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We investigate Ore polynomial matrices, i. e., matrices with polynomial entries in d/dt whose coefficients are meromorphic
functions in t and as such constitute a non-commutative ring. In particular, we study the properties of hyper-regularity and
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In addition, this approach enables computation of hyper-regular left and right and unimodular inverses.
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1. Introduction

Matrices with entries in differential operators play a key
role in solving Serre’s conjecture (Cluzeau and Quadrat,
2013; Fabianska and Quadrat, 2007; Lam, 1978; Logar
and Sturmfels, 1992; Youla and Pickel, 1984) and thus
are of interest in pure mathematics. Their occurence
in applications such as control theory underlines this
interest as well and motivates our work (see, e.g.,
the works of Franke and Röbenack (2013), Fritzsche
et al. (2016), Lévine (2011), Middeke (2011), Newman
(1972) or Zhou and Labahn (2014) and the references
therein). In this paper, we investigate polynomial matrices
with meromorphic entries in the differential operator d

dt
which leads to non-commutative operations. To show
hyper-regularity or unimodularity, the so-called Smith
normal form can be used. However, the computation is
rather costly and thus not very practical. Instead, methods
based on row and column reduction have been developed
by Beckermann et al. (2006) as well as Antritter et al.
(2014), Antritter and Middeke (2011) or Verhoeven
(2016), with the last referencing a Maple toolbox. These
methods also describe how to compute hyper-regular
and unimodular inverses. While the row-reduced form
of a matrix is directly related to the Popov normal
form (Davies et al., 2008; Antritter et al., 2014), row
reduction can be viewed as a special case of Gröbner basis
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computation (Middeke, 2011).
Instead of dealing with non-commutativity, in

this contribution we will focus on the solvability of
corresponding systems of linear equations and derive rank
conditions that allow us to prove hyper-regularity and
unimodularity, respectively. To this end, we will introduce
operators which allow a reformulation of the problem as
a system of linear equations and thus conclusions about
solvability as well as solutions. These operators can easily
be implemented in computer algebra systems.

With a free and open source1 Python toolbox
(Fritzsche, 2018) based on SymPy (Meurer et al., 2017)
the presented examples can be reproduced.

2. Preliminaries

Let K be the field of meromorphic functions in t. GLn(K)
is the set of n×n matrices overK which are regular almost
everywhere,2 while Sym(n) is the set of all permutations
of degree n. By row(A,B) we will denote (AB ) for
matrices A and B. For the sake of readability, we will
symbolize the differential operator d

dt by λ.

The multiplication of two elements a and b of the Ore
polynomial ring K[λ] is non-commutative and determined

1GNU General Public License, Version 3.
2 The rank of a matrix in K depends on t and thus may have singular-

ities, which will be ignored here. For example,
(
t 0
0 t

) ∈ GL2(K).
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by the rule

∀a ∈ K : λa = ȧ+ aλ, (1)

and for applying the operator g times by

∀a ∈ K, g ∈ N : λga =

g∑

i=0

(
g
i

)
a(g−i)λi. (2)

Similarly, λ can be applied from the right by the rule

∀a ∈ K : aλ = λa− ȧ, (3)

which generalizes to

∀a ∈ K, g ∈ N: aλg =

g∑

i=0

(−1)i
(
g
i

)
λg−ia(i). (4)

Definition 1. Let A ∈ Km×n. A matrix A+R ∈ Kn×m is
called a right pseudo-inverse of A if AA+R = Im holds.
In the same manner, A+L ∈ Kn×m is called a left pseudo-
inverse of A if A+LA = In holds.

Remark 1. Occasionally, (general) pseudo-inverses
are defined such that AA+A = A and A+AA+ =
A+ hold, which ensures pseudo-invertibility of (some)
singular matrices (see the works of Ben-Israel and
Greville (2003), Bose and Mitra (1978), Boullion and
Odell (1971), Campbell and Meyer (2008) or Röbenack
and Reinschke (2011) in the context of dynamical
systems). In addition to the above conditions, the
Moore–Penrose pseudo-inverse satisfies (A+A)T =
A+A and (AA+)T = AA+, and although it can be used
here, we can mostly be more permissive for the purpose
of this paper.

Remark 2. Dealing with symbolic entries,
pseudo-inverses with “simple” expressions are prefered
in most cases, i. e., pseudo-inverses where many entries
are zero or one. This can be achieved heuristically, by the
following approach:
∀A ∈ Km×n, rkA = m < n ∃Vπ ∈ Sym(n) :
AVπ = (S,T) with S ∈ GLm(K) such that
AVπrow(S−1,0) = Im, i. e., A+R = Vπrow(S−1,0).

Remark 3. The computation of left pseudo-inverses can
be deduced from the right counterpart by the following
implications:
∀A ∈ Km×n, rkA = n < m : A+LA = In =⇒
In = AT(A+L)T = AT(AT)+R =⇒ (A+L)T = (AT)+R

=⇒ A+L = ((AT)+R)T.

