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This paper introduces a method of data clustering that is based on linguistically specified rules, similar to those applied
by a human visually fulfilling a task. The method endeavors to follow these remarkable capabilities of intelligent beings.
Even for most complicated data patterns a human is capable of accomplishing the clustering process using relatively simple
rules. His/her way of clustering is a sequential search for new structures in the data and new prototypes with the use of
the following linguistic rule: search for prototypes in regions of extremely high data densities and immensely far from
the previously found ones. Then, after this search has been completed, the respective data have to be assigned to any of
the clusters whose nuclei (prototypes) have been found. A human again uses a simple linguistic rule: data from regions
with similar densities, which are located exceedingly close to each other, should belong to the same cluster. The goal of
this work is to prove experimentally that such simple linguistic rules can result in a clustering method that is competitive
with the most effective methods known from the literature on the subject. A linguistic formulation of a validity index for
determination of the number of clusters is also presented. Finally, an extensive experimental analysis of benchmark datasets
is performed to demonstrate the validity of the clustering approach introduced. Its competitiveness with the state-of-the-art
solutions is also shown.
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1. Introduction

“All the real knowledge which we possess, depends
on methods by which we distinguish the similar from
the dissimilar” reverberates in numerous publications the
famous sentence of the Swedish scholar C. Linnaeus.
Indeed, one of the fundamental faculties of living
creatures, and particularly of the reasoning ones, is
the ability to cluster similar objects, cases or events
for their later classification and naming. The idea of
connecting similar objects forms a basis for creation
of natural languages which help us to remember and
exchange ideas concerning various types of objects and
phenomena. In a natural language, groups of objects
with some specific features are named using different
nouns. This kind of clustering enables us (or highly
simplifies) to communicate, thereby making progress. In
science, clustering is one of the fundamental approaches
to data processing. It plays an important role in many
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engineering fields, such as pattern recognition, computer
vision, machine learning, image analysis, communication,
knowledge discovery, data mining and so on (Everitt et al.,
2011; Király et al., 2016; Leski and Kotas, 2015; Leski,
2016; Nguyen and Choi, 2015; Pancerz et al., 2015; Zok
et al., 2015). It also enables discoveries and development
in other branches of science, such as medicine, economy,
psychiatry, biology, marketing, education, archeology,
chemistry and many more.

2. Related works

Owing to their widespread and diverse applications,
many clustering methods have been developed and
practically implemented. Because of their multitude, it
would be arduous to review all of them; however, we can
divide them generally into the following types (Everitt
et al., 2011; Zaki and Meira, 2014): representative-based
clustering (including k-means, fuzzy c-means and
their kernel versions, and expectation-maximization
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clustering), hierarchical clustering, density-based
clustering (including DBSCAN (Ester et al., 1996)
and kernel density estimation (Fukunaga and
Hostetler, 1975; Comaniciu and Meer, 2002) as well
as spectral and graph clustering. An overview of these
methods can be found in the classical monographs by
Duda et al. (2001), Ripley (1996), Tou and Gonzalez
(1974), or Webb (1999), and in the paper by Jain et al.
(1999). Obviously, there exist methods that can be
assigned to more than one among the above-mentioned
types of clustering, e.g., to representative-based and
hierarchical one (Pedrycz et al., 2015), or to density-based
and graph clustering (Rodriguez and Laio, 2014).

The latter proposition is particularly interesting
because it tries to solve a very fundamental problem
encountered in clustering of multidimensional data whose
properties cannot easily be scrutinized. The problem is
that even if for a given set of data there is a method,
among a multitude of methods, that would be able to
cluster them correctly, it is difficult (if at least possible)
to choose it. It inspires to the endeavor to develop a
method that would be able to cluster the data of different
properties (with clusters of similar or different sizes, of
the same or different shapes, being well separated as well
as overlapping).

This study was also inspired by the work of Leski
(2015), which set forth a method of finding initial
prototypes for fuzzy clustering that lie on the boundary of
the convex hull of the clustered data. Such an initialization
of prototypes makes convergence of the calculations faster
and lessens possibilities of their getting stuck in a local
minimum of the criterion function. A simple algorithm
to find such initial prototypes is based on linguistically
defined rules, which are as follows (Leski, 2015): First
the mean value over the dataset is calculated, and the
datum that is most distant from this mean is chosen as
the first initial prototype. Next the distances between
this prototype and each datum are calculated. Then a
datum as far as possible from the previous prototype AND
as far as possible from the mean value is chosen as the
next prototype. Each new prototype should be as far
as possible from the previously chosen prototypes AND
from the mean value. The algebraic product as the t-norm
modeling the AND connection is used.

In the work of Rodriguez and Laio (2014) the search
for the clusters centers was also defined linguistically:
“Cluster centers should be of the highest density among
their nearest neighbors AND should by of relatively large
distances from the points of higher density.” Since the
theory of fuzzy sets was not applied in that work, the AND
connection was realized graphically with the participation
of a human.

It seems that for a human a more natural linguistic
definition of cluster centers (prototypes) could be as
follows: The first prototype should be placed in an

area with the highest density. The successive prototypes
should be placed in areas with a very, very high density
AND should have very, very large distances from the
previous prototypes. The search should be ended when
the condition has been very weakly satisfied (or, in
other words, when its degree of truth has become very
low). In such an approach, the prototypes are searched
successively and the condition can also be used to
determine their number. In this study, however, we
propose to apply a linguistically specified validity index.

The goal of this work is threefold. Firstly, it
introduces a new linguistically defined clustering method,
based on the fuzzy sets and possibility theories; secondly,
it investigates the clustering quality for benchmark
datasets; and thirdly, it compares the method proposed
to the state-of-the-art solutions, well-known from the
literature, with respect to their clustering quality.

The remainder of this paper is organized as follows:
Section 3 shows simple linguistically specified rules for
iterative search for cluster prototypes/medoids. Section 4
shows an algorithm assigning data to the previously
established prototypes. It is also based on a simple
linguistically defined rule. Section 5 presents a new
linguistic validity index which performs an assessment of
the cluster consistency. In Section 6, a comparative study
of the proposed method with some reference ones, known
from the literature and regarded as classical, is made. The
investigations are performed and discussed for real-world
and synthetic benchmark datasets. Finally, conclusions
are drawn in Section 7.

