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We define games on the medium of plasmodia of slime mould, unicellular organisms that look like giant amoebae. The
plasmodia try to occupy all the food pieces they can detect. Thus, two different plasmodia can compete with each other.
In particular, we consider game-theoretically how plasmodia of Physarum polycephalum and Badhamia utricularis fight
for food. Placing food pieces at different locations determines the behavior of plasmodia. In this way, we can program
the plasmodia of Physarum polycephalum and Badhamia utricularis by placing food, and we can examine their motion as
a Physarum machine—an abstract machine where states are represented as food pieces and transitions among states are
represented as movements of plasmodia from one piece to another. Hence, this machine is treated as a natural transition
system. The behavior of the Physarum machine in the form of a transition system can be interpreted in terms of rough set
theory that enables modeling some ambiguities in motions of plasmodia. The problem is that there is always an ambiguity
which direction of plasmodium propagation is currently chosen: one or several concurrent ones, i.e., whether we deal with
a sequential, concurrent or massively parallel motion. We propose to manage this ambiguity using rough set theory. Firstly,
we define the region of plasmodium interest as a rough set; secondly, we consider concurrent transitions determined by
these regions as a context-based game; thirdly, we define strategies in this game as a rough set; fourthly, we show how these
results can be interpreted as a Go game.

Keywords: slime mould games, Physarum machines, transition systems, rough set theory, simulation software.

1. Introduction

Slime mould is an informal name to denote different
eukaryotic organisms. One of these organisms studied
in details from the point of view of computer science is
called Physarum polycephalum. It belongs to the species
of order Physarales, subclass Myxogastromycetidae, class
Myxomycetes, division Myxostelida. Plasmodium is a
‘vegetative’ phase of Physarum polycephalum. It is a
single cell with a myriad of diploid nuclei. Therefore
this organism can be really huge—up to 1 m2. It
behaves and moves as a giant amoeba connecting
different pieces of food by protoplasmic veins (very long
pseudopodia). Typically, the plasmodium forms a network
of pseudopodia connecting the masses of protoplasm at
the food sources which turns out to be efficient in terms of
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network length and resilience.

The notion of Physarum machines (machines
based on the motion of plasmodia of Physarum
polycephalum) was first introduced by Adamatzky
(2007b). A formalization of these machines based
on Kolomogorov–Uspensky automata was proposed by
Adamatzky (2007a). Physarum machines are regarded as
a biological sensing and computing device implemented
in a vegetative stage of slime mould. It is programmed by
spatio-temporal configurations of repelling and attracting
gradients. Meanwhile, each dangerous place avoided
by slime mould is treated as a repelling gradient and
it is called a repellent, and each attracting place (first
of all, a food piece) is considered as an attracting
gradient and it is called an attractant. There are
several classes of Physarum devices: morphological
and sensing processors, bio-molecular and microfluidic
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logical circuits. In this paper, we focus on morphological
processors—simple transitions of plasmodia from one
place of food sources to another.

The plasmodium transitions can be treated as a game
called a slime mould game, i.e., an experimental game,
where, on the one hand, all basic definitions are verified in
experiments with Physarum polycephalum and Badhamia
utricularis and, on the other hand, they are regarded as
nonsequential games: concurrent (with several attractants)
or massive-parallel (with several hundred attractants). In
this paper, we propose a technique for describing these
games. Theoretically, they are defined as context-based
games. In them, players can move concurrently as
in concurrent games, but the set of actions is always
infinite. In our experiments, we follow the following
interpretations of basic entities: (i) attractants as payoffs;
(ii) attractants occupied by the plasmodium as states of
the game; (iii) active zones of plasmodium as players;
(iv) logic gates for behaviors as moves (available actions)
for the players; (v) propagation of the plasmodium as the
transition table which associates, with a given set of states
and a given move of the players, the set of states resulting
from that move.

In these games, the following problems can be
defined: (i) finding the shortest path in possible transitions
(e.g., this task solved using Petri nets is considered by
Clempner (2006)); (ii) defining leaders—concentrations
of slime mould at some places (e.g., the task of
computing the Stackelberg/Nash equilibria with respect
to a three-player Stackelberg game consisting of a leader
and two followers is examined by Trejo et al. (2015)). In
this paper, we show that strategies in slime mould games
are better defined by means of rough sets. The problem
is that there is an ambiguity in finding the next direction
of a plasmodium transition. The plasmodium can choose
from one to several concurrent directions at each step
and then it can change its own decision and move back.
This ambiguity makes the games context-based and these
contexts are defined as rough sets.

There are two different species of slime mould,
Physarum polycephalum and Badhamia utricularis, to
demonstrate context-based games experimentally. We
assume that slime mould games are created over the
formal underlying structures called Physarum machines
described in Section 3. A Physarum machine is a
programmable biological device implemented in the
plasmodia of Physarum polycephalum and Badhamia
utricularis. The plasmodial stage of such organisms
can be treated as a natural transition system. Therefore,
transition systems can be considered as biological models
for strategic games (Schumann et al., 2014). The
descriptions of the behavior of Physarum machines in
the form of transition systems can be considered in
terms of rough set theory that enables us to model some
ambiguities and uncertainties in motions of plasmodia.

To model uncertainties in games, we can also use fuzzy
sets (Saipara and Kumam, 2016). However, rough
sets are an appropriate tool to model uncertainties in
discrete situations. In our approach, rough set models
of behavior of Physarum machines have been created on
the basis of transition systems (Pancerz and Schumann,
2015). Moreover, we have used rough sets to describe
strategy games based on Physarum machines (Pancerz
and Schumann, 2017).

In order to illustrate slime mould games defined
theoretically, we introduce a special rough-set version of
an ancient Chinese Go game (Schumann and Pancerz,
2015) with a standard definition of rough sets (Pawlak,
1991) and a definition using VPRSM (variable precision
rough set model) (Ziarko, 1993). In this paper, the
presented approach to rough set modeling of slime mould
games is based on the generalized rough set theory
(Yao and Lin, 1996) in which arbitrary binary relations
defining neighborhood systems are used (cf. Section 2.1).
The neighborhood is determined with respect to direct
propagation of plasmodia from one active group of
points to another. In transition system models, direct
propagations are represented by transition relations.

In this paper, we focus on theoretical aspects of
slime mould games. In Section 2, we recall basic notions
concerning both rough sets and transition systems. In
Section 3, we define Physarum machines. In Section 4, we
consider rough set aspects of transition systems (natural
implementations of Physarum machines). In Section 5,
we examine fundamentals of slime mould games. In
Section 6, we analyze one of the possible examples of
slime mould games presented as a Go game.

2. Basic notions

2.1. Rudiments of rough sets. Rough set theory
proposed by Pawlak (1991) is a mathematical approach
to imperfect knowledge. In his original definition of
rough sets, an equivalence binary relation was considered.
However, the original rough set model can be generalized
in several directions (Yao et al., 1997). One of the
generalizations can be obtained by using arbitrary binary
relations. Rough set theory built from binary relations
may be related to neighborhood systems (Yao and Lin,
1996).