Remark 4. Given a matrix A ∈ Km×n with
rkA = min (m,n), a general pseudo-inverse can be
parameterized by

A+(λ) =

{
A+

MP +A⊥M for m ≤ n,

A+
MP +MA⊥ for n < m,

(5)

with the Moore–Penrose pseudo-inverse

A+
MP =

{
AT(AAT)−1 for m ≤ n,

(ATA)−1AT for n < m,
(6)

an arbitrary matrix M ∈ K(max (m,n)−rkA)×min (m,n),
and an orthogonal complement A⊥ which can be
described geometrically by

im (A⊥) = kerA for m ≤ n, (7)

im ((A⊥)T) = ker (AT) for n < m. (8)

The columns (rows) of the matrix A⊥ are a basis of
im (A⊥) for m ≤ n (for n < m).

Definition 2. A polynomial matrix A(λ) ∈ Kn×n[λ]
is called unimodular iff an inverse A−1(λ) ∈ Kn×n[λ]
exists. We denote by Un[λ] the set of unimodular n × n
matrices.

Definition 3. Let A(λ) ∈ Km×n[λ]. The following holds
(Cohn, 1985; Lévine, 2011): ∃L(λ) ∈ Um[λ],R(λ) ∈
Un[λ] :

L(λ)A(λ)R(λ) =

(
Δ(λ) 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
, (9)

where Δ(λ) ∈ Kr×r[λ] with the rank r ≤ min (m,n)
denotes a diagonal matrix and the right-hand side of
equation (9) is called the Smith normal form of A(λ).

Definition 4. Let A(λ) ∈ Km×n[λ]. A(λ) is called
hyper-regular iff its Smith normal form yields Δ(λ) =
Imin (m,n).

Corollary 1. A matrix A ∈ Kn×n[λ] is hyper-regular iff
it is unimodular.

Corollary 2. Let A(λ) ∈ Km×n[λ] with m < n be
hyper-regular. Then

∃R(λ) ∈ Un[λ] : A(λ)R(λ) = (Im,0). (10)

Proof. See the works of Antritter and Middeke (2011) or
Middeke (2011). �

Remark 5. In general, the rank of a symbolic matrix
depends on the point of evaluation (see Footnote 2). If
a submatrix has full rank at one point of evaluation,
the set of points where the rank diminishes constitutes
a meagre set, i. e., a set of first category in the sense
of Baire. This means, that we have maximum rank
for almost all points of evaluation. In practice, we
can compute the rank of a matrix with symbolic entries
by substituting a random number for each symbol and
thus transforming the symbolic task into a numerical
one, where the challenge is to specify whether or not
numerical entries are zero. This problem depends on the
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precision of the floating point variables in use. We have
implemented the toolbox in the computer algebra system
SymPy (Meurer et al., 2017) which allows evaluation
with arbitrary precision and thus enables us to distinguish
between numerical noise and small, but finite numbers,
such that this problem can be circumvented, too. For more
details on the implementation of this, see the works of
Knoll (2016, p. 176), or Knoll and Fritzsche (2017).

3. Hyper-regularity

In order to check the hyper-regularity of a matrix with
entries in K[λ] we show that left (or right) invertibility is
necessary and sufficient. Due to the non-commutativity
of K[λ] we need to distinguish between right and left
polynomial matrices, i. e., matrices of the form A(λ) =∑α

i=0 Aiλ
i and A(λ) =

∑α
i=0 λ

iAi (which of course
can be transformed into each other). To prove right
invertibility, we can use a matrix of an arbitrary (but
fixed) order β as an ansatz, multiply both matrices and
left-shift the differential operator λ. Since the product
of a matrix and its hyper-regular inverse is the unit
matrix, comparing coefficients with the unit matrix
results in a system of linear equations. Using a left
polynomial matrix as an ansatz is necessary to prevent
from shifting across the unknown coefficients. We define
an operator that simplifies the assembly of the resulting
linear equations and thus circumvents non-commutative
shifting operations. The number of linear equations
depends on the order of the ansatz and is unknown in
general. We can prove solvability of these equations
by rank conditions, which can be done efficiently using
computer algebra systems (see Remark 5). Checking left
invertibility follows a similar approach.

Corollary 3. Let A(λ) ∈ Km×n[λ]. Then

A(λ) is hyper-regular

⇔
{
A(λ) right invertible for m ≤ n,

A(λ) left invertible for m ≥ n.

Proof. Due to the Smith normal form of A(λ),
hyper-regularity requires Δ(λ) = I, which is equivalent
to the existence of a matrix M(λ) ∈ Kn×m[λ] such that
A(λ)M(λ) = Im for m ≤ n and M(λ)A(λ) = In for
n ≤ m, respectively. �

3.1. Conditions for right and left invertibility. The
following definitions introduce the operators HR

β and
HL

β which operate on the coefficient matrices of the
polynomial matrix and help in assembling systems of
linear equations leading to simple rank conditions to
prove hyper-regularity. These operators can easily be
implemented.

Definition 5. Let

A(λ) =

α∑

i=0

Aiλ
i

with Ai ∈ Km×n,m ≤ n and β ∈ N. The operator3

HR
β : Km×n[λ] ↪→ Km(α+β+1)×n(β+1)

is defined by

(A0, . . . ,Aα) 
→
α∑

i=0

HR
β,i(Ai)

with the matrix

HR
β,i(Ai) :=⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−1)i(ii)A
(i)
i (−1)i+1(i+1

i+1)A
(i+1)
i . . . (−1)i+β(i+β

i+β)A
(i+β)
i

...

(−1)1(i1)A
(1)
i

...

(i0)A
(0)
i (−1)1(i+1

1 )A(1)
i

0 (i+1
0 )A(0)

i

0 0

...
...

