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This paper is concerned with robust stabilization of continuous linear positive time-delay systems with parametric uncer-
tainties. The delay considered in this work is a bounded time-varying function. Previously, we have demonstrated that
the equidistant delay-decomposition technique is less conservative when it is applied to linear positive time-delay systems.
Thus, we use simply a delay bi-decomposition in an appropriate Lyapunov–Krasovskii functional. By using classical and
partitioned control gains, the state-feedback controllers developed in our work are formulated in terms of linear matrix
inequalities. The efficiency of the proposed robust control laws is illustrated with via an example.
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1. Introduction

Positive systems are largely encountered in many real
process (biology, statistics, thermodynamics, ecology,
networking, etc.). Accordingly, many researchers are
continuously interested in these systems (Luenberger,
1976; Shorten et al., 2006; Zhang and Yang, 2013;
Kaczorek, 2014; 2016; Shuqian et al., 2014; Junfeng
et al., 2017). Starting from a nonnegative initial state,
the key mathematical property of positive systems is the
state evolution in the positive orthant for all nonnegative
inputs. Designing control laws in such a way that
the closed-loop system is positive and robustly stable
when there are parametric uncertainties is a topic of
continuing interest in the literature (Mesquine et al.,
2015; Shuqian et al., 2014; Zaidi et al., 2014; Hmamed
et al., 2012; Bolajraf, 2012). When the system dynamics
are also influenced by a time delay, the problem of
robust stabilization becomes more complicated. To tackle
the issue, Zaidi et al. (2014), Hmamed et al. (2012)
and Bolajraf (2012) discussedrelated to state-feedback
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asymptotic stabilization under the positivity constraint
for positive delayed systems by using linear matrix
inequalities (LMIs) and linear programming (LP).

It should be mentioned that in some cases of positive
systems’ the stability conditions may depend on the time
delay, in particular, in the cases of stochastic stability for
positive discrete-time Markov jump linear systems (Zhu et
al., 2016; 2017) and the exponential stability of positive
systems with constant and time-varying delay (Zhu et al.,
2013). In this work, we are interested in the exponential
stability and stabilization known for its effect on the
faster convergence of states. In the other hand, we are
motivated by the result presented by Elloumi et al. (2015)
demonstrating that increasing the delay decomposition
provides less conservative results. Unfortunately, this
leads to solving a large-scale system of LMIs when faced
with a large number of delay decomposition. Thus, we
use simply a bi-decomposition technique to establish the
state-feedback controller.

The main contribution of this paper concerns the
robust α-exponential stabilization for continuous positive
systems with time-varying delay when the control design
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might include parametric uncertainties. The proposed
approach is based on the exponential stability conditions
proposed by Elloumi et al. (2015), especially those
founded by an equidistant bi-decomposition of the delay.
By using Lyapunov–Krasovskii functions (LKFs), the
elaborated conditions can easily be solved by using LMIs.

The remainder of the paper is structured as follows:
Section 2 is devoted to the problem formulation while
some exploratory results about the exponential stability
of positive delayed systems are presented in Section 3.
The state-feedback stabilization problem without and
with parametric uncertainties is investigated in Section 4.
Then, in Section 5, the achieved result related to the robust
exponential stabilization is relaxed. Section 6 covers
an illustrative example to highlight the efficiency of the
proposed control laws. Finally, we end with concluding
remarks in Section 6.

In the sequal, we use the following notation: R
n
+

stands for the non-negative orthant of the n-dimensional
real space R

n. Let M be a matrix (or a vector). If all
the components of M are nonnegative, then M is said to
be nonnegative (written M � 0). Meanwhile, if all its
components are positive, it is said to be positive (M � 0).
A matrix M ∈ R

n×n is called a Metzler one if all the
elements of its off-diagonal are nonnegative. That is, if
M = {mij}ni,j=1, if mij � 0 when i �= j, M is Metzler.
A matrix M ∈ R

n×n is called an M-matrix if and only if
there exists a positive vector λ such that Mλ � 0. The
condition that a matrix P ∈ R

n×m positive definite is
written as P > 0. Let φ(t) be a function defined on the
interval

[
0, τ

]
. The norm ‖φ‖f is given by

‖φ‖f = max
τ≤θ≤0

{
‖x(t+ θ)‖, ‖ẋ(t+ θ)‖

}
.