3. Linguistically defined clustering: Finding
prototypes

The proposed clustering method divides a set of N
observations (input vectors) x1,x2, . . . , xN ∈ R

n into
c clusters denoted by Ω1,Ω2, . . . ,Ωc. We assume that the
number of clusters is not known and must be estimated
based on the data. Additionally, we assume that the cluster
prototypes must be selected from the data clustered,
which means that they are medoids. For clusters Ωi,
i = 1, 2, . . . , c the prototypes (medoids) are denoted by
xM(i), where M : {1, 2, . . . , c} → {1, 2, . . . , N} is a
medoid index. Thus, M(k) = j will mean that the j-th
datum is the medoid of the k-th cluster. Denote by Rij =√
(xi − xj)�(xi − xj) the distance between the i-th and

the j-th datum. Of course, many different definitions of
the distance can be applied here, e.g. the Hamming one,
but in this work the most commonly applied Euclidean
one is used.

Since the proposed method is based on a search for
prototypes (or, more precisely, medoids) in high density
areas, we must begin the method description by defining
the notion of the data density. Analogously to the visual
search for dense regions by a human, define the density
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around the i-th datum on the basis of its distances to the
other data. These distances are aggregated. Of the greatest
impact are the data located nearest to the considered i-th
datum. If the aggregated distance from the i-th datum to
the remaining ones is small, we can conclude that the data
density in this region is high. As the aggregation operator
we can apply the generalized ordered mean (Yager and
Filev, 1999)

� (Ri1, Ri2, · · · , RiN ) =

N⊎

j=1

Rij

�
( N∑

j=1

βj

(
Ri[j]

)α ) 1
α

,

(1)

where the rank-ordered arguments satisfy the conditions

Ri[1] ≤ Ri[2] ≤ · · · ≤ Ri[N ]. (2)

By a suitable choice of weights β1 ≥ β2 ≥ · · · ≥ βN and
α ∈ R \ {0} , we can obtain many interesting methods for
data density assessment. For each xi,

Δ(xi) � 1/

N⊎

j=1

Rij . (3)

In this work one of the simplest choices was applied,
i.e., α = 1 and

βj =

{
1/ξ for j = 1, 2, . . . , ξ,
0 for j = ξ + 1, ξ + 2, . . . , N,

(4)

where ξ > 0 is a parameter. In other words, the density
is estimated as the reciprocal of the average distance to
the nearest ξ − 1 neighbors (note that in the first position,
after distances sorting, we will always have the distance
to the datum of the same index, Rii = 0). Additionally,
we normalize the so defined densities

Δ̄ (xi) =
Δ (xi)

maxNj=1 Δ(xj)
, (5)

and then the membership of the i-th datum to ‘dense
regions’ can be defined as

μdense (xi) = S
(
Δ̄ (xi) ; 0, 1

)
, (6)

where S(x; a, b) denotes the S-type membership function
with parameters a and b

S(x; a, b)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for x ≤ a,

2
(

x−a
b−a

)2

for a < x ≤ a+b
2 ,

1− 2
(

x−b
b−a

)2

for a+b
2 < x ≤ b,

1 for x > b.

(7)

In (6) we can apply many other types of the
membership functions, e.g., trapezoidal or sigmoidal;
however, in this work we will only apply the functions S,
Z and Π to pay homage to the founder of fuzzy set theory
(Zadeh, 1965) and possibilistic theory (Zadeh, 1978),
which are fundamental for this paper. In (6) the linguistic
value ‘dense’ was determined on the linguistic variable
‘normalized density.’ For clustering we will need a
definition of the term ‘very, very dense’, which we can
easily obtain using the modifier rule ‘very’, well-known
from possibility theory (Zadeh, 1978)

μvery very dense (xi) = (μdense (xi))
4. (8)

Note that selecting the membership function (7) and
the clustering rule with the linguistic term ‘very, very’,
the algebraic product as the t-norm (13) and the values of
the parameters used in (11), (14) and (17) are reasonable,
but arbitrary. The aim of the work is to show that
such a reasonable choice leads to excellent clustering
effects. A separate problem, not addressed here due to the
volume of the work, is the optimization of the clustering
procedure with respect to the above-mentioned functions
and parameters. The proposal for further work in this
direction will be given in the conclusions. Let us now
define the linguistic term ‘very, very large distance.’ In
our application, we refer to the distance from a set of the
previously found cluster prototypes. If we denote by γ the
current number of the found prototypes, a distance from
the following set of points {xi

∣
∣i ∈Mγ } is considered,

whereMγ = {M(1),M(2), . . . ,M(γ)} denotes the set
of indexes to the medoids that have already been found.
By checking the term ‘very, very large distance’, we want
to preclude selecting a new prototype near the previously
found ones. Thus, in fact, by the distance from the set
of the prototypes we mean the distance to the nearest
of them. Therefore, we rather regard the linguistic term
‘very, very large distance from the nearest prototype’
which can be defined as

Di �
γ

min
j=1

R̄iM(j), (9)

where R̄ij is the normalized distance,

R̄ij =
Rij

maxNi=1 maxNj=1 Rij
. (10)

The large distance from the prototypes is now defined
with the use of the S-type membership function

μfar (xi) = S (Di; 0, 1) . (11)

Then, just as before, we obtain the term ‘very, very large
distance’

μvery very far (xi) = (μfar (xi))
4. (12)
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In the linguistic definition of the proposed clustering
method, we use a compound statement ‘very, very large
density AND very, very large distance from the previously
found prototypes.’ On the basis of possibility theory, we
model conjunction AND with the use of the t-norm; one
of the basic t-norms, i.e., the algebraic product, will be
applied

μvery very far AND very very dense (xi)

= μvery very far (xi) · μvery very dense (xi) . (13)

Based on above ideas and considerations, we are
ready to present an iterative algorithm for finding
the prototypes (medoids) which is defined by simple
linguistic rules.

Algorithm 1. Finding prototypes.

Require: Rij , μvery very dense (xi), c.
Ensure: Indexes of the prototypes.