Let U be a nonempty set of objects (a universe of
discourse). Any subset R ⊆ U × U is called a binary
relation on U . Let u, v ∈ U . If (u, v) ∈ R, we say that
v is R-related to u, u is a predecessor of v, whereas v is
a successor of u. A successor neighborhood of u ∈ U is
given by Rs(u) = {v ∈ U : (u, v) ∈ R}.

The idea of rough sets consists of the approximation
of a given set X ⊆ U of objects by a pair of
approximations (lower and upper) of X . In the case of an
arbitrary binary relation R, we define R(X) = {u ∈ U :
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Rs(u) ⊆ X} and R(X) = {u ∈ U : Rs(u) ∩ X �= ∅},
called the R-lower and R-upper approximation of X ,
respectively. The R-lower approximation of X consists
of each element u ∈ U whose successor neighborhood
is wholly included in X . The R-upper approximation
of X consists of each element u ∈ U whose successor
neighborhood has a nonempty intersection with X . If
R(X) ⊂ R(X), then the set X is rough otherwise (i.e.,
R(X) = R(X)), the set X is sharp.

The roughness of a set can be characterized
numerically. To this end, the accuracy of approximation
of X with respect to R is defined as

αR(X) =
card(R(X))

card(R(X))
,

where card denotes the cardinality of the set and X �= ∅.
Some relaxed definition was proposed by Ziarko

(1993) in the variable precision rough set model
(VPRSM). The standard set inclusion is replaced with the
majority set inclusion in definitions of approximations.
Let 0 ≤ β < 0.5. In the case of an arbitrary binary
relation R, we define

Rβ(X) = {u ∈ U : Rs(u)
β

⊆X},

R
β
(X) =

{
u ∈ U : 1− Rs(u) ∩X

Rs(u)
< 1− β

}
,

called the Rβ-lower and Rβ-upper approximation of X ,
respectively, where

Rs(u)
β

⊆X ⇐⇒ 1− card(Rs(u) ∩X)

card(Rs(u))
≤ β.

In the case of the VPRSM, the accuracy of the
approximation of X with respect to R is defined as

αR(X) =
card(Rβ(X))

card(R
β
(X))

,

where and X �= ∅.

2.2. Rudiments of transition systems. Transition
systems are a commonly used and understood model of
computation. A given transition system consists of a set
of states, with an initial state (or initial states), together
with transitions between states. Transitions are labeled
to specify the kind of events they represent (Winskel
and Nielsen, 1995). In this paper, we use the following
definition of the transition system: A transition system
is the quadruple TS = (S,E, T, Sinit), where S is the
non-empty set of states, E is the set of events, T ⊆
S × E × S is the transition relation, and Sinit ⊆ S is the
set of initial states.

Usually transition systems are based on actions
which may be viewed as labeled events. If (s, e, s′) ∈

T , then the idea is that TS can go from s to s′ as a
result of the event e occurring at s. A single element
(s, e, s′) ∈ T is briefly called a transition. We can write
a transition as s

e−→ s′. It is sometimes convenient to
consider transitions between states as strings of events.
We write s1

v−→ sk, where v = e1e2 . . . ek−1 is a
(possibly empty), string of some events from E, to mean
s1

e1−→ s2
e2−→ . . .

ek−1−→ sk for some states s1, s2, . . . , sk
from S.

Any transition system TS = (S,E, T, Sinit) can
be presented in the form of a labeled directed graph
with nodes corresponding to states from S, edges
representing the transition relation T , and labels of
edges corresponding to events from E. Initial states are
encircled to distinguish them.

In the transition systems mentioned earlier, it is
assumed, that all events happen instantaneously. In timed
transition systems, timing constraints restrict the times
at which events may occur (Henzinger et al., 1992).
The timing constraints are classified into two categories:
lower-bound and upper-bound requirements. Let N be
a set of nonnegative integers. A timed transition system
TTS = (S,E, T, Sinit, l, u) consists of an underlying
transition system TS = (S,E, T, Sinit), a minimal delay
function (a lower bound) l : E → N assigning each event
a nonnegative integer, and a maximal delay function (an
upper bound) u : E → N ∪ {∞} assigning each event a
nonnegative integer or infinity.

3. Physarum machines

In this section, we give a formal description of
Physarum machines that are biological computing devices
experimentally implemented in the plasmodium of
Physarum polycephalum. An analogous description can
be made for the plasmodium of Badhamia utricularis.

A Physarum machine is a formal underlying
structure to create a slime mould game. It comprises an
amorphous yellowish mass with networks of protoplasmic
veins, programmed by spatial configurations of attracting
and/or repelling stimuli.

Let t = 0, 1, 2, . . . be a discrete time. Formally, a
structure of the Physarum machine can be described as a
triple PM = (Ph,Attr, Rep) (Pancerz and Schumann,
2015), where Ph = {ph1, ph2, . . . , phk}, is the set of
original points of plasmodium,

Attr =

∞⋃
t=1

Attrt,

with Attrt = {attr1, attr2, . . . , attrm}, is the set of

attractants at time step t, and Rep =
∞⋃
t=1

Rept, where

Rept = {rep1, rep2, . . . , repn},
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is the set of repellents at time step t.
Let us define the set Attrt+1 as a union of subsets,

⋃
attrx∈Attrt

Attrattrxt+1 ,

such that each subset Attrattrxt+1 is the set of attractants at
time step t+1 seen from the point attrx ∈ Attrt reached
at time step t. If the cardinal number card(Attrattrxt+1 ) ≤
p−1 for each time step t > 0 at each point attrx ∈ Attrt,
then the machinePM is called p-adic valued. In the same
way, we can divide Rept+1 into subsets

⋃
attrx∈Attrt

Repattrxt+1

such that each Repattrxt+1 is the set of repellents at time step
t + 1 seen from the point attrx ∈ Attrt. Both divisions
are needed to describe the machine PM as p-adic valued
arithmetic functions.

In a standard case, positions of original points of
plasmodium, attractants, and repellents are considered in
the two-dimensional space (e.g., at a Petri dish (Petri,
1887)).

ph

attr2

attr3

attr7

rep

attr4

attr5attr1

attr6

Fig. 1. Structure PM = (Ph,Attr,Rep) of the Physarum
machine.

Consider a structure PM = (Ph,Attr, Rep) of the
Physarum machine given in Fig. 1.

It is worth noting that, in the graphical presentation
of structures of Physarum machines, we will use the
following symbols: closed circles corresponding to
original points of plasmodium, open circles corresponding
to attractants, and open rectangles corresponding to
repellents.

One can see that the components of the structure
PM = (Ph,Attr, Rep) are as follows:

Ph = {ph},

Attr = Attrpht=0 ∪Attrattr2t=1 ∪ Attrattr1t=1 ,

where
Attrpht=0 = {attr1, attr2, attr3},

Attrattr2t=1 = {attr3, attr7},

Attrattr1t=1 = {attr4, attr5, attr6},
and

Rep = Repattr6t=2 = {rep}.
Hence, we see that for t = 0, 1, 2 this machine is 4-adic
valued.