2. Problem formulation

Consider the continuous-time delayed linear system
governed by

{
ẋ(t) = Ax(t) +A1x(t− h(t)) +Bu(t),
x(t) = φ(t) � 0, t ∈ [−hM , 0],

(1)

where x ∈ R
n represents the state vector and u ∈

R
m is the control vector. Moreover, we consider the

time-varying delay h(t) ∈ R as a continuous and bounded
function defined by

hm = 0 � h(t) � hM ,

ḣ(t) � d.
(2)

The matrices A ∈ R
n×n, A1 ∈ R

n×n and B ∈ R
n×m of

the system (1) are assumed to be unknown and bounded
by know constant matrices A, A, A1, A1, B and B, as

follows:

A ≤ A ≤ A,

0 � A1 ≤ A1 ≤ A1, (3)

B ≤ B ≤ B.

In the literature, many researchers (Rami, 2011; Hmamed
et al., 2012; Chen et al., 2017) were interested in the class
of uncertainties (3) which are called interval uncertainties
since the parameters (i.e., A, A1 and B) vary over
intervals.

Matrix A1 in (1) is a nonnegative matrix while there
is no requirement that matrix A be Metzler. To ensure the
positivity and the exponential stability of the closed-loop
system, one only has to use the following memoryless
state feedback law:

u(t) = Kx(t). (4)

By using the state-feedback control (4), the obtained
closed-loop system is

{
ẋ(t) = (A+BK)x(t) +A1x(t− h(t)),
x(t) = φ(t) � 0, t ∈ [−hM , 0].

(5)

In this paper, we aim at establishing a state feedback
controller in the form of (4) for the continuous linear
time-delay system (5) without and with parametric
interval uncertainties in such a way that the resulting
closed-loop system is positive and α-exponentially stable.

Note that in the problem addressed in this paper, A1

is a nonnegative matrix with no restrictions on A. But,
if there are no restrictions on both of A and A1 and the
delay h(t) is known at all times, the above objectives are
reached by using the memory control law u(t) = Kx(t)+
Fx(t− h(t)).

3. Preliminaries

First of all, we define the linear autonomous delayed
system

{
ẋ(t) = Ax(t) +A1x(t− h(t)),
x(t) = φ(t) � 0, t ∈ [−hM , 0],

(6)

where A is a Metzler matrix and A1 � 0.

Definition 1. (Hale and Lunel, 1993) Given α > 0 the
zero solution of system (6) is exponentially stable with a
decay rate α if there exists a positive number S � 0 such
that every solution x(t, φ) satisfies

‖x(t, φ)‖ � Se−αt ‖φ‖ , t ∈ R+.

The previous definition is concerned with the
exponential stability of the system (6). The following
definition is about its positivity.
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Definition 2. (Farina and Rinaldi, 2000) Given any
positive initial condition x(t) = φ(t) ∈ R

n
+, t ∈

[−hM , 0], the delayed system (6) is said to be positive if
the corresponding trajectory is never negative, i.e., x(t) ∈
R

n
+ for all t ≥ 0.

Based on Definition 2, we look for conditions on
which the delayed system (22) is positive.

Lemma 1. (Farina and Rinaldi, 2000) System (6) is pos-
itive (i.e., x(t) ∈ R

n
+) if and only if A is a Metzler matrix

and A1 is a nonnegative matrix.

Lemma 2. (Luenberger, 1976) Matrix M is Metzler if
and only if there exists a positive scalar γ such that

M + γI � 0.

Lemma 3. (Araki, 1975) Let M be a Metzler matrix.
Then −M is an M-matrix if and only if there is a posi-
tive definite matrix W such that matrix M�W +WM is
negative definite.

In the following, we recall sufficient conditions
for the α-exponential stability of the linear positive
delayed system (6) by using a technique of delay uniform
bi-decomposition.