1: M(1) := argmaxNi=1 μvery very dense (xi),
2: γ := 1,Mγ := {M(1)},
3: while γ < c do
4: for the current prototype indexes Mγ and i =

1, 2, . . . , N do
5: Calculate μvery very far (xi),
6: Calculate μvery very far AND very very dense (xi),
7: end for
8: γ := γ + 1,
9: M(γ) :=

argmaxNi=1 μvery very far AND very very dense (xi),
10: Mγ :=Mγ−1 ∪ {M(γ)},
11: end while
12: return Mc {Returns a set of prototype indexes.}

At Point 5 of Algorithm 1 we determine the ‘distance
from the nearest prototype’ using (9). Owing to the
associative property of the ‘min’ operator, calculations
of Di’s can be performed iteratively. The final number
of clusters c can be known a priori or established by
examining the values of a validity index. In Section 4,
a linguistically defined validity index is proposed.

4. Linguistically defined clustering:
Assignment of data to clusters

Applying Algorithm 1 to data clustered, we select
prototypes xM(i) whose indexes are gathered in set
Mc = {M(1),M(2), . . . , M(c)}. The next
operation, necessary to complete the clustering task, is
the assignment of individual data points to one of the
respective clusters, represented by medoids. The easiest
solution would be to assign the data on the basis of the
nearest distance. In such a case, however, as in the fuzzy
c-means method, we would favor clusters in the form of

hyperballs of the same radius. To avoid such limitations,
we applied a different solution, analogous to that used
by a human, based on a reasonable linguistic term. We
assumed that an intelligent being would act according to
the following statement: ‘very, very near data with similar
densities should be assigned to the same cluster.’ Apart
from that, this propagation of membership starts from
prototypes, i.e., data with highest memberships, towards
data with lower one.

Beginning with the results produced by Algorithm 1,
which form the nuclei of the clusters, the successive data
will be assigned iteratively, one after another, with the
order dependent on the degree with which they satisfy
the term ‘very, very near distance AND similar density’.
Thus, in much the same way as before, we have to specify
the linguistic variables ‘distance’ and ‘density difference’,
and for them define subsequently linguistic terms ‘near’,
‘very, very near’ and ‘similar density’.

The normalized distance between the i-th and j-th
data pieces is equal to R̄ij (see (10)). Thus the value of
the term ‘near’ referring to this distance is defined with
the use of the S-type (or Z-type) membership function in
the following way:

μnear (xi,xj) = 1− μfar (xi,xj)

= 1− S
(
R̄ij ; 0, 1

)

= Z
(
R̄ij ; 0, 1

)
.

(14)

Specifically, μnear (xi,xj) is the membership function of
a two-dimensional fuzzy set, or simply the fuzzy relation.
Of course, we can obtain the term ‘very, very near’ as
before,

μvery very near (xi,xj) = (μnear (xi,xj))
4 . (15)

Let us now handle the variable ‘normalized density
difference’ for the i-th and j-th data pieces

∂Δ̄ (xi,xj) = Δ̄ (xi)− Δ̄ (xj) , (16)

which takes values from interval [−1,+1]. The linguistic
value ‘small density difference’ is obtained using the
Π-type membership function

μsmall density difference (xi,xj)

= Π
(
∂Δ̄ (xi,xj) ;−0.5,−0.2, 0.02, 0.25

)
, (17)

where

Π(x; a1, b1, a2, b2)

=

⎧
⎨

⎩

S(x; a1, b1) for x ≤ b1,
1 for b1 < x ≤ a2,
1− S(x; a2, b2) for x > a2,

(18)

and a1, b1, a2, b2 are parameters. In the above definition,
after scrutinizing the values of parameters a1, b1, a2, b2,
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we can be puzzled by the asymmetry of the linguistic
value ‘small density difference’! Such a membership
function corresponds to a greater extent to the term
‘small density difference but usually negative.’ And so
it is as it should be! The method of the search for
prototypes does not assure their finding in the regions of
the highest density (they are rather found in the regions
of the highest product of the density and the distance
from the previously found prototypes). Thus, in the stage
of the data assignment to clusters, we have to allow for
the possibility to assigning data points with a similar but
higher density. This will be exceptional, however, and
we will usually search for points with a similar but lower
density.

In a linguistic definition used for data assignment
to clusters, there is a compound term ‘very, very near
distance AND small density difference.’ Just as before,
we model conjunction AND using the algebraic product
as the t-norm

μvery very near AND small density difference (xi,xj)

= μvery very near (xi,xj)

· μsmall density difference (xi,xj) . (19)

After the above presentation of the introductory
notions, we are ready for the description of the algorithm
assigning data to clusters. Define the function indicating
the cluster to which the i-th datum belongs as C :
{1, 2, . . . , N} → {0, 1, 2, . . . , c}, where c is the number
of clusters; zero means that the datum has not been
assigned to any group yet. Thus C(i) = k will mean that
the i-th datum belongs to the k-th cluster, i.e., xi ∈ Ωk.
Obviously, we begin with the assignment of the cluster
prototypes (medoids). Each of them is a nucleus of a
new cluster: C(M(i)) = i for i = 1, 2, . . . , c. Define
the function W(i) ∈ [0, 1] determining the degree of
membership of the i-th datum to the cluster indicated
by C(i). Of course, function W(i) takes on a value
of one for each cluster prototype: W(M(i)) = 1 for
i = 1, 2, . . . , c. It will also be helpful to define a
set of indexes of the data that are not assigned to the
clusters yet R = {i |C(i) = 0, i = 1, 2, . . . , N }, and of
its complement, i.e., the set of indexes of the data already
assigned to clusters R = {1, 2, . . . , N} \ R. Of course,
at the beginning, when we only have the clusters nuclei
(prototypes/medoids),R = {1, 2, . . . , N} \Mc andR =
Mc.

After clusters nuclei have been formed on the basis
of the prototypes, we assume the following recurrent rule
for modification of C(i) and W(i). We search for data
indexes for which

W(i) ∧ μvery very near AND small density difference (xi,xj)

attains a maximum, subject to the condition that the first
argument has already been assigned to a cluster and the

second has not. Thus we set

(k, �) = arg max
i∈R, j∈R

[W(i)

∧ μvery very near AND small density difference (xi,xj)] , (20)

where ∧ denotes the minimum operation. After finding
such a pair of indexes (k, �) the cluster containing the k-th
datum is extended with the �-th one. Thus

C(�) = C(k). (21)

The degree of membership for the new datum is
determined as

W(�)

=W(k)∧μvery very near AND small density difference (xk,x�) .
(22)

Of course, after such an assignment the sets of indexes are
updated as follows:

{
R ← R \ {�},
R ← R∪ {�}. (23)

We continue assigning the data until R is an empty
set. After completing the assignment process, for each
datum we can determine a path (chain) along which the
cluster was extended, beginning at the cluster prototype
and ending at the datum considered. Note that according
to (22) the degree of the data membership to a cluster
propagates on the basis of the ‘weakest link’ of this chain.
Altogether, data assignment to clusters can be expressed
as Algorithm 2.