In general, dynamics (behavior) of the Physarum
machine PM can be described by the family V =
{V t}t∈{t0,t1,t2,... } of the sets of protoplasmic veins
formed by plasmodium during its action, where V t =
{vt1, vt2, . . . , vtcard(V t)} is the set of all protoplasmic veins
of plasmodium present at the time step t in PM. Each
vein vti ∈ V t, where i = 1, 2, . . . , card(V t), is the pair
〈πt

is , π
t
ie〉 of active points in PM, i.e., πt

is ∈ Ph ∪ Attrt
and πt

ie ∈ Ph ∪ Attrt. Here πt
is is the start point of the

vein vti whereas πt
ie is the end point of the vein vti .

The starting point in modeling the behavior of
a given Physarum machine TS(PM) is a transition
system describing plasmodium propagation (Pancerz and
Schumann, 2015). To build a model in the form
of the transition system TS(PM) = (S,E, T, Sinit),
of the behavior of the Physarum machine PM =
{Ph,Attr, Rep}, we take into consideration a stable
state, i.e., the state at a given time step t (e.g., the last
one), when the set of all protoplasmic veins formed by
plasmodium is fixed, i.e., V t = {vt1, vt2, . . . , vtcard(V t)}.
The following bijective functions are used:

σt :
⋃

attrx∈Attrt−1

Attrattrxt → St

assigning a state to each attractant at t, εt : V t → Et

assigning an event to each protoplasmic vein at t, τ :
V t → T assigning a transition to each protoplasmic vein,
and ι : Ph → Sinit assigning an initial state to each
original point of plasmodium. One can see that

S = Ph ∪
∞⋃
t=0

St, E =

∞⋃
t=0

Et.

ph

attr2

attr3

attr7

rep

attr4

attr5attr1

attr6

Fig. 2. Stable state of the Physarum machine PM =
(Ph,Attr,Rep).

Consider a stable state of the Physarum machine
PM = (Ph,Attr, Rep) from Fig. 2. One can see that
protoplasmic veins were formed by plasmodium.
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A model, in the form of a transition system
TS(PM) = (S,E, T, Sinit), of the behavior of
the Physarum machine PM = (Ph,Attr, Rep),
where S = St=0 ∪ St=1 ∪ St=2, i.e., S =
{s1, s2, s3, s4, s5, s6, s7, s8}, E = Et=0 ∪ Et=1 ∪ Et=2,
i.e., E = {e1, e2, e3, e4, e5, e6, s7, s8}, T = {(s1, e1, s2),
(s1, e2, s3), (s1, e3, s4), (s2, e4, s5), (s2, e5, s6),
(s2, e6, s7), (s3, e7, s8)}, and Sinit = {s1}, is shown in
Fig. 3.

s6

s1

s2

e1

s4

e2

e3

s3

s5 s7e5

e6

s8e7

e4

Fig. 3. Model, in the form of a transition system TS(PM) =
(S,E, T, Sinit), of the behavior of the Physarum ma-
chine PM = {Ph,Attr,Rep}.

In the Physarum machine PM we can identify
five full paths of plasmodium propagation. These paths
are determined by strings of events in the transition
system model TS(PM) of PM, i.e.: s1

e1−→ s2
e4−→ s5,

s1
e1−→ s2

e5−→ s6, s1
e1−→ s2

e6−→ s7, s1
e2−→ s3

e7−→ s8, and
s1

e3−→ s4.
Timed transition systems can be used to model the

behavior of Physarum machines. In timed transition
systems, the quantitative lower-bound and upper-bound
timing constraints are imposed on events. This ability of
modeling the behavior of Physarum machines is important
because attracting and repelling stimuli can be activated
and/or deactivated for proper time periods to perform
given computational tasks. In the case of a model in
the form of a timed transition system TTS(PM) =
(S,E, T, Sinit, l, u), the bijective functions are slightly
modified, i.e.

• σ : Ph∪Attr → S assigning a state to each original
point of plasmodium as well as to each attractant,

• ε :
⋃

t∈{t0,t1,t2,... } Vt → E assigning an event to
each protoplasmic vein,

• τ :
⋃

t∈{t0,t1,t2,... } Vt → T assigning a transition to
each protoplasmic vein,

• ι : Ph → Sinit assigning an initial state to each
original point of plasmodium.

4. Rough sets and transition systems
describing plasmodium propagation

To describe the behavior of Physarum machines in terms
of rough sets, we can use a model related to neighborhood
systems.

Let TS(PM) = (S,E, T, Sinit) be a transition
system modeling the behavior of a given Physarum
machine PM. In the set of states of TS(PM), we can
distinguish some regions of interest (ROIs), i.e., selected
subsets of states identified for a particular purpose. Let
Ω = {ω1, ω2, . . . , ωv} be the set of all regions of interest.
N = {Nω1, Nω2 , . . . , Nωv} denotes a family of sets of
states corresponding to regions of interest.

For each node n ∈ Nω1 ∪Nω2 ∪· · ·∪Nωv , we define
its inter-region neighborhood:

IRN(n) =
{
n′ : (n, n′) ∈ E

∧ ∃
ω∈Ω

(n′ ∈ Nω ∧ n /∈ Nω)
}
.

Let ωi, ωj ⊆ N be two distinguished regions of
interest. The lower approximation IRN(ωi → ωj) of the
inter-region neighborhood, from ωi to ωj , is defined as

IRN(ωi → ωj) =
{
n ∈ Nωi : IRN(n) �= ∅

∧ IRN(n) ⊆ Nωj

}
.

The upper approximation IRN(ωi → ωj) of the
inter-region neighborhood, from ωi to ωj , is defined as

IRN(ωi → ωj) = {n ∈ Nωi : IRN(n) ∩Nωj �= ∅}.
The accuracy of approximation of the inter-region
neighborhood can be defined analogously to the accuracy
of approximation in rough set theory, i.e.,

αIRN(ωi → ωj) =
card(IRN(ωi → ωj))

card(IRN(ωi → ωj))
.

We slightly modify definitions of the lower and upper
approximations of the inter-region neighborhood in the
case of the variable precision rough set model (VPRSM).
Let ωi, ωj ⊆ N be two distinguished regions of interest,
and 0 ≤ β < 0.5. The β-lower approximation IRN(ωi →
ωj) of the inter-region neighborhood, from ωi to ωj , is
defined by

IRNβ(ωi → ωj) =
{
n ∈ Nωi : IRN(n) �= ∅

∧ IRN(n)
β

⊆Nωj

}
,

where the majority set inclusion IRN(n)
β

⊆Nωj is
understood analogously to that shown in Section 2.1. The
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β-upper approximation IRN(ωi → ωj) of the inter-region
neighborhood, from ωi to ωj , is defined as

IRN
β
(ωi → ωj) =

{
n ∈ Nωi :

1− card(IRN(n) ∩Nωj )

card(IRN(n))
< 1− β

}
.

The accuracy of approximation of the inter-region
neighborhood is defined as

αβ
IRN(ωi → ωj) =

card(IRNβ(ωi → ωj))

card(IRN
β
(ωi → ωj))

for 0 ≤ β < 0.5.
Consider now the transition system TS(PM) =

(S,E, T, Sinit) displayed in Fig. 3. For instance, three
regions of interest are marked out with the following sets
of states: Nω1 = {s1}—a set containing the initial state
representing the original point ph of plasmodium, Nω2 =
{s2, s3}—a set of states corresponding to attractants attr1
and attr2 when they are occupied by plasmodium, and
Nω3 = {s6, s7, s8}—a set of states corresponding to
attractants attr5, attr6, and attr7 when they are occupied
by plasmodium.