Lemma 4. (Elloumi et al., 2015) For some given scalars
hM , α > 0 and ha (ha = hM/2), if there exist posi-
tive definite matrices Q3, P , Zi, (i = 1, 2, 3) and Q1 =
Q�

1 ,Q12, Q2 = Q�
2 with appropriate dimensions, sys-

tem (6) is simultaneously positive and exponentially sta-
ble, where α is defined as its decay rate for h(t) satisfying
(2), such that

Q =

[
Q1 Q12

Q�
12 Q2

]
≥ 0, (7)

Ψi < 0, i = 1, 2, (8)

where

Ψ1 =

⎡

⎢
⎢
⎢⎢
⎣

Ψ11 Ψ1
12 Ψ1

13 0 A�E1

∗ Ψ1
22 Ψ1

23 0 A�
1 E1

∗ ∗ Ψ1
33 Ψ1

34 0
∗ ∗ ∗ Ψ1

44 0
∗ ∗ ∗ ∗ −E1

⎤

⎥
⎥
⎥⎥
⎦
,

Ψ2 =

⎡

⎢
⎢
⎢⎢
⎣

Ψ11 PA1 Ψ2
13 0 A�E2

∗ Ψ2
22 Ψ2

23 Ψ2
24 A�

1 E2

∗ ∗ Ψ2
33 Ψ2

34 0
∗ ∗ ∗ Ψ2

44 0
∗ ∗ ∗ ∗ −E2

⎤

⎥
⎥
⎥⎥
⎦
,

Ψ11 = 2αP +Q1 +Q3 + PA+A�P

− e−2αha

ha
(Z1 + (1− d)Z3),

Ψ1
12 = PA1 +

e−2αha

ha
(Z1 + (1− d)Z3),

Ψ1
13 = Q12,

Ψ1
22 = −e−2αha(1− d)Q3 − e−2αha

ha
Z1

− e−2αha

ha
(Z1 + (1− d)Z3),

Ψ1
23 =

e−2αha

ha
Z1,

Ψ1
33 = −e−2αhaQ1 +Q2 − e−2αha

ha
Z1

− e−2αhM

ha
Z2,

Ψ1
34 =

e−2αhM

ha
Z2 − e−2αhaQ12,

Ψ1
44 = −e−2αhaQ2 − e−2αhM

ha
Z2,

Ψ2
13 = Q12 +

e−2αha

ha
(Z1 + (1− d)Z3)

Ψ2
22 = −e−2αhM (1 − d)Q3 − e−2αhM

ha
Z2,

− e−2αhM

ha
(Z2 + (1 − d)Z3),

Ψ2
23 =

e−2αhM

ha
(Z2 + (1 − d)Z3),

Ψ2
24 =

e−2αhM

ha
Z2

Ψ2
33 = −e−2αhaQ1 +Q2 − e−2αha

ha
(Z1 + (1− d)Z3),

− e−2αhM

ha
(Z2 + (1 − d)Z3),

Ψ2
34 = −e−2αhaQ12,

Ψ2
44 = −e−2αhaQ2 − e−2αhM

ha
Z2,

E1 = haZ1 + (hM − ha)Z2 + haZ3,

E2 = haZ1 + (hM − ha)Z2 + hMZ3.

In addition, the solution of the system should satisfy

‖x‖ �
√

b

a
× e−αt‖φ(t)‖, t ≥ 0, (9)

where

a = λmin(P ), (10)

b = [λmax [P ] + λmax [Q3] (11)

+ λmax [Q1] + λmax [Q2] + 2λmax [Q12]
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+ hM (λmax [Z1] + λmax [Z2]

+ λmax [Z3])] ‖φ‖2f
1− e−2αhM

2α
.

Remark 1. Theorem 4 is based on two conditions
formulated in terms of LMIs. This is due to the fact that
we use the bi-decomposition of the interval [0, hM ]. Thus,
as demonstrated by Elloumi et al. (2015), conservatism
can be reduced by increasing the decomposition of [0, hM ]
although the number of LMIs is then greater.