Algorithm 2. Data assignment to clusters.

Require: μvery very near AND small density difference (xi,xj).
Ensure: Assignment/Membership of data to clusters.

1: C(i) := 0,W(i) := 0 for i = 1, 2, . . . , N ,
2: C(M(i)) := i andW(M(i)) := 1 for i = 1, 2, . . . , c,

3: R := {1, 2, . . . , N} \ {M(1),M(2), . . . ,M(c)},
R := {M(1),M(2), . . . ,M(c)},

4: while R 
= ∅ do
5: (k, �) := argmaxi∈R, j∈R [W(i)

∧μvery very near AND small density difference (xi,xj)],
6: C(�) := C(k),
7: W(�) :=W(k)

∧ μvery very near AND small density difference (xk,x�),
8: R := R \ {�},R := R∪ {�},
9: end while

10: return C, W {Returns data assignment C and
membershipsW .}

Algorithm 2 transforms the set of prototypes
{M(1),M(2), . . . ,M(c)} into a function indicating
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a class to which each datum belongs, that is to say,
C : {1, 2, · · · , N} → {0, 1, 2, . . . , c} and the degree
of this membership, W : {1, 2, . . . , N} → [0, 1] .
Obviously, the proposed method of the linguistically
defined clustering (LDC) first executes Algorithm 1 and
then Algorithm 2. The computational complexity of the R
matrix calculation isO(0.5N2), of the density calculation
using quicksort isO(N2 logN), and of the determination
of the linguistic terms ‘very, very dense’, ‘very, very
far’, ‘very, very near and small density difference’ is
O(N) and O(cN), O(0.5N2), respectively. Finally,
the computational complexity of the procedure for data
assignment to clusters is O(0.5(N − 1)N), Thus, the
total computational complexity of the LDC algorithm is
O((1.5N +N logN)N).

5. Linguistically defined validity index

Application of the LDC algorithm, described in the
previous two sections, leads to clustering data x1,x2, . . . ,
xN ∈ R

n into c clusters, denoted as Ω1,Ω2, · · · ,Ωc and
represented by medoids {M(1),M(2), . . . ,M(c)}. We
also obtain a function indicating a class to which each
datum belongs C : {1, 2, . . . , N} → {0, 1, 2, . . . , c} and
the degree of this membership W : {1, 2, . . . , N} →
[0, 1] . The aim of this section is to present a method for
estimation of the appropriate number of clusters. The
method uses a classic approach based on a validity index,
with the exception that the index will be based on a
linguistic description. It will be used to assess the quality
of the obtained data partition on the basis of internal
consistency of the clusters. This linguistic specification
can be formulated in the following way: if any of the clus-
ters contains an isolated data region AND the data car-
dinality in this cluster is big AND the density within this
region is high, then the cluster internal consistency is low
and, consequently, bigger number of clusters should be
assumed.

In order to facilitate a mathematical description,
we introduce the following notation for the set of
indexes of the data that belong to the j-th cluster:
Ij = {i |C(i) = j }. Obviously, Ωj = {xi |i ∈ Ij }.
Investigation if the j-th data cluster is internally
consistent will be based on the analysis of the
distribution of memberships W(i) for i ∈ Ij and
results from the following observation. According
to (22) a membership propagates with the use of the
operation of ‘minimum’. When a cluster consists of two
isolated sub-clusters, for the first one, containing the
cluster medoid, the memberships are high; however,
while propagating to the second, they abruptly
decrease (because of the lower linguistic value of
the term μvery very near AND small density difference of the
between sub-clusters transition points). After this
decrease, the membership remains constant for the

most closely distributed points of the second sub-cluster
(related with greater linguistic values of the term
μvery very near AND small density difference). It is thus advisable
to find the most frequent value of W(i) for i ∈ Ij . The
number of its occurrences is a measure of the size of the
isolated region (sub-cluster).

More formally, for � ∈ Ij define the quantity

N� =
Card {i ∈ Ij |W(i) =W(�)}

min
1≤k≤c

Card {Ik}
, (24)

which is the number of occurrences of the membership
valueW(�) referred to the cardinality of the least frequent
cluster. The linguistic value ‘large region’ is defined as
follows:

μlarge region (�) = S (N�; 0.1, 1) . (25)

Hence we assume that if the cardinality of the isolated data
region (sub-cluster) is less than 10% of the cardinality
of the least frequent cluster, we should not create a new
cluster. If this value is exceeded, such an operation should
be considered but other features of the isolated region
should be taken into account, i.e., the degree of isolation
and the density of this region.

The degree of isolation is also assessed based on
the W(i) values of the data cluster. Observe that if
we want to assess the degree of isolation between the
data region represented by the found value W(�) (and
the smaller ones) and the region of higher memberships,
we can find the minimal difference between those higher
memberships (W(i) >W(�)) andW(�). Thus we define

T� =
min

{k∈Ij |W(k)>W(�)}
W(k)−W(�)

max
1≤i≤N

W(i)− min
1≤i≤N

W(i)
, (26)

where obviously the search is carried out for memberships
W(i) of the j-th cluster. Normalization to the greatest
difference between memberships from the whole dataset
was also applied. The linguistic value ‘well separated
region’ is defined as

μwell separated region (�) = S (T�; 0, 1) . (27)

What still remains is to determine the density of the
isolated region. To this end, we search for the maximal
value of μvery very dense (xk) for the data that belong to the
isolated region (W(k) ≤ W(�)) of the j-th cluster

D� = max
{k∈Ij |W(k)≤W(�)}

μvery very dense (xk) , (28)

We are now prepared for a numerical assessment
of the quality of the j-th cluster (denoted as Qj), by
combining information on the presence of an isolated data
region with a high degree of isolation AND with high
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cardinality AND with high density. Again, we use the
algebraic product to model conjunction AND,

Qj = max
�∈Ij

N� · T� · D�. (29)

The greater Qj , the worse the quality of the j-th cluster
because it contains better isolated data regions of higher
density.