...
. . .

(−1)1(i+β
1 )A(1)

i

0 0 . . . (i+β
0 )A(0)

i

Om(i+β+1)×n(β+1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Further, we define

H
R

βA(λ) :=
(
HR

βA(λ),
(
Im
0

))
. (11)

Definition 6. Let

A(λ) =
α∑

i=0

λiAi

with Ai ∈ Kn×m,m ≤ n and β ∈ N. The operator

HL
β : Kn×m[λ] ↪→ Kn(β+1)×m(α+β+1)

is defined by

(A0, . . . ,Aα) 
→
α∑

i=0

HL
β,i(Ai)

with the matrix

HL
β,i(Ai) :=⎛

⎜⎜⎜⎝

(i
0

)
A

(i)
i . . .

(i
i

)
A

(0)
i

(i+1
0

)
A

(i+1)
i . . .

(i+1
i

)
A

(1)
i

(i+1
i+1

)
A

(0)
i 0 Op×q

.

.

.
. . .

(i+β
0

)
A

(i+β)
i . . .

(i+β
i

)
A

(β)
i

(i+β
i+1

)
A

(β−1)
i . . .

(i+β
i+β

)
A

(0)
i

⎞

⎟⎟⎟⎠ ,

where p = m(β + 1) and q = n(α− i). We define

3The injective character of the mapping is denoted by ↪→.
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H
L

βA(λ) :=

(
HL

βA(λ)

Im,0

)
. (12)

Proposition 1. Let

A(λ) =

α∑

i=0

Aiλ
i

with Ai ∈ Km×n, m ≤ n. A(λ) is right invertible iff
∃β ∈ {0, . . . ,mα} such that

rk
(
HR

βA(λ)
)
= rk

(
H

R

βA(λ)
)
. (13)

Proof. Right invertibility of A(λ) implies the existence
of a matrix B(λ) ∈ Kn×m[λ] such that A(λ)B(λ) = Im.

With B(λ) =
∑β

j=0 λ
jBj , β ∈ N and Eqn. (4) this means

Im= A(λ)B(λ)

=

α∑

i=0

Aiλ
i

β∑

j=0

λjBj

=

α∑

i=0

β∑

j=0

Aiλ
iλjBj

=

α∑

i=0

β∑

j=0

Aiλ
i+jBj

=

α∑

i=0

β∑

j=0

i+j∑

k=0

(−1)k
(
i+j
k

)
λi+j−kA

(k)
i Bj

=

β∑

j=0

α∑

i=0

i+j∑

k=0

λi+j−k(−1)k
(
i+j
k

)
A

(k)
i Bj

=
α∑

i=0

( i∑

k=0

(−1)k
(
i

k

)
λi−kA

(k)
i , . . . ,

i+β∑

k=0

(−1)k
(
i+ β

k

)
λi+β−kA

(k)
i

)
·

⎛

⎜⎝
B0

...

Bβ

⎞

⎟⎠

=
(
Im, λIm, . . . , λα+βIm

)

·
α∑

i=0

HR
β,i(Ai) ·

⎛

⎜⎝
B0

...

Bβ

⎞

⎟⎠ . (14)

With the operator HR
β this leads to

Im =
(
Im, λIm, . . . , λα+βIm

) ·HR
βA(λ)

⎛

⎜⎝
B0

...

Bβ

⎞

⎟⎠ ,

(15)

i. e., to the system of linear equations

HR
βA(λ)

⎛

⎜⎝
B0

...

Bβ

⎞

⎟⎠ =

(
Im
0

)
. (16)

Equation (16) has solutions, iff

rk
(
HR

βA(λ)
)
= rk

(
HR

βA(λ),
(
Im
0

))
, (17)

which is equal to condition (13). The degree of B(λ) is
bounded with β ≤ mα (Beckermann et al., 2006), so
invertibility can be verified in finitely many steps. �

Corollary 4. Let

A(λ) =

α∑

i=0

Aiλ
i

with Ai ∈ Km×n and

HR
βA(λ) =

α∑

i=0

HR
β,i(Ai)

with
rk (HR

βA(λ)) = rk (H
R

βA(λ))

for β ∈ N. A right inverse

B(λ) =

β∑

i=0

λiBi

of A(λ) with Bi ∈ Kn×m can be determined by

B(λ)=
(
In, λIn, . . . , λ

βIn
) (

HR
βA(λ)

)+
(
Im
0

)
. (18)

Proof. A solution to (16) is
⎛

⎜⎝
B0

...

Bβ

⎞

⎟⎠ =
(
HR

βA(λ)
)+
(
Im
0

)
. (19)

Premultiplying the result by (In, λIn, . . . , λ
βIn)

completes the proof. �

Similar to right invertibility, we can state a condition
for left invertibility:

Proposition 2. Let

A(λ) =

α∑

i=0

λiAi

with Ai ∈ Kn×m, n ≥ m. A(λ) is left invertible iff
∃β ∈ {0, . . . ,mα} such that

rk
(
HL

βA(λ)
)
= rk

(
H

L

βA(λ)
)
. (20)
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Proof. Left invertibility implies the existence of a matrix
B(λ) ∈ Km×n[λ], such that B(λ)A(λ) = Im holds.
With B(λ) =

∑β
i=0 Biλ

i for some β ∈ N and Eqn. (2),
we get

Im = B(λ)A(λ)

=

β∑

i=0

Biλ
i

α∑

j=0

λjAj

=

β∑

i=0

Bi

α∑

j=0

λiλjAj

=

β∑

i=0

Bi

α∑

j=0

λi+jAj

=

β∑

i=0

Bi

α∑

j=0

i+j∑

k=0

(
i+j
k

)
A

(i+j−k)
j λk

=
(
B0, . . . ,Bβ

) α∑

j=0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j∑
k=0

(
j
k

)
A

(j−k)
j λk

1+j∑
k=0

(
1+j
k

)
A

(1+j−k)
j λk

...