4. State-feedback exponential stabilization

Based on Theorem 4, this section provides sufficient
conditions for solving the problem of exponential
stabilization by using a state-feedback law control u(t) =
Kx(t), leading to the closed-loop system

{
ẋ(t) = (A+BK)x(t) +A1x(t− h(t)),
x(t) = φ(t) � 0, t ∈ [−hM , 0],

(12)

where the matrix K ∈ R
m×n is selected through the

following problem: Find sufficient conditions on matrices
A,A1 ∈ R

n×n, B ∈ R
n×m, such that there exists a

matrix K ∈ R
m×n that guarantees

• positivity in closed-loop (Ac = A+BK is a Metzler
matrix), and

• closed-loop α-exponential stability.

Theorem 1. Having a time-varying delay in the form (2),
the linear continuous system (12) is α-exponentially sta-
ble and positive for given scalars α � 0, hM , ha and
γ � 0, if there exist a diagonal positive matrix X , a matrix
Y and positive definite matrices Qi and Zi, (i = 1, 2, 3)
with appropriate dimensions, such that

Ψi < 0, i = 1, 2, (13)

AX + BY + γX � 0, (14)

where

Ψ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ψ11 Ψ
1

12 Ψ
1

13 0 XA� + Y �B�

∗ Ψ
1

22 Ψ
1

23 0 XA�
1

∗ ∗ Ψ
1

33 Ψ
1

34 0

∗ ∗ ∗ Ψ
1

44 0
∗ ∗ ∗ ∗ −(2X − E1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0,

Ψ2 =

⎡

⎢⎢
⎢
⎢
⎢
⎣

Ψ11 A1X Ψ
2

13 0 XA� + Y �B�

∗ Ψ
2

22 Ψ
2

23 Ψ
2

24 XA�
1

∗ ∗ Ψ
2

33 Ψ
2

34 0

∗ ∗ ∗ Ψ
2

44 0
∗ ∗ ∗ ∗ −(2X − E2)

⎤

⎥⎥
⎥
⎥
⎥
⎦

< 0,

Ψ11 = 2αX +Q1 +Q3 +AX +XA� +BY

+ Y �B� − e−2αha

ha
(Z1 + (1 − d)Z3),

Ψ
1

12 = A1X +
e−2αha

ha
(Z1 + (1− d)Z3),

Ψ
1

13 = Q12,

Ψ
1

22 = −e−2αha(1 − d)Q3 −
e−2αha

ha
Z1

− e−2αha

ha
(Z1 + (1− d)Z3),

Ψ
1

23 =
e−2αha

ha
Z1,

Ψ
1

33 = −e−2αhaQ1 +Q2

− e−2αha

ha
Z1 − e−2αhM

ha
Z2,

Ψ
1

34 =
e−2αhM

ha
Z2 − e−2αhaQ12,

Ψ
1

44 = −e−2αhaQ2 −
e−2αhM

ha
Z2,

Ψ
2

13 = Q12 +
e−2αha

ha
(Z1 + (1− d)Z3),

Ψ
2

22 = −e−2αhM (1− d)Q3 −
e−2αhM

ha
Z2

− e−2αhM

ha
(Z2 + (1− d)Z3),

Ψ
2

23 =
e−2αhM

ha
(Z2 + (1− d)Z3),

Ψ
2

24 =
e−2αhM

ha
Z2,

Ψ
2

33 = −e−2αhaQ1 +Q2

− e−2αha

ha
(Z1 + (1− d)Z3)

− e−2αhM

ha
(Z2 + (1− d)Z3),

Ψ
2

34 = −e−2αhaQ12,

Ψ
2

44 = −e−2αhaQ2 −
e−2αhM

ha
Z2,

E1 = haZ1 + (hM − ha)Z2 + haZ3,

E2 = haZ1 + (hM − ha)Z2 + hMZ3.