The lower approximations are as follows: IRN(ω1 →
ω2) = ∅ and IRN(ω2 → ω3) = {s3}, whereas the upper
approximations are as follows: IRN(ω1 → ω2) = {s1}
and IRN(ω2 → ω3) = {s2, s3}. Hence αIRN(ω1 →
ω2) = 0 and αIRN(ω2 → ω3) = 0.5. In the case of
VPRSM, for β = 0.6, we obtain: IRN0.6(ω1 → ω2) =
{s1} and IRN0.6(ω1 → ω2) = {s1}, IRN0.6(ω2 →
ω3) = {s2, s3}, and IRN0.6(ω2 → ω3) = {s2, s3}.
Hence α0.6

IRN(ω1 → ω2) = 1 and α0.6
IRN(ω2 → ω3) = 1.

5. Fundamentals of slime mould games

In slime mould games, we can have two or more players.
In antagonistic games, we deal with two: the first,
Physarum polycephalum plasmodium and the second,
the Badhamia utricularis plasmodium. Locations of
original points of both plasmodia are randomly generated.
We can control motions of plasmodia via attracting or
repelling stimuli. Locations of attractants and repellents
are contexts during the game.

Traditionally, a play of the game is formalized
as a sequence of moves in sequential games and as
a concurrency of moves in concurrent games. This
method assumes the polarization of two-person games,
when in each position there is only one player’s turn to
move in sequential games and both players can move
concurrently in concurrent games. The sequential games
can hold just on models of fragments of linear logic
such as multiplicative (Abramsky and Jagadeesan, 1994)
or multiplicative-exponential fragments (Baillot et al.,

1997). In concurrent games introduced by Abramsky and
Mellies (1999), process calculi can be used.

The propagation of Physarum polycephalum
plasmodium is understood here as a transition system
TS(PM) = (S,E, T, Sinit). States S will be regarded
as possible payoffs for Physarum polycephalum. Events
E will be examined as allowed moves in slime mould
games. Transitions T are represented as a set of states
resulting from the moves and initial states Sinit as different
players.

Among all the possible actions in plasmodium
propagations, we can perceive attracting (Fig. 4(a)),
repelling (Fig. 4(b)), splitting (Fig. 4(c)), and fusing
(Fig. 4(d)) actions. Now we can define logical operations
on S as follows. Negation ¬sx is true if and only if there
is no sy such that sy

eyx−→ sx and it is false otherwise. Con-
junction sx ∧ sy = min(sx, sy) is true if and only if
for both sx and sy there is sz such that sz

ezx−→ sx and

sz
ezy−→ sy and it is false otherwise. Disjunction sx ∨ sy =

max(sx, sy) is true if and only if for both sx and sy

there is sz such that sz
ezx−→ sx or sz

ezy−→ sy and it is false
otherwise.

s1 s2

e1

s1

s2
e1

s3e2

s1

s2

s3
e1

e2

s1 s2

(a) (b) (c) (d)

Fig. 4. Four primitive actions in the plasmodium propagation
for S = {s1, s2, s3} and E = {e1, e2}: attracting (a),
repelling (b), splitting (c), fusing (d).

A (finite) concurrent game on Physarum poly-
cephalum is the sextuple

G = (States, Agt, Actn,Movn, T abn, (�A)A∈Agt),

where

• States = {s1, . . . , sm} = S is a (finite) set
of states presented by attractants occupied by the
plasmodium;

• Agt = {1, . . . , k} = Sinit is a finite set of players
presented by different active zones of plasmodium
(original points);

• Actn is a nonempty set of actions presented by
logical operations ¬, ∧, and ∨ over State or their
inductive combinations with n inputs and one output,
an element of ActAgt

n is called a move;

• Movn : Statesn × ActAgt
n → 2Act \ {∅} is the

mapping indicating the available sets of actions to
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a given player in a given set of states, n > 0 is
said to be a radius of plasmodium actions, a move
mn

Agt = (mn
A)A∈Agt is legal at (s1, . . . , sn) if

mn
A ∈ Movn(s, A) for all A ∈ Agt, where s =

(s1, . . . , sn) (note that if there exists a minimal p
such that n < p for all moves, this game is called
p-adic valued);

• Tabn : Statesn×ActAgt
n → States is the transition

table which associates, with a given set of states and
a given move of the players, the set of states resulting
from that move;

• for each A ∈ Agt, �A is a preorder (reflexive and
transitive relation) over Statesω, called the prefer-
ence relation of player A, indicating the intensity of
attractants; for each π, π′ ∈ Statesω, by π �A π′

we mean that π′ is at least as good as π for A and
when it is not π �A π′, we say that A prefers π over
π′.

Assume there is a game G and its states are
formulated as some propositions, whose set is denoted by
Prop.

A concurrent game on Physarum polycephalum G
is a model M for the game G if M = 〈G, ϕ〉, where
ϕ : States → P(Prop) is a labeling function such that it
labels the states in G by proposition symbols from the set
Prop of the game G.

Usually, for each player (plasmodium) named 1,
. . . , k, where k = |Agt|, we have a separate space of
attractants. However, the space can be joint, too. The
point is that if two players (plasmodia) move to the same
state, then their transitions from this state are the same.
In order to avoid this property, we should design different
moves of different players in different spaces.

The set of outcomes OutG(s) of the concurrent
game G from the state s is a set of all infinite paths
s0s1 . . . ∈ Statesω such that s0 = s and for all
j > 0, there exists a move m ∈ ∏|Agt|

k=1 Mov(sj , k)
and Tab(sj,m) = sj+1. The set of all outcomes is
as follows: OutG =

⋃
s′∈States OutG(s). The set of

histories HistG(s) starting in s is a set of all finite
paths s0s1 . . . sl such that s0 = s and there exists σ ∈
OutG(s) which starts with s0s1 . . . sl. The set HistG =⋃

s′∈States HistG(s) is said to be the set of all histories.
A strategy of a player j in G is a mapping

stratj : HistG → Act such that for any history σ ∈
HistG it is true that stratj(σ) ∈ Mov(last(σ), j), where
last(σ) denotes the last state in the finite path σ. In other
words, a strategy stratj(σ) is the choice of a legal action
in the last state of the history σ which was observed by
player j. If we have one space for all players and they
have the same last state last(σ), then for all of them the
next legal action will be the same, too. Therefore, in this
case, histories of players are unimportant for choosing the

next action, i.e., starting from last(σ) their histories will
be the same.