β+j∑
k=0

(
β+j
k

)
A

(β+j−k)
j λk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
B0, . . . ,Bβ

) ·

α∑

j=0

⎛

⎜⎜⎝

(j0)A
(j)
j +(j1)A

(j−1)
j λ+···+(jj)Ajλ

j

(1+j
0 )A(1+j)

j +(1+j
1 )A(j)

j λ+···+(1+j
1+j)Ajλ

1+j

...

(β+j
0 )A(β+j)

j +(β+j
1 )A(β+j−1)

j λ+···+(β+j
β+j)Ajλ

β+j

⎞

⎟⎟⎠

=
(
B0, . . . ,Bβ

) α∑

j=0

⎛

⎜⎜⎜⎜⎝

(
j
0

)
A

(i)
j . . .(

1+j
0

)
A

(1+j)
j . . .

...
(
β+j
0

)
A

(β+j)
j . . .

(
j
j

)
A

(0)
j(

1+j
j

)
A

(1)
j

(
1+j
1+j

)
A

(0)
j

. . .
(
β+j
j

)
A

(β)
j

(
β+j
1+j

)
A

(β−1)
j . . .

(
β+j
1+j

)
A0

j

⎞

⎟⎟⎟⎟⎠

·

⎛

⎜⎜⎜⎝

Im
λIm

...

λβ+jIm

⎞

⎟⎟⎟⎠ (21)

which, using the operator HL
β , leads to

(
B0, . . . ,Bβ

)
HL

βA(λ)

⎛

⎜⎜⎜⎝

Im
λIm

...

λα+βIm

⎞

⎟⎟⎟⎠ = Im (22)

and thus to the system of linear equations

(
B0, . . . ,Bβ

)
HL

βA(λ) =
(
Im,0

)
. (23)

This equation has solutions iff

rk
(
HL

βA(λ)
)
= rk

(
HL

βA(λ)

Im,0

)

= rk
(
H

L

βA(λ)
)

(24)

for β ≤ mα (Beckermann et al., 2006) which completes
the proof. �

Corollary 5. Let

A(λ) =

α∑

i=0

λiAi

with Ai ∈ Kn×m and

HL
βA(λ) =

α∑

i=0

HL
β,i(Ai)

with

rk (HL
βA(λ)) = rk (H

L

βA(λ)).

A left inverse

B(λ) =

β∑

i=0

Biλ
i ∈ Km×n[λ]

of A(λ) can be determined by

B(λ) =
(
Im,0

) (
HL

βA(λ)
)+

⎛

⎜⎜⎜⎝

In
λIn

...

λα+βIn

⎞

⎟⎟⎟⎠ . (25)

Proof. Postmultiplying Eqn. (23) by (HL
βA(λ))+ results

in (25). �

3.2. Conversion of left and right polynomial ma-
trices. Since the computation of hyper-regular inverses
of left polynomial matrices as described above yields
hyper-regular right polynomial matrices and vice versa,
it may be convenient to convert between these.

Let A(λ) =
∑α

i=0 λ
iAi with Ai ∈ Km×n and

α ∈ N be a left polynomial matrix, i. e., the differential
operator λ is premultiplied by the coefficient matrices Ai.
Using (2), we can derive a formula for converting A(λ)
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into a right polynomial matrix:

A(λ) =

α∑

i=0

λiAi

=

α∑

i=0

i∑

j=0

(
i
j

)
A

(i−j)
i λj

= (A0) +
(
A

(1)
1 +A1λ

)

+
(
A

(2)
2 +2A

(1)
2 λ+A2λ

2
)

+
(
A

(3)
3 +3A

(2)
3 λ+3A

(1)
3 λ2 +A3λ

3
)
+ . . .

=
(
A0 +A

(1)
1 +A

(2)
2 + . . .

)

+
(
A1 + 2A

(1)
2 + 3A

(2)
3 + 4A

(3)
4 + . . .

)
λ

+
(
A2 + 3A

(1)
3 + 6A

(2)
4 + 10A

(3)
5 + . . .

)
λ2

+ . . .

=
α∑

i=0

A
(i)
i +

(
α∑

i=1

(
i
1

)
A

(i−1)
i

)
λ

+

(
α∑

i=2

(
i
2

)
A

(i−2)
i

)
λ2

+

(
α∑

i=3

(
i
3

)
A

(i−3)
i

)
λ3 + . . .

=
( α∑

i=0

A
(i)
i ,

α∑

i=1

(
i
1

)
A

(i−1)
i , . . . ,

α∑

i=α

(
i
α

)
A

(i−α)
i

)

⎛

⎜⎜⎜⎝

In
λIn

...