Proof. The α-exponential stabilitization condition (13)
is derived by applying the following steps. First, pre- and
post-multiply the matrix X̂ = diag{X,X,X,X,E−1

1 }
by the first LMI of (8). Similarly, pre- and
post-multiply the second LMI of (8) by the matrix X̂ =
diag{X,X,X,X,E−1

2 }. Then, each of matrices K , A,
P and Ei (i = 1, 2) is replaced by Y X−1, A+BK , X−1
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and X−1EiX
−1, respectively. Consequently, we get

Ψ1 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

Ψ11 Ψ
1

12 0 0 XA�
c

∗ Ψ
1

22 Ψ
1

23 0 XA�
1

∗ ∗ Ψ
1

33 Ψ
1

34 0

∗ ∗ ∗ Ψ
1

44 0

∗ ∗ ∗ ∗ −XE
−1

1 X

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

< 0,

Ψ2 =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

Ψ11 A1X Ψ
2

13 0 XA�
c

∗ Ψ
2

22 Ψ
2

23 Ψ
2

24 XA�
1

∗ ∗ Ψ
2

33 0 0

∗ ∗ ∗ Ψ
2

44 0

∗ ∗ ∗ ∗ −XE
−1

2 X

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

< 0.

Since (X − Ei)E
−1

i (X − Ei) > 0, i = 1, 2, we deduce

that −XE
−1

i X < −2X + Ei. Finally, all the terms
XΨijX , for i, j = 1, . . . , 5 are replaced by Ψij . The
same operation is applied to the matrices Qi and Zi for
i = 1, . . . , 3. Thus, the LMI (13) in Theorem 1 is satisfied.
Consequently, the α-exponential stabilization condition
of the closed-loop delay system (12) is ensured with the
state-feedback control u(t) = Kx(t).

The proof of the positivity condition (14) is mainly
based on the idea of Theorem 3. Assume that condition
(14) is satisfied. Since matrix X is diagonal and positive,
the inverse matrix X−1 is also diagonal and positive.
Then post-multiplication by X−1 is applied to the LMI
(14). Thus, for γ � 0, we get A + BYX−1 + γI � 0,
which leads to A+BK+γI � 0. Consequently, by using
Lemma 2, A + BK is a Metzler matrix. Indeed, A1 and
B are assumed to be non negative matrices, which means
that the closed-loop system is also positive. �

Remark 2. The LMIs proposed in Theorem 1 are
efficient to ensure the positivity and the exponential
stability in the closed-loop of the class of linear
continuous systems defined by (12). However, this may
not be guaranteed when there is a parametric variation.

4.1. Robust exponential stabilization. In order to
extend the result presented in the previous section, this
section is concerned with the robust stabilization of
delayed system mathematically described by (1) when it
subject to interval uncertainties (3). Therefore, we retain
the same control law form defined by

u(t) = Kx(t). (15)

The resulting continuous delayed system is

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = (A+BK)x(t) +A1x(t− h(t)),
A ≤ A ≤ A,

0 � A1 ≤ A1 ≤ A1,
B ≤ B ≤ B.

(16)

Corollary 1. Having a control law in the form of (15),
the closed-loop system (16) is α-exponentially stable and
positive with parametric uncertainties defined by (3) and
a delay function h(t) satisfying (2), if, for given scalars
hM , α � 0, ha (ha = hM/2) and γ � 0, there exist
positive definite matrices Qi and Zi (i = 1, 2, 3), a pos-
itive diagonal matrix X with appropriate dimensions and
a matrix Y ∈ R

m×n such that

Ψi∗ < 0, i = 1, 2, (17)

AX +BY + γX � 0, (18)

where

Ψ1∗ =

⎡

⎢
⎢⎢
⎢
⎢
⎣

Ψ11∗ Ψ
1

12 Ψ
1

13 0 Ψ
1∗
15

∗ Ψ
1

22 Ψ
1

23 0 XA
�
1

∗ ∗ Ψ
1

33 Ψ
1

34 0

∗ ∗ ∗ Ψ
1

44 0
∗ ∗ ∗ ∗ −(2X − E1)

⎤

⎥
⎥⎥
⎥
⎥
⎦
,

Ψ2∗ =

⎡

⎢
⎢⎢
⎢
⎢
⎣

Ψ11∗ A1 Ψ
2

13 0 Ψ
2

15∗
∗ Ψ

2

22 Ψ
2

23 Ψ
2

24 XA
�
1

∗ ∗ Ψ
2

33 Ψ
2

34 0

∗ ∗ ∗ Ψ
2

44 0
∗ ∗ ∗ ∗ −(2X − E2)

⎤

⎥
⎥⎥
⎥
⎥
⎦
,

Ψ11∗ = 2αX +Q1 +Q3 +AX +XA
�
+BY

+ Y �B
� − e−2αha

ha
(Z1 + (1 − d)Z3),

Ψ
1

15∗ = Ψ
2

15∗ = XA
�
+ Y �B

�
.