If we form a partition into c clusters, the quality of
the whole partition U(c) can be assessed based on the
quality of the ‘worst’ cluster,

U(c) = max
1≤j≤c

Qj. (30)

Finally, index U(c) is used as other indexes of the same
type, i.e., we form partitions into clusters whose number
varies within the assumed range and we regard as the
best the partition into a number c# of clusters, for which
U(c#) is smallest. If there are several values of c for
which the same, smallest value of U(c) was achieved,
we usually choose the smallest c (the simplest solution is
best).

6. Numerical experiments and discussion

All experiments were performed on NTT Intel R© CoreTM

i5-3570 CPU @ 3.40 GHz with 6 GB RAM, running
Windows 8 and MatlabTM 7.5 environment. The Matlab
implementation of the ‘clustering by fast search and
find of density peaks (CFSFDP) method (Rodriguez
and Laio, 2014) was obtained (https://people.si
ssa.it/˜laio/Research/Research.php). All
algorithms introduced in the paper were implemented
as Matlab m-files, too. For the experiments, 8
well-known benchmark datasets were used, obtained from
the SIPU (School of Computing, University of Eastern
Finland) repository (http://cs.uef.fi/sipu/da
tasets), where numerous data sets, applied by various
authors to investigate clustering algorithms, have been
gathered:

1. Aggregation (788 data points, containing 7 clusters
with different shapes and sizes, both well separated
and overlapping ones) (Gionis et al., 2007).

2. Compound (399 data points, containing 6 clusters
with different shapes, sizes and densities, both well
separated and overlapping ones) (Zahn, 1971).

3. D31 (3100 data points, containing 31 clusters with
circular shapes, similar sizes, and different degrees
of overlapping) (Veenman et al., 2002).

4. Flame (240 data points, containing 2 overlapping
clusters with different sizes and shapes) (Fu and
Medico, 2007).

5. Jain’s data (373 data points, containing 2 clusters
with similar crescent shapes but different sizes and
densities) (Jain and Law, 2005).

6. Pathbased (300 data points, containing 3 overlapping
clusters with different shapes and sizes) (Chang and
Yeung, 2008).

7. R15 (600 data points, containing 15 mostly well
separated clusters with circular shapes and similar
sizes) (Veenman et al., 2002).

8. Spiral (312 data points, containing 3 well separated
clusters with spiral shapes) (Chang and Yeung,
2008).

These datasets are easily available and their primary
feature is a large variety of shapes, cardinalities and sizes
of the clusters, and of the degree of overlap and of the
number of clusters. Therefore, it is an excellent set to
compare the proposed method with the other methods
known from the literature with respect to their efficiency
of clustering. Only a few among those methods can work
well on such a diverse set of data. All these datasets
are depicted in Fig.1. For each dataset, information is
provided on the true data partition. This allowed us to
assess the clustering quality with the use of the measures
comparing the obtained data partition with the true one.
Such measures are usually categorized into set-matching
or pair-counting ones. In this study representatives of
both of these types have been applied, i.e., the purity
measure and the Jaccard coefficient. The purity measure
can be regarded as a fraction of correctly clustered data.
The Jaccard coefficient focuses on pairwise agreement
between partitions. For each possible pair of data,
the Jaccard coefficient evaluates how similarly the two
partitions treat them. The closer these measures to unity,
the closer the obtained data partition to the true one. The
upper bound is equal to the one which corresponds to a
perfect match between the partitions.

The purpose of the first experiment is to choose
a proper value of parameter ξ which influences data
density estimation (1)–(4). To this end, we performed the
clustering of the described datasets with ξ varying from
3 to 15. Clustering quality was assessed with the use of
the purity and the Jaccard coefficient. For both of these
measures, in Fig. 2 we presented the minimal and the
mean of their values obtained for the respective datasets
(as functions of parameter ξ).

Analyzing these plots, we can notice that for a wide
range of ξ (from 7 to 11) the mean values of the purity
index are similar. For the mean values of the Jaccard
coefficient, the plot is flat in a much narrower range, i.e.,
from 8 to 9. At the same time, the both indexes achieved
the highest of their minimal values for ξ = 9. Hence this
value was chosen for further experiments.

https://people.sissa.it/~laio/Research/Research.php
https://people.sissa.it/~laio/Research/Research.php
http://cs.uef.fi/sipu/datasets
http://cs.uef.fi/sipu/datasets
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Aggregation Compound D31 Flame

Jain’s data Pathbased R15 Spiral

Fig. 1. Distribution of points in the test datasets.

Table 1 shows the values of the purity index, the
Jaccard coefficient and the execution time obtained for
the method proposed in the paper (LDC) in an experiment
on all the datasets described. In these experiments, we
assumed that the true number of clusters was known. In
the final part of this section, the problem of determining
the number of clusters will be tested. Results from
Table 1 justify an opinion that the LDC algorithm copes
effectively with all data. In the worst case (of the Com-
pound dataset) we obtained the purity index equal to 0.87.
However, even this slight decrease in the index value can,
to some extent, be defended if we pay attention to the
particular properties of this dataset (see Fig. 1). One can
notice that the dataset contains one cluster with a much
lower density (with respect to the densities of the other
clusters). Even a human being, while analyzing these data,
wonders if this low density cluster should not be merged
with one of the other clusters! A similar value of the purity
index was obtained for the Pathbased dataset. In this
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Fig. 2. Mean values (solid lines) and the minimal ones (dashed
lines) of the purity (marked by circles) and the Jaccard
coefficient (squares) as functions of parameter ξ. The
values were obtained in tests on all datasets from Fig. 1.

case, a cluster resembling a segment of a circle contains a
discernible break and, besides, it overlaps with the other
two clusters. For three datasets (Flame, Jain’s data and
Spiral) we have obtained partitions exactly consistent with
the true ones. For the other datasets, the results obtained
are almost faultless (with the purity above 0.96).