λαIn

⎞

⎟⎟⎟⎠ . (26)

In the same manner, we can derive a formula for
converting right polynomial matrices into left polynomial
matrices:

Let A(λ) =
∑α

i=0 Aiλ
i with Ai ∈ Km×n and α ∈

N be a right polynomial matrix. Using (4), we get

A(λ) =

α∑

i=0

Aiλ
i

=

α∑

i=0

i∑

j=0

(−1)j
(
i
j

)
λi−jA

(j)
i

= (A0) +
(
λA1 −A

(1)
1

)

+
(
λ2A2 − 2λA

(1)
2 +A

(2)
2

)

+
(
λ3A3 − 3λ2A

(1)
3 + 3λA

(2)
3 −A

(3)
3

)
+ . . .

=

α∑

i=0

(−1)iA
(i)
i

+ λ

(
α∑

i=1

(−1)i+1
(
i
1

)
A

(i−1)
i

)

+ λ2

(
α∑

i=2

(−1)i+2
(
i
2

)
A

(i−2)
i

)
+ . . .

=
(
Im, λIm, . . . , λαIm

)

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

α∑
i=0

(−1)i
(
i
0

)
A

(i)
i

α∑
i=1

(−1)i+1
(
i
1

)
A

(i−1)
i

...

α∑
i=α

(−1)i+α
(
i
α

)
A

(i−α)
i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Example 1. (Hyper-regular right inverse) Let

A(λ) =
(
1 + λ+ λ2 ẋ1 + x1λ

)

=
(
1 ẋ1

)
︸ ︷︷ ︸

=:A0

+
(
1 x1

)
︸ ︷︷ ︸

=:A1

λ+
(
1 0

)
︸ ︷︷ ︸
=:A2

λ2. (28)

A(λ) is a right polynomial matrix already, so we can
check the condition (13) which yields rk(HR

βA(λ)) =

rk(H
R

βA(λ)) for β = 1. We get

HR
1A(λ) = HR

1,0(A0) + HR
1,1(A1) + HR

1,2(A2)

=

⎛

⎜⎜⎝

A0 −Ȧ0

0 A0

0 0
0 0

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝

−Ȧ1 Ä1

A1 −2Ȧ1

0 A1

0 0

⎞

⎟⎟⎠+

⎛

⎜⎜⎝

Ä2 −...
A2

−2Ȧ2 3Ä2

A2 −3Ȧ2

0 A2

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

1 ẋ1 0 −ẍ1

0 0 1 ẋ1

0 0 0 0
0 0 0 0

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝

0 −ẋ1 0 ẍ1

1 x1 0 −2ẋ1

0 0 1 x1

0 0 0 0

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

1 0 0 0
1 x1 1 −ẋ1

1 0 1 x1

0 0 1 0

⎞

⎟⎟⎠ (29)

with rk(HR
1A(λ)) = 4 such that we can calculate a right
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inverse
(
B0

B1

)
= (HR

1A(λ))−1

(
Im
0

)

=

⎛

⎜⎜⎝

1 0 0 0
−x1+ẋ1

x2
1

1
x1

ẋ1

x2
1

−x1+ẋ1

x2
1

0 0 0 1
− 1

x1
0 1

x1
− 1

x1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

1
−x1+ẋ1

x2
1

0
− 1

x1

⎞

⎟⎟⎠ , (30)

i.e.,

B(λ) = B0 + λB1 =

(
1

−x1+ẋ1

x2
1

− λ 1
x1

)
. (31)

�

Example 2. (Hyper-regular left inverse) Let

A(λ) =

(
1 + λ+ λ2

x2 + x2λ

)
∈ K2×1[λ]. (32)

Converting A(λ) into a left polynomial matrix by
applying equation (27) yields

A(λ) =

(
1 + λ+ λ2

x2 − ẋ2 + λx2

)

=
(

1
x2−ẋ2

)
︸ ︷︷ ︸

=:A0

+λ
(

1
x2

)
︸ ︷︷ ︸
=:A1

+λ2 ( 1
0 )︸︷︷︸

=:A2

. (33)

We can verify that the condition (20) is satisfied for β = 1
and we get

HL
1A(λ) = HL

1,0(A0) + HL
1,1(A1) + HL

1,2(A2)

=

(
A0 0 0 0

Ȧ0 A0 0 0

)

+

(
Ȧ1 A1 0 0

Ä1 2Ȧ1 A1 0

)

+

(
Ä2 Ȧ2 A2 0...
A2 3Ä2 3Ȧ2 A2

)

=

⎛

⎜⎜⎝

1 0 0 0
x2 − ẋ2 0 0 0

0 1 0 0
ẋ2 − ẍ2 x2 − ẋ2 0 0

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝

0 1 0 0
ẋ2 x2 0 0
0 0 1 0
ẍ2 2ẋ2 x2 0

⎞

⎟⎟⎠

+

⎛

⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝

1 1 1 0
x2 x2 0 0
0 1 1 1
ẋ2 x2 + ẋ2 x2 0

⎞

⎟⎟⎠ . (34)

Since rk (HL
1A(λ)) = 4, we get

(B0,B1) = (1, 0, 0, 0)
(
HL

1A(λ)
)−1

= (1, 0, 0, 0)

⎛

⎜⎜⎜⎝

1 ẋ2

x2
2

0 − 1
x2

−1 1
x2

− ẋ2

x2
2

0 1
x2

1 − 1
x2

0 0

0 ẋ2

x2
2

1 − 1
x2

⎞

⎟⎟⎟⎠

=
(
1 ẋ2

x2
2

0 − 1
x2

)
(35)

i. e.,

B(λ) = B0 +B1λ =
(
1 ẋ2

x2
2
− 1

x2
λ
)
. (36)

We can verify the result by checkingB(λ)A(λ) = 1. �

4. Unimodularity

4.1. Rank conditions to prove unimodularity. While
unimodularity implies left and right invertibility, we
introduce an operator which allows direct computation
of unimodular right polynomial inverses for unimodular
right polynomial matrices, i.e., there is no need for left or
right conversion as described in Section 3.2.