Adamatzky and Grube have performed some
experiments showing that there are cases when sets of
strategies for players in the same space are always disjoint
(Schumann et al., 2014). Let us suppose that we have
only two agents. The first is presented by a usual
Physarum polycephalum plasmodium, the second by its
modification called a Badhamia utricularis plasmodium
(references on this new culture are included in the work
of Neubert et al. (1995)). Physarum polycephalum grows
definitely faster than Badhamia utricularis and overtakes
more flakes at the same time than the latter; see the photos
in the work of Schumann et al. (2014). Only if the
inoculum were “fatter” for Badhamia utricularis, it might
grow faster. Moreover, if the invasive growth front of
Badhamia utricularis is well nourished by oat, it easily
overgrows the opposing tube system of Physarum poly-
cephalum. Thus, at the microscopic level we can find
out that in most observations Physarum polycephalum
could grow into branches of Badhamia utricularis, while
Badhamia utricularis could grow over Physarum poly-
cephalum strands (Schumann et al., 2014). We can see
that somehow Physarum polycephalum feeds on small
branches of Badhamia utricularis. Thus, in the case of
Physarum polycephalum and Badhamia utricularis we
observe a competition in the small branches. For them the
sets of strategies are disjoint. They never meet the same
states.

Based on competitions between Physarum
polycephalum and Badhamia utricularis, we can
study the simplest biological forms of zero-sum games.

A strategy for several players A is defined as
the following tuple (stratj)j∈A of strategies for all
players of A. The set of all outcomes if the players
in A follow the strategy stratA = (stratj)j∈A is
denoted by OutG(s, stratA). All possible outcomes
if the players in A obey stratA is denoted by
OutG(stratA) =

⋃
s∈States OutG(s, stratA). A strategy

for Agt: (stratj)j∈Agt is called a strategy profile.
We will say that a strategy stratA is memoryless

for players of A at a state s if they choose their joint
action based only on s as the last state of the play. This
holds if they simultaneously meet s in a joint space.
Notice that in a game with two players presented by
Physarum polycephalum plasmodium 1 and Badhamia
utricularis plasmodium 2 in a joint space, their strategies
stratAgt={1,2} cannot be memoryless at any time.

Let us take a move mAgt and an action m′ for some
player B. The move nAgt with nA = mA when A �= B
and nB = m′ is denoted by mAgt[B → m′]. Then a Nash
equilibrium for concurrent games is defined as follows
(for more details on equilibria in concurrent games, see
the works of Brenguier (2013) and Bouyer et al. (2012;
2011)).
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Let G be a concurrent game with a preference relation
(�A)A∈Agt and let s be a state of G. A Nash equilib-
rium of G from s is a strategy profile stratAgt such that
Out(s, stratAgt[B → strat′]) �B Out(s, stratAgt) for
all players B ∈ Agt and all strategies strat′ of B.

Example 1. Let

G = (States, Agt, Actn,Movn, T abn, (�A)A∈Agt)

and n = 9 (i.e., our game is 10-adic valued), Agt =
{A1, A2}, States = {s1, s2, . . . , sm} (m ≥ p = 10),
Actn = {max,min}. Assume that A1 follows only max
at all legal moves and A2 follows only min at its legal
moves. This means that in a transition system TS(PM),
EAi = {(s, s′) ∈ S9 × S9 : Tab9(s,m9

Ai
) = s′},

where i = 1, 2, m9
A1

= max, and m9
A2

= min. This
game can be illustrated in the cellular-automaton form
with the neighborhood |N | = 8 (Schumann, 2014). Let
us take cells belonging to the set Z

2, therewith each
cell takes its value in States. Let transitions depend
on a local transition rule δ : States9 → States that
transforms states of cells taking into account the states
of 8 neighboring cells. Each step of dynamics is fixed
by discrete time t = 0, 1, 2, . . . . At the moment t, the
configuration of the whole system (or the global state)
is given by the mapping xt from Z

2 into States, and
the evolution is the sequence x0x1x2x3. . . defined as
xt+1(z) = δ(xt(z), xt(z + α1), x

t(z + α2), . . . , x
t(z +

α8)), where 〈α1, α2, . . . , α8〉 are neighbors of z.
At each move we will write an occupied attractant

from States as 1 and an unoccupied attractant as 0.
Suppose that at t = 0 we have the following states, where,
given 〈si, sj〉, si means a state for A1 and sj means a state
for A2:

〈0, 1〉 〈0, 0〉 〈1, 1〉 〈0, 1〉 〈1, 0〉
〈1, 1〉 〈1, 1〉 〈1, 0〉 〈1, 0〉 〈1, 1〉
〈0, 1〉 〈1, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉
〈0, 0〉 〈1, 0〉 〈0, 0〉 〈1, 1〉 〈1, 0〉
〈0, 1〉 〈1, 0〉 〈1, 1〉 〈1, 1〉 〈0, 0〉

Then at t = 1 we obtain the following states:

〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉
〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉
〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉
〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉
〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉

Hence, we deal with the set of actions represented
by logical operations over States or their inductive
combinations which give n outputs for n inputs and we
take into account time t. �

Example 2. Let

G = (Statest, Agt, Actt,n,Movnt , T ab
n
t , (�A)A∈Agt),

where

• Statest means states for consecutive times t =
0, 1, . . .;

• Agt is a finite set of players;

• Actt,n is an infinite set of actions represented by
logical operations or their inductive combinations
with n inputs and n outputs; these actions can be
applicable only to states at time t and give states at
time t+ 1;

• Movnt is a set of legal moves at time t = 0, 1, . . .;

• Tabnt : States
n
t × ActAgt

t,n → Statesnt+1 is the
transition table which associates, with a given set of
states and a given move of the players, the set of
states resulting from that move;

• for each A ∈ Agt, �A is a preorder over Statesω,
called the preference relation of player A.

Suppose that n = 9 (i.e., the game is 10-adic valued
still), Agt = {A1, A2}, States = {s1, s2, . . . , sm}
(m ≥ p = 10) such that each state has its value in
{0, 1} (i.e., it is occupied or not), Actt,9 = {max ⇒
min,min ⇒ max}. Assume that A1 follows the rule:
max{the states of A1 at t} ⇒ min{the states of A2

at t}, and A2 follows the rule: min{the states of A2 at
t} ⇒ max{the states of A1 at t}. This means that in an
appropriate transition system TS(PM), EAi = {(s, s′) ∈
S9
t × S9

t+1 : Tab
9(s,m9

Ai
) = s′}, where i = 1, 2, m9

A1
=

max{the states of A1 at t} ⇒ min{the states of A2 at t},
and m9

A2
= min{the states of A2 at t} ⇒ max{the states

of A1 at t}.
In the cellular-automaton form, at t = 0, we get

〈0, 1〉 〈0, 0〉 〈1, 1〉 〈0, 1〉 〈1, 0〉
〈1, 1〉 〈1, 1〉 〈1, 0〉 〈1, 0〉 〈1, 1〉
〈0, 1〉 〈1, 0〉 〈1, 1〉 〈1, 0〉 〈0, 0〉
〈0, 0〉 〈1, 0〉 〈0, 0〉 〈1, 1〉 〈1, 0〉
〈0, 1〉 〈1, 0〉 〈1, 1〉 〈1, 1〉 〈0, 0〉

At t = 1, we have

〈1, 0〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
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We have just shown that we can involve actions
which are different for all t = 0, 1, . . . and are mutually
dependent. �

Example 3. Let us consider an example, when n = 1
(i.e., the game is 2-adic valued) and Agt = {A1, A2} in
G, to demonstrate that the set of actions for slime mould
games can be uncountably infinite.