Of course, to make a reliable appraisal of these
results, we have to compare them with the analogous
results of other algorithms. To this end, the following
methods were selected: ‘clustering by fast search and find
of density peaks’ (CFSFDP) (Rodriguez and Laio, 2014),
agglomerative hierarchical clustering with either a single
or a complete linkage, fuzzy c-means (FCM) clustering,
k-means clustering (Jain et al., 1999), DBSCAN (Ester
et al., 1996), and the mean-shift (MS) method (Comaniciu
and Meer, 2002). For the CFSFDP method, the number
of groups is selected interactively by the user. In
experiments, the number of groups was selected to be
equal to the true value. Table 2 shows the values of the
purity index, the Jaccard coefficient and the execution
time obtained for the CFSFDP method (for all the datasets
described). Scrutinizing these results, we can notice
that for three datasets (Aggregation, Flame and Spiral)
we have obtained a faultless partition into clusters. For
two datasets (D31 and Pathbased) the results are not
satisfactory (the values of purity are equal to 0.58 and
0.77, respectively). For the remaining datasets, the values
of this index exceed 0.83. Comparing the execution times,
we can see that they are usually longer for the CFSFDP
method, with the exception for the D31 dataset, for which
CFSFDP was slightly faster than LDC.

Table 3 shows the purity index, the Jaccard
coefficient and the execution time obtained for all
the described datasets by the method of hierarchical
clustering with a single linkage. We can see that in this
case only for the Spiral dataset the partition is exactly the
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Table 1. Purity, the Jaccard coefficient and the execution times
obtained for the proposed method.

Name Purity Jaccard Time [s]

Aggregation 0.9937 0.9809 0.86
Compound 0.8722 0.8165 0.12
D31 0.9671 0.8797 56.67
Flame 1.0000 1.0000 0.04
Jain’s data 1.0000 1.0000 0.10
Pathbased 0.8800 0.6534 0.06
R15 0.9867 0.9487 0.34
Spiral 1.0000 1.0000 0.07

Table 2. Purity, the Jaccard coefficient and the execution times
obtained for CFSFDP.

Name Purity Jaccard Time [s]

Aggregation 1.0000 1.0000 1.98
Compound 0.8321 0.4756 3.31
D31 0.5856 0.3319 52.27
Flame 1.0000 1.0000 2.67
Jain’s data 0.8928 0.7135 2.99
Pathbased 0.7333 0.4866 2.30
R15 0.9967 0.9866 4.60
Spiral 1.0000 1.0000 2.35

same as the true one. Quite high values, i.e., the purity
index exceeding 0.8, we obtained for two datasets only
(Aggregation and Jain’s data). For the remaining five
datasets, the results are not satisfactory. On the other
hand, the method is competitive with the proposed one
with respect to the execution time, which was more than
40 times shorter in the case of the D31 dataset! Of course,
for the hierarchical method, clustering was interrupted for
the true number of clusters.

Table 4 shows the values of the purity index, the
Jaccard coefficient and the execution time obtained for
all the described datasets by the method of hierarchical
clustering with complete linkage. We can see that for
this method, we achieved high consistency of the obtained
partitions with the true ones (the purity index exceeding
the value of 0.94) for four datasets (Aggregation, D31,
Jain’s data, R15). Unfortunately for two datasets (Path-
based and Spiral) the results are very poor (for the
latter dataset, the purity index was equal to 0.4). The
execution times are comparable to those of the method
of hierarchical clustering with a single linkage. In these
experiments, the grouping was also interrupted for the true
number of clusters.

Table 5 shows the values of the purity index, the
Jaccard coefficient and the execution time obtained for all
the described datasets by the fuzzy c-means method (for

the true number of clusters and for the standard parameter
values used by Matlab). For this method the results are
very stable, i.e., the purity index belongs always to the
range from 0.74 to 0.88. There are only two exceptions:
for the R15 dataset we obtained an almost perfect result
(0.99) and for the Spiral dataset the worst result of
0.34. The execution times are comparable to those of the
method proposed; however, for the D31 dataset they were
8 times shorter.

Table 6 shows the values of the purity index, the
Jaccard coefficient and the execution time obtained for all
the described datasets by the k-means method (for the true
number of clusters and for the standard parameter values
used by Matlab). For this method the results are very
similar to those obtained for the fuzzy c-means method
(the mean purity index remains almost unchanged), but
the execution times are about twice shorter.

Table 7 we can see the same set of values as in
Table 6 but obtained by the DBSCAN method (here the
minimal number of points considered as a cluster equals
10). For this method the results are rather good, i.e.,
the purity index belongs always to the range from 0.36
to 0.82. There are only two exceptions: for the Spiral
dataset we obtained a perfect result (1.00) and for the D31

Table 3. Purity, the Jaccard coefficient and the execution times
obtained for the method of hierarchical clustering with
single linkage.

Name Purity Jaccard Time [s]

Aggregation 0.8274 0.7430 0.28
Compound 0.7469 0.6912 0.14
D31 0.2652 0.1241 1.36
Flame 0.6458 0.5357 0.10
Jain’s data 0.8097 0.6553 0.15
Pathbased 0.3733 0.3316 0.12
R15 0.7317 0.4126 0.25
Spiral 1.0000 1.0000 0.12

Table 4. Purity, the Jaccard coefficient and the execution times
obtained for the method of hierarchical clustering with
complete linkage.

Name Purity Jaccard Time [s]

Aggregation 0.9530 0.7031 0.27
Compound 0.8246 0.7386 0.15
D31 0.9619 0.8626 1.28
Flame 0.6375 0.4425 0.10
Jain’s data 0.9464 0.8533 0.14
Pathbased 0.6833 0.4192 0.12
R15 0.9900 0.9606 0.20
Spiral 0.4071 0.2331 0.12
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Table 5. Purity, the Jaccard coefficient and the execution times
obtained for the fuzzy c-means method.

Name Purity Jaccard Time [s]

Aggregation 0.8807 0.5152 0.70
Compound 0.8321 0.4627 0.33
D31 0.8806 0.6934 7.21
Flame 0.8500 0.6032 0.15
Jain’s data 0.7748 0.5218 0.16
Pathbased 0.7433 0.4888 0.21
R15 0.9967 0.9866 0.63
Spiral 0.3397 0.1957 0.29

Table 6. Purity, the Jaccard coefficient and the execution times
obtained for the k-means method.

Name Purity Jaccard Time [s]

Aggregation 0.9112 0.6201 0.42
Compound 0.8697 0.7009 0.26
D31 0.8487 0.6581 2.88
Flame 0.8375 0.5822 0.14
Jain’s data 0.7828 0.5315 0.18
Pathbased 0.7433 0.4911 0.17
R15 0.8583 0.6554 0.37
Spiral 0.3429 0.1957 0.23

dataset the worst result of 0.19. The execution times are
comparable to those of the hierarchical methods.