In much the same way as in Section 3, we define an
operator Tβ that allows us to state a simple condition for
checking unimodularity.

Definition 7. Let

A(λ) =

α∑

i=0

Aiλ
i

with Ai ∈ Km×n and β ∈ N. The operator

Tβ : Km×n[λ] ↪→ Km(β+1)×n(α+β+1)

is defined by

(A0, . . . ,Aα) 
→
α∑

i=0

Tβ,i(Ai)

with the matrix

Tβ,i(Ai) :=⎛

⎜⎜⎜⎜⎜⎝

Ai

Ȧi Ai 0
Äi 2Ȧi Ai

Op×ni A
(3)
i 3Äi 3Ȧi Ai Op×n(α−i)

.

.

.
. . .

A
(β)
i

(β
1

)
A

(β−1)
i

(β
2

)
A

(β−2)
i

(β
3

)
A

(β−3)
i . . . Ai

⎞

⎟⎟⎟⎟⎟⎠
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where p = m(β + 1). Furthermore, we define

TβA(λ) :=

(
TβA(λ)
In,0

)
. (37)

The degree bound for unimodular inverses is
well known (Lévine, 2011; Ritt, 1935; Ollivier, 1990;
Kondratieva et al., 1982; Ollivier and Brahim, 2007) such
that we can state the following.

Proposition 3. Let

A(λ) =

α∑

i=0

Aiλ
i ∈ Kn×n[λ].

Then A(λ) ∈ Un[λ], iff ∃β ∈ {0, . . . , α(n−1)} such that

rk (TβA(λ))=rk
(
TβA(λ)

)
=n(β + 1). (38)

Proof. Let

A(λ) =

α∑

i=0

Aiλ
i

with Ai ∈ Kn×n. Unimodularity of A(λ) implies the
existence of a matrix

B(λ) =

β∑

i=0

Biλ
i

with
Bi ∈ Kn×n

such that

B(λ)A(λ) = A(λ)B(λ) = In.

Using (2), we get

In = B(λ)A(λ) =

β∑

i=0

Biλ
i

α∑

j=0

Ajλ
j

=

β∑

i=0

Bi

α∑

j=0

λiAjλ
j

=

β∑

i=0

Bi

α∑

j=0

i∑

k=0

(
i
k

)
A

(i−k)
j λkλj

=

β∑

i=0

Bi

α∑

j=0

i∑

k=0

(
i
k

)
A

(i−k)
j λk+j

=
(
B0, . . . ,Bβ

)

·
α∑

j=0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0∑
k=0

(
0
k

)
A

(0−k)
j λk+j

1∑
k=0

(
1
k

)
A

(1−k)
j λk+j

...

β∑
k=0

(
β
k

)
A

(β−k)
j λk+j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)

and with the operator Tβ this is equal to

In =
(
B0, . . . ,Bβ

)
TβA(λ)

⎛

⎜⎜⎜⎝

In
λIn

...

λβIn

⎞

⎟⎟⎟⎠ (40)

i.e.,

(
B0, . . . ,Bβ

)
TβA(λ) =

(
In,0

)
, (41)

where β ∈ {0, . . . , α(n − 1)} (see, e.g., the works of
Lévine (2011), Ritt (1935), Ollivier (1990), Kondratieva
et al. (1982) or Ollivier and Brahim (2007) for the upper
bound of β). This equation has solutions iff

rk (TβA(λ)) = rk

(
TβA(λ)
In,0

)
= rk

(
TβA(λ)

)
. (42)

By requiring

rk (TβA(λ)) = n(β + 1), (43)

we can ensure the existence of exactly one solution and,
thus, Eqns. (42) and (43) must hold for A(λ) ∈ Un[λ].

�

Corollary 6. Let

A(λ) =

α∑

i=0

Aiλ
i ∈ Un[λ]

and

TβA(λ) =
α∑

i=0

Tβ(Ai)

with

rk (TβA(λ)) = rk (TβA(λ)) = n(β + 1).

The coefficient matrices of the inverse

B(λ) =

β∑

i=0

Biλ
i ∈ Un[λ]

of A(λ) can be determined by

(
B0, . . . ,Bβ

)
=
(
In,0

)
(TβA(λ))

+R
. (44)

Proof. Postmultiplying (41) by (TβA(λ))+R leads to (44).
�

Remark 6. If (13), (20) or (38) is satisfied for some
β ∈ N, then it is satisfied for any β̃ ∈ N≥β , too.