Assume that agent A1 moves from state st1 to state
st+1
1 , t = 0, 1, . . . and agent A2 moves from state st2

to state st+1
2 , t = 0, 1, . . . by the following transition

rules: st+1
1 = (st1 ⇒ st2) and st+1

2 = (st2 ⇒ st1).
Then we obtain the following infinite streams: 〈s01 ⇒
s02, s

1
1 ⇒ s12, s

2
1 ⇒ s22, . . .〉 and 〈s02 ⇒ s01, s

1
2 ⇒

s11, s
2
2 ⇒ s21, . . .〉. Notice that the stream 〈s01 ⇒ s02, s

1
1 ⇒

s12, s
2
1 ⇒ s22, . . .〉 (resp., 〈s02 ⇒ s01, s

1
2 ⇒ s11, s

2
2 ⇒

s21, . . .〉) may be understood as an infinite propositional
formula (((s01 ⇒ s02) ⇒ s12) ⇒ s22) ⇒ . . . (resp.
(((s02 ⇒ s01) ⇒ s11) ⇒ s21) ⇒ . . .). Both formulas are
mutually dependent and they cannot be represented as a
linear sequence (inductive composition). Hence, we have
a 2-adic valued formula presented by two infinite mutually
dependent propositional formulas. This formula is called
non-well-founded (Aczel, 1988). Also, we can show that
any non-well-founded formula of radius n = |Agt| can be
formulated as n infinite mutually dependent propositional
formulas. In concurrent games, there is no reflection of
players. They do not pay attention to which actions are
involved in transitions by others. A non-well-founded
action of radius n = |Agt| means that each player of
Agt coordinates their action with others by using their
reasoning in the form they can foresee, maybe wrongly.
Reflexive games are considered by Schumann (2014).
They are strong extensions of concurrent games. �

In the case of slime mould, non-well-founded actions
are not results of predictions of the others as in the
case of human reflexive games. The matter is that one
plasmodium can follow some non-well-founded actions
(Khrennikov and Schumann, 2014), since for n ≥ 2
inputs, there is in fact an uncertainty, which logic gates
with n inputs are involved.

A (finite) context-based game on Physarum poly-
cephalum is the sextuple

G = (Statest, Agt, Actt,n,Movnt , T ab
n
t , (�A)A∈Agt),

where

• Statest = {s1, . . . , sm} is a (finite) set of
states represented by attractants occupied by the
plasmodium at time t = 0, 1, 2, . . .;

• Agt = {1, . . . , k} is a finite set of players presented
by different active zones of plasmodium;

• Actt,n is a nonempty set of non-well-founded actions
with radius n at t = 0, 1, 2, . . .; an element of ActAgt

t,n

is called a move at time t = 0, 1, 2, . . .; for this n the
game is called n+ 1-adic valued;

• Movnt : States
n
t × ActAgt

t,n → 2Act \ {∅} is the
mapping indicating the available sets of actions to
a given player in a given set of states, n > 0 is
said to be a radius of plasmodium actions, a move
mn

Agt = (mn
A)A∈Agt is legal at 〈s1, . . . , sn〉 if

mn
A ∈ Movn(s, A) for all A ∈ Agt, where s =

〈s1, . . . , sn〉;
• Tabnt : States

n
t × ActAgt

t,n → Statesnt+1 is the
transition table which associates, with a given set of
states at t and a given move of the players at t, the set
of states at t+ 1 resulting from that move;

• for each A ∈ Agt, �A is a preorder (reflexive and
transitive relation) over Statesω, called the prefer-
ence relation of player A, indicating the intensity of
attractants.

It is worth noting that context-based games are mas-
sively parallel. In one experiment (game) we can use even
several hundred attractants considered as ‘processors’
and then the plasmodium builds several thousand
connections among attractants and these connections
change permanently.

All other notions such as outcomes, histories, and
strategies are defined just as in the previous section.
We can prove a statement that for any concurrent
game G on the medium of slime mould, there is an
appropriate context-based game as the greatest fixed point
for all uncertain modifications of G in experiments with
plasmodia. This statement allows us to build logic circuits
on the slime mould using context-based game notions.

In the concurrent games, as well as in the
context-based games, we can use rough sets for defining
strategies. Let Ωt = {ωt

1, ω
t
2, . . . , ω

t
k} be a set of all near-

est strategies at t for all agents Agt = {1, 2, . . . , k}, i.e.,
strategies performed only one time at the actual time step
t. Let, N = {Nωt

1
, Nωt

2
, . . . , Nωt

k
} denote a family of

payoffs corresponding to the nearest strategies such that
Nωt

i
⊂ States represents the states obtained by player

i = 1, k by applying strategy ωt
i at the actual time step t.

If for each i, ωt
i yields only a singleton Nωt

i
, i.e.,

card(Nωt
i
) = 1, the game is called concurrent. If for

some i, ωt
i yields Nωt

i
such that card(Nωt

i
) > 1, the game

is called context-based.
For each state s ∈ Nωt

1
∪Nωt

2
∪· · ·∪Nωt

k
, we define

its p-adic valued inter-region neighborhood at t:

IRNp
t (s) =

{
s′ : (s, s′) ∈ E

∧ ∃
ω∈Ωt

(s′ ∈ Nω ∧ s /∈ Nω)
}
.

The cardinal number card(IRNp
t (s)) ≤ p.
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We assume that each player can change its strategies
at each new step t. This means that we deal with a
transition ωt

i → ωt+1
i .

The p-adic valued lower approximation
IRNp

t+1(ω
t
i → ωt+1

i ) of the strategy change at t + 1 is
defined as follows:

IRNp
t+1(ω

t
i → ωt+1

i ) =
{
s ∈ Nωt

i
: IRNp

t (s) �= ∅

∧ IRNp
t (s) ⊆ Nωt+1

i

}
.

The p-adic valued upper approximation
IRN

p
t+1(ω

t
i → ωt+1

i ) of the strategy change at t + 1 is
defined as follows:

IRN
p
t+1(ω

t
i → ωt+1

i ) =
{
s ∈ Nωt

i
: IRNp(s)

∧Nωt+1
i

�= ∅
}
.

The intentionality of player i by a strategy change at
t+ 1 is defined in the following manner:

αIRN(ω
t
i → ωt+1

i ) =
card(IRNp

t+1(ω
t
i → ωt+1

i ))

card(IRN
p

t+1(ω
t
i → ωt+1

i ))
.

We see that 0 ≤ αIRN(ω
t
i → ωt+1

i ) ≤ 1.
The situation αIRN(ω

t
i → ωt+1

i ) = 0 means that
card(IRNp

t+1(ω
t
i → ωt+1

i )) = 0, i.e., it means that new
payoffs at t + 1, if they take place, are obtained not
intentionally. The case αIRN(ω

t
i → ωt+1

i ) = 1 means
that card(IRNp

t+1(ω
t
i → ωt+1

i )) = card(IRN
p

t+1(ω
t
i →

ωt+1
i )), i.e., it means that all the new payoffs at t+ 1 are

obtained intentionally. Hence, the measure αIRN(ω
t
i →

ωt+1
i ) tells us about intentionality of player i in moving

from t to t+ 1.
Now, let us define the intentionality of player i

through the whole game, assuming that it is infinite. Let

αIRN(i) =

∞∑
t=0

card(IRNp
t+1(ω

t
i → ωt+1

i )) · pt
∞∑
t=0

card(IRN
p
t+1(ω

t
i → ωt+1

i )) · pt
.

