
n ingoing and n − k outgoing edges with respect to the
center node as in Fig. 3. The proof is analogous to that for
Lemma 2.

u1

u2

u3

u4

u5

e1

e2

e3

e4

Fig. 3. Four-pointed star.

Corollary 1. The traveling wave solutions on the
n-pointed star with 1 ≤ k < n ingoing edges fulfill the
Kirchhoff conditions (9) and (10) if and only if the fol-
lowing three conditions hold:

(a) Ci +
θivi|vi|
2T̂

Li = Cj for i = 1, . . . , k

and j = k + 1, . . . , n;

(b) θi|v3i | = θj |v3j | for i = 1, . . . , k

and j = k + 1, . . . , n;

(c)
k∑

i=1

sign(vi)
D2

i
3
√
θi

=
n−k∑

j=k+1

sign(vj)
D2

j

3
√

θj
.

4.2. Networks with cycles. Now we will extend our
analysis to networks containing cycles. We consider the
example that is depicted in Fig. 4. We state the important
observation that there are no traveling wave solutions
leading to circular flows.

u1 u2 u3 u4
e1 e4

e2

e3

Fig. 4. Network with two parallel pipes.

Lemma 3. There are no traveling wave solutions
of (ISO) on the network of Fig. 4 with the Kirchhoff con-
ditions (9) and (10) that have a nonzero circular flow, that
is, there are no traveling wave solutions with

sign(v2) = − sign(v3). (12)

Proof. The compatibility conditions are those of the
three-pointed star with center u1 and the three-pointed
star with center u2. Applying Lemma 2 and condition (a),
yields C2 = C3 for the left star graph while for the right
star graph, we have from Corollary 1 and condition (a)

C2 +
θ2v2|v2|

T̂
= C3 +

θ3v3|v3|
T̂

.

Therefore, θ2 v2 |v2| = θ3 v3 |v3|. Because θ2, θ3 > 0,
this shows sign(v2) = sign(v3). Since the last condition
is mandatory for the existence of a traveling wave solution
on the considered graph, no solution fulfilling (12) can
exist with a nonzero circular flow. �

Solutions on cycles are therefore only possible if the
flow direction for parallel pipes is the same. Then the
coupling conditions in each inner node are determined by
those of an n-pointed star graph.

5. Conclusion

We have derived explicit analytical traveling wave
solutions for the isothermal Euler equations with a
nonconstant compressibility factor given by a decreasing
affine linear function. We have shown that all traveling
wave solutions blow up in finite time if the velocity is
nonzero. For zero velocity we obtain constant stationary
states. The extension to networks leads to specific
compatibility conditions on the data. We have shown that
on graphs containing cycles, there can be no traveling
wave solutions with circular flow. The analytical solutions
provide a useful test for numerical methods for the
isothermal Euler equations on networks. The finite time
blow-up of traveling waves that occurs in the model for
real gas with an affine linear compressibility factor also
illustrates the mathematical difficulties that are generated
by this model if the pressure becomes too large. In the
practical operation of pipeline networks, on account of
upper bounds for the admissible pressure, the pressure
values where the blow-up occurs are avoided.

We have shown that if the initial state is compatible
to the traveling waves, the boundary traces of the traveling
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Fig. 5. Pressure in the network at different times. Left edge: e1,
top right edge: e2, bottom right edge: e3.

Fig. 6. Density in the network at different times. Left edge: e1,
top right edge: e2, bottom right edge: e3. Note that ρ is
plotted using a logarithmic scale.
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waves appear as the unique optimal controls that solve
optimal boundary control problems where the aim is
to keep the gas velocity constant. If the compatibility
conditions that allow the traveling waves to travel through
the nodes are satisfied, the situation on networks is similar.
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