Remark 7. Similar conditions for unimodularity could
be formulated using the operator HL

β and HR
β instead of

Tβ , since unimodularity implies right and left invertibility.
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Example 3. (α = 1) Let

A(λ) =

⎛

⎝
−ẋ2λ −ẋ1λ λ
ẋ2 0 −1
0 1 0

⎞

⎠

=

⎛

⎝
0 0 0
ẋ2 0 −1
0 1 0

⎞

⎠

︸ ︷︷ ︸
=:A0

+

⎛

⎝
−ẋ2 −ẋ1 1
0 0 0
0 0 0

⎞

⎠

︸ ︷︷ ︸
=:A1

λ. (45)

For β = 0 we get

T0,0(A0) =
(
A0 0

)
, T0,1(A1) =

(
0 A1

)
,

which results in

T0A(λ) =

1∑

i=0

T0,i(Ai)

=
(
A0 A1

)

=

⎛

⎝
0 0 0 −ẋ2 −ẋ1 1
ẋ2 0 −1 0 0 0
0 1 0 0 0 0

⎞

⎠ .

However,

rk (T0A(λ)) = 3 �= rk (T0A(λ)) = 4. (46)

For β = 1 we get

T1,0(A0) =

(
A0 0 0

Ȧ0 A0 0

)
,

T1,1(A1) =

(
0 A1 0

0 Ȧ1 A1

)

and thus

T1A(λ)

=

1∑

i=0

T1,i(Ai)

=

(
A0 A1 0

Ȧ0 A0 + Ȧ1 A1

)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 −ẋ2 −ẋ1 1 0 0 0
ẋ2 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 −ẍ2 −ẍ1 0 −ẋ2 −ẋ1 1
ẍ2 0 0 ẋ2 0 −1 0 0 0
0 0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(47)

The condition

rk (T1A(λ)) = rk (T1A(λ)) = 6 (48)

is fulfilled and therefore A(λ) ∈ U3[λ]. According to
(44), the inverse of A(λ) results in

A−1(λ) =

⎛

⎝
1
ẍ2

1
ẍ2
λ ẋ1

ẍ2
λ

0 0 1
ẋ2

ẍ2
−1 + ẋ2

ẍ2
λ ẋ1ẋ2

ẍ2
λ

⎞

⎠ . (49)

�

Example 4. (α = 2) Let

A(λ) =

2∑

i=0

Aiλ
i =

(
1 + λ+ λ2 ẋ1 + x1λ
x2 + x2λ x1x2

)
. (50)

For β = 2 we get

T2,0(A0) =

⎛

⎝
A0 0 0 0 0

Ȧ0 A0 0 0 0

Ä0 2Ȧ0 A0 0 0

⎞

⎠,

T2,1(A1) =

⎛

⎝
0 A1 0 0 0

0 Ȧ1 A1 0 0

0 Ä1 2Ȧ1 A1 0

⎞

⎠ ,

T2,2(A2) =

⎛

⎝
0 0 A2 0 0

0 0 Ȧ2 A2 0

0 0 Ä2 2Ȧ2 A2

⎞

⎠. (51)

Hence

T2A(λ)

=

3∑

i=0

T2,i(Ai)

=

⎛

⎝
A0 A1 A2

Ȧ0 A0 + Ȧ1 A1 + Ȧ2

Ä0 2Ȧ0 + Ä1 A0 + 2Ȧ1 + Ä2

0 0
A2 0

A1 + 2Ȧ2 A2

⎞

⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 ẋ1 1 x1

x2 x1x2 x2 0
0 ẍ1 1 2ẋ1

ẋ2 x1ẋ2 + x2ẋ1 x2 + ẋ2 x1x2

0 x
(3)
1 0 3ẍ1

ẍ2 � ẍ2 + 2ẋ2 †
1 0 0 0 0 0
0 0 0 0 0 0
1 x1 1 0 0 0
x2 0 0 0 0 0
1 3ẋ1 1 x1 1 0

x2 + 2ẋ2 x1x2 x2 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

with � := x1ẍ2+x2ẍ1+2ẋ1ẋ2 and † := 2x1ẋ2+2x2ẋ1.
The condition

rk (T2A(λ)) = rk (T2A(λ)) = 6 (52)
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holds, which implies A(λ) ∈ U2[λ]. An inverse can be
determined by (44), which results in

A−1(λ)

=

(
1

− 1
x1
(1 + λ)

ẋ2

x2
2

− 1

x2
λ

x2
2 − x2ẍ2 − x2ẋ2 + 2ẋ2

2

x1x3
2

+
x2 − 2ẋ2

x1x2
2

λ+
1

x1x2
λ2

)
.

�

4.2. Implications. Now, we apply these results and
deduce some facts about transposition of Ore polynomial
matrices.

Corollary 7. Any hyper-row or hyper-column of a uni-
modular matrix is hyper-regular.