Then also 0 ≤ αIRN(i) ≤ 1. But now this measure runs
over the set of p-adic integers Zp.

We suppose that somebody wins if (s)he has occupied
more payoffs (attractants) at the majority steps t → ∞
than each other player separately. Somebody loses if (s)he
has occupied less payoffs (attractants) at the majority steps
t → ∞ than each other player separately. Let us define the
same formally.

Let N = {Nωt
1
, Nωt

2
, . . . , Nωt

k
} be a family of

payoffs corresponding to the nearest strategies ωt
i at the

actual time step t for each player i = 1, k. Let N ∅ =

{N∅
ωt

1
, N∅

ωt
2
, . . . , N∅

ωt
k
} be a family of vacant attractants at

t such that

N∅
ωt

i
=

{
st+1 : ∀

st∈Nωt
i

(st, st+1) ∈ E

∧ ∀
ω∈Ωt

(st+1 /∈ Nω)
}
,

i.e., it is a set of all accessible attractants for player i at
time t which can be occupied at t+ 1 from the set Nωt

i
.

The probability of winning for i is defined as follows:

Win(i) =

∞∑
t=0

card(Nωt+1
i

) · pt
∞∑
t=0

card(N∅
ωt

i
) · pt

.

Player i wins if Win(i) ≥ Win(j) for any player j ∈
(Agt − {i}). Player i loses if Win(i) ≤ Win(j) for any
player j ∈ (Agt− {i}).

In that case, Nωt
1
, Nωt

2
, . . . , Nωt

k
are pairwise

disjoint, the game is being carried out independently of
the competitors’ strategies—each player plays in a parallel
manner without intercommunication. Suppose now that
Nωt

1
∩Nωt

2
∩ · · · ∩Nωt

k
= N c

t �= ∅.
The lower approximation of payoffs for player i at

t+ 1 is

Nωt+1
i

= {s ∈ Nωt
i
: Nωt+1

i
�= ∅ ∧Nωt+1

i
⊆ N c

t+1}.

The upper approximation of payoffs for player i at t+1 is

Nωt+1
i

=
{
s ∈ Nωt

i
: Nωt+1

i
∩N c

t+1 �= ∅
}
.

The probability of winning in competitions for attractants
for i is thus defined as

Winc(i) =

∞∑
t=0

card(Nωt+1
i

) · pt
∞∑
t=0

card(Nωt+1
i

) · pt
.

Player i wins in competitions for food if Winc(i) ≥
Winc(j) for any player j ∈ (Agt−{i}). Player i loses if
Winc(i) ≤ Winc(j) for any player j ∈ (Agt− {i}).

Hence, in context-based games, we have the
following main features: (i) the game can be infinite and
its measures are set up by rough sets with values running
over p-adic integers Zp; (ii) the game is concurrent if each
move for each player gives only one payoff, otherwise the
game is context-based; (iii) each player can change their
strategy at each time step t; (iv) if the set of payoffs for
agents i and j are intersected at t, this means that the
strategies of i and j are intersected also at t.
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6. Go games

Go is a game, originated in ancient China, in which two
persons play with a Go board and Go stones (Kim and
Jeong, 1994). In general, two players alternately place
black and white stones, on the vacant intersections of
a board with a 19 × 19 grid of lines, to surround the
territory. Whoever has more territory at the end of the
game is the winner. Vertically and horizontally adjacent
stones of the same color form a group. One of the basic
principles of Go is that stones must have at least one lib-
erty to remain on the board. A liberty of a given stone is a
vacant intersection adjacent to it. If a stone has at least one
liberty, then the next stone of a given player can be placed
on it to extend their group. The rough set based Go game
was implemented in the module simulating slime mould
(Physarum) games.

As was shown by Schumann (2016), the Go
game can be simulated by means of a 5-adic valued
Physarum machine. Let us consider an antagonistic game
implemented in plasmodia of Physarum polycephalum
and Badhamia utricularis in the 5-adic valued universe (at
each step Physarum polycephalum and Badhamia utric-
ularis can see not more than 4 attractants). In the Go
game, payoffs can be assessed by means of the measure
defined on the basis of rough set theory (Schumann and
Pancerz, 2015).

Let a board for the Go game, with a 19 × 19 grid of
lines, be in use. The set of all intersections of the grid
is denoted by I . At the beginning, the fixed numbers
of original points of both the plasmodia of Physarum
polycephalum and the plasmodia of Badhamia utricularis
are randomly deployed on intersections. An example
of the initial configuration of the Go game is shown in
Fig. 5. In this case, two original points of the plasmodia of
Physarum polycephalum (Ph1 and Ph2), treated as black
stones, as well as two original points of the plasmodia
of Badhamia utricularis (Ba1 and Ba2), treated as white
stones, are deployed on intersections.

Ph1

Ba2

Ba1

Ph2

Fig. 5. Example of the initial configuration of the Go game im-
plemented on the Physarum machine.

During the game, two players alternately place
attractants on the vacant intersections of the board.

The first player plays for the Physarum polycephalum
plasmodia, the second one for the Badhamia utricu-
laris plasmodia. The attractants occupied by plasmodia
of Physarum polycephalum are treated as black stones
whereas the attractants occupied by plasmodia of Bad-
hamia utricularis as white stones.

We assume the following formal structure of the
5-adic valued Physarum machine PM = (P,B,A):
P = {Ph1, Ph2, . . . , Phk} is the set of original
points of the plasmodia of Physarum polycephalum,
B = {Ba1, Ba2, . . . , Bal} is the set of original points
of the plasmodia of Badhamia utricularis, and A =
{At}t=0,1,2,... is the family of the sets of attractants,
where At = {At

1, A
t
2, . . . , A

t
rt} is the set of all attractants

present at time step t in PM. The structure of
the Physarum machine PM is changing in time (new
attractants are added by the players). Each intersection
i ∈ I is identified by two coordinates x and y written as
i(x, y). For each intersection i(x, y), we can distinguish
its neighborhood, called the intersection neighborhood,
i.e., IN(i) = {i′(x′, y′) ∈ I : (x′ = x − 1 ∨ x′ =
x + 1) ∧ (x′ ≥ 1) ∧ (x′ ≤ 19) ∧ (y′ = y − 1 ∨ y′ =
y + 1) ∧ (y′ ≥ 1) ∧ (y′ ≤ 19)}.

Formally, during the game, at a given time step
t, we can distinguish three kinds (pairwise disjoint) of
intersections in the set It of all intersections, namely,
I∅t —the set of all vacant intersections at t, I•t —the set
of all intersections occupied by plasmodia of Physarum
polycephalum at t (black stones), and I◦t —the set of all
intersections occupied by plasmodia of Badhamia utricu-
laris) at t (white stones). The plasmodium of Physarum
polycephalum and the plasmodium of Badhamia utricu-
laris cannot occupy the same attractants.

For the set Iπt of all intersections occupied by given
plasmodia π (either the plasmodia of Physarum poly-
cephalum or the plasmodia of Badhamia utricularis) at a
given time step t we define neighborhood approximations.