Table 8 shows the results obtained by the mean-shift
method (the Gaussian kernel bandwidth is determined as
in the work of Rodriguez and Laio (2014)). For this
method the results are very good, i.e., the purity index
belongs always to the range from 0.80 to 0.99. Only
for the Spiral dataset we obtained the value beyond this
range; it was the worst result of 0.64. The execution times
are comparable to those of the hierarchical methods. At
first sight, the LDC algorithm bears a similarity to the
clustering algorithms family known from the literature,
i.e., to the mean-shift (MS) algorithms (Fukunaga and
Hostetler, 1975; Comaniciu and Meer, 2002). Of course,
both types of algorithms belong to the same group of
the density-based ones. However, after a more in-depth
analysis, we can notice some fundamental differences.
The mean-shift algorithm iteratively shifts a datum to the
nearest local peak of the density function (cluster center).
Thus, all the data points near a cluster center converge
to it by iterative climbing up the density function. In
contrast to it, the LDC algorithm uses the density function
separately to find cluster prototypes and to form clusters.
Moreover, this formation of clusters runs from the highest
densities to the smallest, and from the smallest differences
in distance and density to the highest ones. Additionally,

in the LDC algorithm the clustering rules are formulated
in a linguistic way.

The observations regarding the values of the purity
index obtained by the compared clustering methods can
to a large extent be applied to the obtained values of
the Jaccard coefficient. To facilitate a comprehensive
appraisal of the respective methods, a juxtaposition of
the minimal and the mean values of both indexes and
of the cumulative execution times was made in Table 9.
The method proposed (LDC) achieved the greatest of the
presented mean values of both the indexes. Also the
smallest of the values obtained for different datasets are
greatest for this method. As far as the execution times
are considered, the method can be regarded as rather time
consuming. For instance, its computations are about 6
times longer than those of the FCM method. However,
it is significantly less time consuming than the CFSFDP
method. Concluding, it seems that a good compromise
has been achieved between the contradictory requirements
of the efficiency and computational speed of the method
developed.

In the above described experiments, we assumed
that the true number of clusters is known. Of course
the problem of clustering is more complicated if this
number is not known and should be established. In
real applications of clustering, we usually deal with such

Table 7. Purity, the Jaccard coefficient and the execution times
obtained for the DBSCAN method.

Name Purity Jaccard Time [s]

Aggregation 0.8274 0.7486 0.29
Compound 0.7393 0.6895 0.15
D31 0.1932 0.1027 1.44
Flame 0.6375 0.5359 0.10
Jain’s data 0.7399 0.6141 0.13
Pathbased 0.3667 0.3329 0.12
R15 0.5333 0.2071 0.23
Spiral 1.0000 1.0000 0.12

Table 8. Purity, the Jaccard coefficient and the execution times
obtained for the mean-shift method.

Name Purity Jaccard Time [s]

Aggregation 0.9112 0.6472 0.30
Compound 0.8296 0.7283 0.15
D31 0.9435 0.8112 1.25
Flame 0.9208 0.7677 0.12
Jain’s data 0.8070 0.4161 0.15
Pathbased 0.7012 0.4714 0.12
R15 0.9950 0.9801 0.23
Spiral 0.6473 0.1478 0.22
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Table 9. Summary of the clustering method investigation.

Method Min Purity Mean Purity Min Jaccard Mean Jaccard Time [s]

Hierarchical, single 0.2652 0.6750 0.1241 0.5616 2.52
Hierarchical, complete 0.4071 0.8004 0.2331 0.6516 2.38
CFSFDP 0.5856 0.8800 0.3319 0.7492 72.49
FCM 0.3397 0.7872 0.1957 0.5584 9.68
k-MEANS 0.3429 0.7743 0.1957 0.5543 4.65
DBSCAN 0.1932 0.6296 0.1027 0.5288 2.58
MS 0.7012 0.8445 0.1478 0.6212 2.54
LDC 0.8722 0.9624 0.6534 0.9099 58.26

a problem. That is why the next experiment concerns
the linguistically defined validity index, described in
Section 4, developed to solve this problem. In the
experiment, we performed the clustering of all datasets
with the number of clusters varying from 2 to 35. As the
estimated number of clusters, we selected the value for
which the quality of clustering was best (the validity index
calculated according to (30) was lowest). In Table 10,
we presented both the true and the estimated numbers of
clusters, for all datasets. Analyzing these results, we can
see that for six datasets the correct number of clusters was
found. For the Pathbased dataset, we obtained too small
a number (2 clusters instead of 3). We suppose that it was
caused by a visible break within the cluster resembling
the section of a circle (see Fig. 1). Consequently, for 2
clusters we obtained their best inner consistency.

In the second case of failure, the error is more
serious. For the D31 dataset we obtained 2 clusters instead
of 31. However, if we scrutinize this dataset carefully
(see Fig. 1), we can find that it contains a number of
overlapping (to various extents) Gaussian distributions.
Only on the basis of the information on the true number
of clusters, we know that there are 31 of them. A careful
observer can discern digits ‘9’ and ‘7’ or other well
isolated groups of clusters, e.g., the one in the lower right
corner (consisting of 8 overlapping sub-clusters). Single

Table 10. Performance of the linguistically defined validity in-
dex: the true numbers of clusters and the estimated
values.

Name True Estimated

Aggregation 7 7
Compound 6 6
D31 31 2
Flame 2 2
Jain’s data 2 2
Pathbased 3 2
R15 15 15
Spiral 3 3

well isolated clusters can be noticed in the middle of the
figure and in the top left corner. This can be a reason
behind a low value of the proposed validity index for small
numbers of clusters (from 2 to 5). On the other hand,
for the number of clusters equal to 31, we obtained the
second locally minimal value of this index (only slightly
larger than for 2). Concluding, it seems right to say that
the proposed linguistically defined validity index copes
well with determination of the number of clusters for
different types of data, and only for rather complicated
distributions, which may cause problems even for a
human observer, it may ‘make’ wrong decisions.

7. Conclusions

The paper introduced a new method of data clustering
based on simple linguistically defined rules: (i) search for
prototypes should be carried out in regions of very, very
high data density very, very far from the previously found
ones; (ii) data from the regions with similar densities
that are located very, very near to each other should
belong to one cluster. The first rule is applied to the
sequential search for cluster prototypes, or rather medoids
(we assume that prototypes are chosen from the data
clustered). The second rule helps in assigning data to the
selected medoids and, thereby, to form data clusters. Both
the rules try to embrace the natural clustering capabilities
of human beings and to transfer them to the clustering
algorithms. The rules are expressed formally with the use
of notions from the possibility theory such as linguistic
variables/values, linguistic modifiers, and the modeling of
a conjunction with a t-norm.