The controller gain is given by

K = Y X−1.

Proof. In the first step, we use the fact that A ≤ A ≤ A,
A1 ≤ A1 ≤ A1 and B ≤ B ≤ B imply Ψi ≤ Ψi∗.
Therefore, if Ψ∗i < 0, then Ψi < 0 for i = 1, 2.
Consequently, we have the α-exponential stability of the
resulting closed-loop system (16) by using the control law
u(t) = Kx(t) under the interval parametric uncertainties.

In the second step, we use the idea of Theorem 3
in order to obtain the positivity condition (18). Let the
LMI (18) hold. X−1 is diagonal positive since so is X .
Post-multiplication by X−1 is applied to the LMI (18).
Accordingly, we obtain

A+BY X−1 + γI � 0. (19)

Introducing the expression for the controller gain K in
(19), we obtain

A+BK + γI ≥ A+BK + γI � 0, (20)
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for γ � 0. Moreover, based on Lemma 2, A + BK
and A + BK are Metzler matrices again taking into
account that A1 and B are assumed to be non-negative
matrices. Consequently, the closed-loop system (16)
with the interval parametric uncertainties, which is
α-exponentially stable is positive. �

5. Relaxed robust stabilization

In the case of constrained control or parametric
uncertainties, many researchers use the technique of the
controller gain partitioning (Rami et al., 2007; Bolajraf,
2012; Zaidi, 2015). Thus, we assume that for any matrix
K , it is obvious that there exist nonnegative matrices K+

and K− such that K = K+ −K−.
Consequently, the control law (4) can be rewritten as

u(t) = (K+ −K−)x(t). (21)

Using (21), the closed-loop system becomes

ẋ(t) = (A+BK+ −BK−)x(t)
+A1x(t− h(t)).

(22)

Theorem 2. For given scalars hM , α � 0, ha (ha =
hM/2) and γ � 0, the closed-loop system (22) is α-
exponentially stable and positive with parametric uncer-
tainties defined by (3) and a delay function h(t) satisfy-
ing (2), if there exist positive definite matrices Qi and Zi

(i = 1, 2, 3), a positive diagonal matrix X with appropri-
ate dimensions, Y + et Y − ∈ R

m×n
+ such that

Ψi < 0, i = 1, 2, (23)

AX +BY + −BY − + γX � 0, (24)

where

Ψ1 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

Ψ11 Ψ
1

12 Ψ
1

13 0 Ψ
1

15

∗ Ψ
1

22 Ψ
1

23 0 XA
�
1

∗ ∗ Ψ
1

33 Ψ
1

34 0

∗ ∗ ∗ Ψ
1

44 0

∗ ∗ ∗ ∗ −(2X − E1)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

,

Ψ2 =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

Ψ11 A1 Ψ
2

13 0 Ψ
2

15

∗ Ψ
2

22 Ψ
2

23 Ψ
2

24 XA
�
1

∗ ∗ Ψ
2

33 Ψ
2

34 0

∗ ∗ ∗ Ψ
2

44 0
∗ ∗ ∗ ∗ −(2X − E2)

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

,

Ψ11 = 2αX +Q1 +Q3 +AX +XA
�
+BY +

−BY − + Y +�B
� − Y −�B

− e−2αha

ha
(Z1 + (1− d)Z3),

Ψ
1

15 = Ψ
2

15 = XA
�
+ Y +�B

� − Y −�B,

Ψij = Ψij , i = 2, . . . , 4, j = 1, . . . , 4. The controller
gains are

K+ = Y +X−1,

K− = Y −X−1.