The lower neighborhood approximation of Iπt is
defined as

IN(Iπt ) = {i ∈ Iπt : IN(i) �= ∅ ∧ IN(i) ⊆ Iπt },
where π is either • or ◦. Each intersection i ∈ I such that
i ∈ IN(Iπt ) is called a full generator of the payoff of the
player playing for the plasmodia π.

The upper neighborhood approximation of Iπt is
given by

IN(Iπt ) = {i ∈ Iπt : IN(i) ∩ Iπt �= ∅},
where π is either • or ◦.

The set BNIN(I
π
t ) = IN(Iπt ) − IN(Iπt ) is the

boundary region of neighborhood approximation of Iπt
at time step t. Each intersection i ∈ I such that i ∈
BNIN(I

π
t ) is called a partial generator of the payoff of the

player playing for the plasmodia π.
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Fig. 6. Configuration of the Go game after several moves (pay-
offs defined on the basis of a standard definition of rough
sets).

In the case of the variable precision rough set model,
we obtain the β-lower neighborhood approximation:

INβ(Iπt ) = {i ∈ Iπt : IN(i) �= ∅ ∧ IN(i)
β

⊆ Iπt },
Each intersection i ∈ I such that i ∈ INβ(Iπt ) is called a
full quasi-generator of the payoff of the player playing for
the plasmodia π.

On the basis of lower neighborhood approximations,
we define a measure assessing payoffs of the players. For
the first player playing for the Physarum polycephalum
plasmodia we have Θ• = card(IN(I•t )). For the second
player playing for the Badhamia utricularis plasmodia we
have Θ◦ = card(IN(I◦t )). In a more relaxed case, we
have Θ• = card(INβ(I•t )) and Θ◦ = card(INβ(I◦t )),
respectively.

Consider an illustrative configuration of the Go
game after several moves. Intersections belonging to
lower neighborhood approximations IN(I•t ) and IN(I◦t )
of (I•t ) and (I◦t ), respectively, are marked with grey
rectangles in Fig. 6. It is worth noting that all
of the intersections from IN(I•t ) and IN(I◦t ) are full
generators of the payoffs of the players playing for the
Physarum polycephalum plasmodia and Badhamia utric-
ularis plasmodia, respectively. Hence, we obtain Θ◦ = 1
and Θ• = 2. The second player, playing for the Badhamia
utricularis plasmodia, wins.

In the case of the VPRSM approach, for β =
0.25, intersections belonging to lower neighborhood
approximations IN0.25(I•t ) and IN0.25(I◦t ) of (I•t ) and
(I◦t ), respectively, are marked with grey rectangles in
Fig. 7. It is worth noting that some of intersections
from IN0.25(I•t ) and IN0.25(I◦t ) are full quasi-generators
of the payoffs of the players playing for the Physarum
polycephalum plasmodia and Badhamia utricularis
plasmodia, respectively. Hence, we obtain Θ◦ = 3 and
Θ• = 3. No player wins.

We can define strategies in the Go game using
the neighborhood approximation. A mapping from
the intersections belonging to upper neighborhood

Fig. 7. Configuration of the Go game after several moves (pay-
offs defined based on the VPRSM approach for β =
0.25).

approximations IN(Iπt ) at t to the intersections belonging
to lower neighborhood approximations IN(Iπt+k) at t + k
is said to be a set of rational strategies of π of radius
k to win. A mapping from the intersections belonging
to β-lower neighborhood approximations INβ(I•t ) at t
to the intersections belonging to the union INγ(I◦t+k) ∪
INβ(I•t+k) at t+ k, where 0 < β ≤ γ and

card(INβ(I•t )) ≤ card(INγ(I◦t+k) ∪ INβ(I•t+k))

< card(IN(I•t+k)),

is said to be a set of rational strategies of ◦ (the player
playing for Badhamia utricularis) of radius k not to
lose. A mapping from the intersections belonging to
β-lower neighborhood approximations INβ(I◦t ) at t to
the intersections belonging to the union INγ(I•t+k) ∪
INβ(I◦t+k) at t+ k, where 0 < β ≤ γ and

card(INβ(I◦t )) ≤ card(INγ(I•t+k) ∪ INβ(I◦t+k))

< card(IN(I◦t+k)),

is said to be a set of rational strategies of • (the player
playing for Physarum polycephalum) of radius k not to
lose.

The agent is rational if (s)he follows one of the
rational strategies to win or not to lose in moves. Also,
we can define strategies in the Go game if we deal with
the VPRSM neighborhood approximation. A mapping
from the intersections belonging to γ-lower neighborhood
approximations INγ(Iπt ) at t to the intersections
belonging to β-lower neighborhood approximations
INβ(Iπt+k) at t+k is said to be a set of rational β-strategies
of π of radius k to win if γ < beta. A mapping
from the intersections belonging to γ-lower neighborhood
approximations INγ(I•t ) at t to the intersections belonging
to the union INδ(I◦t+k) ∪ INγ(I•t+k) at t + k, where
0 < β ≤ γ and 0 < β ≤ δ and

card(INγ(I•t )) ≤ card(INδ(I◦t+k) ∪ INγ(I•t+k))

< card(INβ(I•t+k)),
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is said to be a set of rational β-strategies of ◦ (the
player playing for Badhamia utricularis) of radius k not
to lose. A mapping from the intersections belonging
to γ-lower neighborhood approximations INγ(I◦t ) at t
to the intersections belonging to the union INδ(I•t+k) ∪
INγ(I◦t+k) at t+ k, where 0 < β ≤ γ and 0 < β ≤ δ and

card(INγ(I◦t )) ≤ card(IN δ(I•t+k) ∪ INγ(I◦t+k))

< card(INβ(I◦t+k)),

is said to be a set of rational β-strategies of • (the player
playing for Physarum polycephalum) of radius k not to
lose.

The agent is β-rational if (s)he follows one of the
rational β-strategies to win or not to lose in moves. In
the Go games, we base on the following presuppositions:
(i) the universe for all game moves is 5-adic valued, (ii)
the game is antagonistic, (iii) the game is sequential, not
concurrent. Hence, the Go games defined above are a
simple version of slime mould games as such. The latter
can process in the p-adic valued universes for different
p > 0, they can be not only antagonistic, but also
cooperative, they can be concurrent or even massively
parallel. If an experiment involves several attractants, we
deal with a concurrent game, and if an experiment is based
on placing several hundred attractants, we talk about a
massive-parallel game.

7. Conclusions

We have proposed a bio-inspired experimental game
theory on the medium of Physarum polycephalum and
Badhamia utricularis. In our approach, we share the
following interpretations of basic entities: (i) attractants
as payoffs; (ii) attractants occupied by the plasmodium
as states of the game; (iii) active zones of plasmodium
as players; (iv) logic gates for behaviors as moves
(available actions) for the players; (v) propagation of
the plasmodium as the transition table which associates,
with a given set of states and a given move of the
players, the set of states resulting from that move. As a
result, in slime mould games, we base on the following
assumptions: each slime mould game is concurrent or
massively parallel; players can change or modify their
strategies; the game can be infinite in the p-adic valued
universe for any integer p > 0.
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