The goal of our work was to show that an
algorithm based on such simple rules can be competitive
with classical ones, known from the literature. The
investigations were performed on benchmark datasets,
containing both simulated and real data. The results
obtained are very favorable and they inspire a further
development of linguistically defined algorithms, not only
for clustering but also for solving other problems for
which a human expert can specify a solution linguistically.

As an example, consider a problem of detecting the
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so-called QRS complexes in a noisy electrocardiogram.
A human uses a simple rule in this case too. He or
she detects QRS complexes if the signal energy in the
frequency band around about a dozen hertz, within a
time segment of more or less a hundred milliseconds,
is big. Yet another example of such a linguistic
formulation of algorithms was presented, when we
defined (linguistically) a validity index for determination
of a number of clusters. In this case, we check the
inner consistency of clusters by applying the linguistically
specified rule: if a cluster contains an isolated region of
data AND their cardinality is high AND their density in
this region is high then the cluster inner consistency is
low. We have obtained promising results of using such
a validity index.

Concluding, we have tried not only to show that
linguistically defined algorithms can be competitive with
classical ones in data clustering but also to encourage the
readers to the construction of other algorithms for which
a human can easily formulate linguistic rules, transferring
in this way the extraordinary faculties of his brain to the
computer algorithms. Finally, let us focus on the problem
of selecting the membership function and formulating the
linguistic rules for clustering. It seems interesting to apply
evolutionary methods to make this choice. This would
be a reflection of the fact that each of us uses his or her
inherited and derived experience in real world phenomena
clustering.
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Király, A., Vathy-Fogarassy, A. and Abonyi, J. (2016). Geodesic
distance based fuzzy c-medoid clustering searching for
central points in graphs and high dimensional data, Fuzzy
Sets and Systems 286(1): 157–172.

Leski, J. (2015). Fuzzy (c + p)-means clustering and its
application to a fuzzy rule-based classifier: Towards good
generalization and good interpretability, IEEE Transac-
tions on Fuzzy Systems 23(4): 802–812.

Leski, J. (2016). Fuzzy c-ordered-means clustering, Fuzzy Sets
and Systems 286(1): 114–133.

Leski, J. and Kotas, M. (2015). On robust fuzzy c-regression
models, Fuzzy Sets and Systems 279(1): 112–129.

Nguyen, S. and Choi, S.-B. (2015). Design of a new adaptive
neuro-fuzzy inference system based on a solution for
clustering in a data potential field, Fuzzy Sets and Systems
279(1): 64–86.

Pancerz, K., Lewicki, A. and Tadeusiewicz, R. (2015).
Ant-based extraction of rules in simple decision systems
over ontological graphs, International Journal of Applied
Mathematics and Computer Science 25(2): 377–387, DOI:
10.1515/amcs-2015-0029.

Pedrycz, W., Al-Hmouz, R., Balamash, A. and Morfeq, A.
(2015). Hierarchical granular clustering: An emergence of
information glanules of higher type and higher order, IEEE
Transactions on Fuzzy Systems 23(6): 2270–2283.

Ripley, B. (1996). Pattern Recognition and Neural Networks,
Cambridge University Press, Cambridge.

Rodriguez, A. and Laio, A. (2014). Clustering by fast search and
find of density peaks, Science 344(6191): 1492–1496.

Tou, J. and Gonzalez, R. (1974). Pattern Recognition Principles,
Addison-Wesley, London.

Veenman, C., Reinders, M. and Backer, E. (2002). A maximum
variance cluster algorithm, IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(9): 1273–1280.

Webb, A. (1999). Statistical Pattern Recognition, Arnold,
London.

Yager, R. and Filev, D. (1999). Induced ordered weighted
averaging operators, IEEE Transactions on Systems, Man
and Cybernetics: Cybernetics 29(2): 141–150.



Linguistically defined clustering of data 557

Zadeh, L. (1965). Fuzzy sets, Information and Control
8(1): 338–353.

Zadeh, L. (1978). Fuzzy sets as a basis for a theory of possibility,
Fuzzy Sets and Systems 1(1): 2–28.

Zahn, C. (1971). Graph-theoretical methods for detecting and
describing gestalt clusters, IEEE Transactions on Comput-
ers 1(1): 68–86.

Zaki, M. and Meira, W. (2014). Data Mining and Analysis: Fun-
damental Concepts and Algorithms, Cambridge University
Press, New York, NY.

Zok, T., Antczak, M., Riedel, M., Nebel, D., Villmann, T.,
Lukasiak, P., Blazewicz, J. and Szachniuk, M. (2015).
Building the library of RNA 3D nucleotide conformations
using the clustering approach, International Journal of Ap-
plied Mathematics and Computer Science 25(3): 689–700,
DOI: 10.1515/amcs-2015-0050.

Jacek M. Leski is a professor of biomedical in-
formation processing at the Silesian University
of Technology, and currently the head of the Di-
vision of Biomedical Electronics. He is also a
professor at the Institute of Medical Technology
& Equipment ITAM. His research interests in-
clude digital processing of biomedical signals,
fuzzy and neuro-fuzzy modeling, pattern recog-
nition and learning theory. He is a senior member
of the IEEE and a member of the Polish Society

of Theoretical and Applied Electrotechnics.

Marian P. Kotas was born in Bielsko-Biala,
Poland, in 1965. He received his MSc, PhD
and DSc degrees from the Silesian University
of Technology, Gliwice, Poland. Since 2012 he
has been an associate professor at the Institute
of Electronics, Division of Biomedical Electron-
ics, Silesian University of Technology. His cur-
rent research interests include linear and nonlin-
ear filtering of biomedical signals, multivariate
data processing and pattern recognition.

Received: 17 July 2017
Revised: 11 December 2017
Re-revised: 22 February 2018
Accepted: 16 April 2018


	Introduction
	Related works
	Linguistically defined clustering: Finding prototypes
	Linguistically defined clustering: Assignment of data to clusters
	Linguistically defined validity index
	Numerical experiments and discussion
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