The expressions for E1 and E2 are the same as (8) in
Theorem 2.

Proof. We begin with the α-exponential stability of the
closed-loop system (22) which is ensured if the LMIs (23),
i = 1, 2 hold. We use the fact that A ≤ A ≤ A, A1 ≤
A1 ≤ A1 and B ≤ B ≤ B implies Ψi ≤ Ψi.

Therefore, if Ψi < 0, then Ψi < 0 for i = 1, 2.
Consequently, we have the α-exponential stability of the
resulting closed-loop system (22) by using the control law
u(t) = (K+ −K−)x(t).

To complete the proof, we use the idea of Theorem 3
in order to demonstrate the positivity condition (24). Let
the LMI (24) hold. X−1 is diagonal positive since so is
X . Post-multiplication by X−1 is applied to the LMI (24).
Accordingly, we obtain

A+BY +X−1 −BY −X−1 + γI � 0. (25)

Introducing the expressions for the controller gains K+

and K− in (25), we obtain

A+BK+ −BK− + γI

≥ A+BK+ −BK− + γI � 0, (26)

for γ � 0.

Moreover, based on Lemma 2, A+BK+−BK− and
A+BK+ −BK− are Metzler matrices back taking into
account that A1 and B are simulated to be non-negative
matrices. Consequently, the closed-loop system (22) with
the parametric uncertainties (3) is also positive. �

Remark 3. Compared with Corollary 1, the LMIs
proposed in Theorem 2 offer important advantages. First,
conditions (23) and (24) take into account the parameter
bounds to a greater extent than conditions (17) and (18).
In fact, the matrices A, A1, B, A, A1 and B are
clearly much more employed in Theorem 2. Second,
in contrast to the conventional state-feedback control
gain which is arbitrary, the controller gain partitioning
technique ensures that the two gains K+ and K− are
positive. Finally, the results related to the stability and
the positivity in the closed-loop derived by this technique
are numerically less conservative. This point will be
demonstrated in the next section.
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6. Numerical example

Consider the delayed system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

[ −1 0.5
0.3 −0.7

]
x(t)

+

[
0.1 0
0.3 0

]
x(t − h(t))

+

[
0.4 0
0.22 0

]
u(t),

0 � h(t) � hM .

(27)

The parametric uncertainties are defined by

A =

[ −1.2 0.48
0.25 −0.75

]
,

A =

[ −0.8 0.52
0.35 −0.65

]
,

A1 =

[
0.08 0
0.28 0

]
,

A1 =

[
0.12 0
0.32 0

]
,

B =

[
0.38 0
0.22 0

]
,

B =

[
0.42 0
0.22 0

]
.

(28)

The objective of this numerical example is to design
state-feedback controllers firstly in the form of (21)
and then in the form of (15) in order to guarantee the
α-stabilization of the continuous uncertain system (28)
while keeping the states nonnegative. One can remark that
the governed system (21) is initially positive. Therefore,
Theorem 2 can be easily applied because it can resolve
two problems: the first is when the governed system is
initially not positive and the second is when it is already
positive like in the above example.

Using the Matlab LMI Control Toolbox, when the
upper bound of the time-varying delay is hM = 2.04,
it can be easily checked that the LMIs of Theorem 2 are
feasible for α = 0.04, d = 0.001 and γ = 20.

The obtained controller gains are

K+ =

[
1.9167 0

0 2.3283

]
,

K− =

[
2.9372 0

0 2.3283

]

The closed-loop state matrix is

A+B(K+ −K−) =
[ −1.4082 0.5000

0.0755 −0.7000

]

From the form of the matrix A+B(K+ −K−), one can
remark that the controlled system is positive.

The state evolution in opened-loop is shown in
Figs. 1 and 2. In turn, the α-exponential stability in closed
loop for the matrix uncertainties (28) is shown in Figs. 3
and 4. Note that for the two cases of the control gain
K = K+ −K− and K:

• the lower bound of the state x is obtained from

ẋ(t) = (A+BK)x(t) +A1x(t− h(t)), (29)

• the upper one x is obtained from

ẋ(t) = (A+BK)x(t) +A1x(t− h(t)). (30)

Figures 1 and 2 show that the evolution of the system
(27) does not satisfy the parametric uncertainties (28).
Accordingly, one can remark that x(t) ≥ x ≥ x.