Proof. Assume that A(λ) ∈ Un[λ]. This implies the
existence of A−1(λ) ∈ Un[λ] such that A(λ)A−1(λ) =
A−1(λ)A(λ) = In. The rows of A(λ) can be re-sorted
by premultiplying A(λ) by Rπ ∈ Sym(n) and the
columns by postmultiplying by Cπ ∈ Sym(n), which still
implies the existence of a unimodular inverse:

RπA(λ)Cπ︸ ︷︷ ︸
=:Ã(λ)

CT
πA

−1(λ)RT
π︸ ︷︷ ︸

=:Ã
−1

(λ)

= In. (53)

Splitting Ã(λ) ∈ Un[λ] into hyper-rows and its
inverse into hyper-columns leads to

(
Ã1(λ)

Ã2(λ)

)

︸ ︷︷ ︸
:=Ã(λ)

(
B̃1(λ), B̃2(λ)

)
︸ ︷︷ ︸

:=Ã
−1

(λ)

=

(
I 0
0 I

)
(54)

from which we can deduce a hyper-regular right inverse of
Ã1(λ) ∈ Km×n[λ] to be B̃1(λ) ∈ Kn×m[λ], where m <
n. Similarly, splitting Ã(λ) ∈ Un[λ] into hyper-columns
and its inverse into hyper-rows leads to

(
B̃1(λ)

B̃2(λ)

)

︸ ︷︷ ︸
:=Ã

−1
(λ)

(
Ã1(λ), Ã2(λ)

)
︸ ︷︷ ︸

:=Ã(λ)

=

(
I 0
0 I

)
(55)

and we deduce a hyper-regular left inverse of Ã1(λ) ∈
Kn×m[λ] to be B̃1(λ) ∈ Km×n[λ],m < n. �

When operating with matrices whose entries are
elements in K[λ], a somewhat counterintuitive result
relating to transposition can be stated as follows:

Corollary 8. The following holds:

A(λ) ∈ Un[λ] �=⇒ AT(λ) ∈ Un[λ]. (56)

Proof. (Counter example) Let

A(λ) =

(
1 + λ+ λ2 ẋ1 + x1λ
x2 + x2λ x1x2

)
. (57)

For both, A(λ) ∈ U2[λ] and its transpose, the order β is
bounded by degA(λ) · (2 − 1) = degA(λ) = 2 (see
Propostition 3). As shown in Example 4, A(λ) ∈ U2[λ],
but

rk (TβA
T(λ)) �= rk (TβA

T(λ)) ∀β ∈ {0, 1, 2} (58)

and therefore AT(λ) �∈ U2[λ]. �

Corollary 9. Let A(λ) ∈ Km×n[λ]. The following holds:

A(λ) hyper-regular �=⇒ AT(λ) hyper-regular.

Proof. This conclusion follows easily from Corollaries 7
and 8. �

These results are consistent with the fact that a
division ring is a field, i.e., commutative if and only if
the set of invertible matrices over the ring is closed under
transposition (see Jacobson, 1953, p. 24, ex. 3; Gupta et
al., 2009).

In particular, it should be noted that A(λ)R(λ) =
I �=⇒ RT(λ)AT(λ) = I for A(λ) ∈ Km×n[λ] and
R(λ) ∈ Kn×m[λ]. Unlike Remark 3, where matrices
have entries in K, here we operate on K[λ], such that these
implications do not violate the statement of Remark 3.

Example 5. From

A(λ) =
(−ẋ2λ −ẋ1λ λ

)
(59)

(3)
=
(−λẋ2 + ẍ2 −λẋ1 + ẍ1 λ

)
(60)

we can derive a right inverse

R =
( 1

ẍ2
, 0,

ẋ2

ẍ2

)T

since

A(λ)R =
(−λẋ2 + ẍ2 −λẋ1 + ẍ1 λ

)
⎛

⎝
1
ẍ2

0
ẋ2

ẍ2

⎞

⎠ = 1

(61)

holds, but

RTAT(λ) =
(

1
ẍ2

0 ẋ2

ẍ2

)
⎛

⎝
−ẋ2λ
−ẋ1λ
λ

⎞

⎠ (62)

= − ẋ2

ẍ2
λ+

ẋ2

ẍ2
λ = 0 �= 1. (63)

�
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5. Conclusion and outlook

We have investigated matrices with meromorphic entries
in the differential operator d

dt . In particular, we have
transformed the problem of proving hyper-regularity for
such matrices into checking rank conditions. Despite
dealing with symbolic entries, these can be evaluated very
efficiently by computer algebra systems such as Maxima
or toolboxes like Python’s SymPy (see Remark 5 or the
results of Knoll (2016, p. 176)). For this purpose, it can
be shown that hyper-regularity is equivalent to right and
left invertibility, respectively. Right (left) invertibility can
be shown by starting with a left (right) polynomial ansatz
of arbitrary degree for the inverse, left (right) shifting
the differential operator and comparing the resulting
coefficients, which leads to a system of linear equations.
In order to avoid non-commutative shifting operations,
we have introduced operators that greatly simplify the
assembly of these linear equations.

Using this approach, all computations can be done
commutatively in the field of meromorphic functions K
instead of the ringK[λ]. Examining the solvability of these
equations leads to the proposed rank conditions as well
as to the computation of hyper-regular and unimodular
inverses. Upper degree bounds for hyper-regular
and unimodular inverses are well known (Beckermann
et al., 2006; Lévine, 2011; Ritt, 1935; Ollivier, 1990;
Kondratieva et al., 1982; Ollivier and Brahim, 2007) and
make the proposed methods practical.

The results are supported by a free and open
source4 Python toolbox (Fritzsche, 2018) based on SymPy
(Meurer et al., 2017) which allows us to reproduce the
examples shown in the contribution.

While computing orthogonal complements of
hyper-regular matrices is possible with similar
approaches, hyper-regularity of these complements
cannot be ensured without additional efforts, such
that the computation of unimodular completions (i.e.,
hyper-regular orthogonal complements of hyper-regular
inverses) using the proposed methods is not fully
finalized.
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