Fig. 1. Evolution of x1 in open loop: z(t) (solid line), z (open
circles), x (crosses).

Fig. 2. Evolution of x2 in open loop: z(t) (solid line), z (open
circles), x (crosses).

Figures 3 and 4 show that the closed-loop system
(27) is robustly α-exponential stable for the parametric
uncertainties (28) in such way that it evolves boundedly
in time between the upper bound of state x and the lower
one x. Thus, we obtain x ≤ x(t) ≤ x. To compare the
efficiencies of the control laws proposed in Theorem 2 and
in Corollary 1, we have tested various values of γ and the
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Fig. 3. Robust stabilization of x1 for parametric uncertain-
ties (28).

Fig. 4. Robust stabilization of x2 for parametric uncertain-
ties (28).

decay rate α, the feasibility of the LMIs (23), (24) and the
LMIs (17), (18).

Table 1 shows that for different values of α, d and γ,
the maximum delay hM obtained by applying the LMIs
of Theorem 2 is greater than the one obtained by applying
Corollary 1. Thus, we conclude that the technique of the
gain control partition generally allows us to reduce the
conservatism.

Using Eqns. (30) and (29), we assume that

• x(t) is represented by a solid line when applying
Theorem 2 and by a dashed line when applying
Corollary 1.

• x(t) is represented by the pattern −◦ when applying
Theorem 2 and by −◦− when applying Corollary 1.

• x(t) is represented by −+ when applying Theorem 2
and by −+ − when applying Corollary 1.

Figures 5–8 show the evolution of the states of the
closed loop system with interval parameter uncertainties
(28). It can be seen that the α-exponential stability and
the positivity in the closed loop are ensured. Moreover,
the trajectories are bounded by using Theorem 2 and even
Theorem 1.

Fig. 5. Robust stabilization of x1 for parametric uncertainties
(28), γ = 20 and decay rate α = 0.04.

Fig. 6. Robust stabilization of x2 for parametric uncertainties
(28), γ = 20 and decay rate α = 0.04.

Remark 4. The delay-dependent conditions proposed in
Theorem 2 are more complex than those of Corollary 1.
In order to get a simpler form, one can use directly
Corollary 1 bearing in mind that it does not reduce
conservatism (Table 1).

Remark 5. The result proposed in this paper can
be extended to the case of a delay N -decomposition.
In fact, an α-exponential stability analysis was made
by Elloumi et al. (2015) by using a uniform delay
N -decomposition technique in order to demonstrate that
increasing the number of divisions N allows us to us
reduce conservatism. This fact can consequently be used
to improve our result.

Table 1. Maximum delay hM of the system (28).
γ = 8 γ = 20 γ = 25
d = 0.1 d = 0.001 d = 0.001
α = 0.1 α = 0.004 α = 0.007

Corollary 1 hM =3.4 hM =2.7 hM =2.6
Theorem 2 hM =3.8 hM =3.5 hM =3.1
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Fig. 7. Robust stabilization of x2 for parametric uncertainties
(28), γ = 8 and decay rate α = 0.1.

Fig. 8. Robust stabilization of x1 for parametric uncertainties
(28), γ = 8 and decay rate α = 0.1.

7. Conclusions

This paper provides a uniform bi-decomposition delay
approach to the synthesis of robust state-feedback
controllers for continuous linear positive time-delay
systems. The main idea was based on sufficient
conditions for α-exponential stability based on a delay
N-decomposition technique. Then, when the control
design might include parametric uncertainties, this idea
was extended to synthesize a state feedback with a
partitioned controller gain. Formulated in terms of
LMIs, the proposed conditions proposed for the synthesis
problems guarantee the exponential stability and the
positivity of the state in the closed loop. A numerical
example has been treated to illustrate the usefulness of
each of the proposed robust state-feedback control laws.
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