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The aim of this work is to show that interval positive fractional discrete-time linear systems are asymptotically stable if
and only if the respective lower and upper bound systems are asymptotically stable. The classical Kharitonov theorem is
extended to interval positive fractional linear systems.
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1. Introduction

A dynamical system is called positive if its state
variables take nonnegative values for all nonnegative
inputs and nonnegative initial conditions. Positive linear
systems were investigated by Berman and Plemmons
(1994), Farina and Rinaldi (2000) or Kaczorek (2002),
along with positive nonlinear systems (Kaczorek, 2016;
2015b; 2014; 2015a; 2015c). Examples of positive
systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns,
storage systems, compartmental systems, water and
atmospheric pollution models. A variety of models having
positive linear behavior can be found in engineering,
management science, economics, social sciences, biology
and medicine, etc.

Mathematical fundamentals of fractional calculus are
included in the monographs by Ortigueira (2011), Oldham
and Spanier (1974) Ostalczyk (2016; 2008) and Podlubny
(1999). Fractional dynamical linear and nonlinear systems
were investigated by Kaczorek (2016; 2013; 2008; 2018a;
2012b; 2015c), Radwan et al. (2009), Sajewski (2016a;
2016b), Solteiro Pires et al. (2006), Vinagre et al. (2002)
or Xiang-Jun et al. (2008).

Positive linear systems with different fractional
orders were addressed by Busłowicz (2012), Kaczorek
(2010; 2011), Kaczorek and Rogowski (2015), as well as
Sajewski, (2016b). Descriptor (singular) linear systems
were analyzed by Kaczorek (2014; 2012b; 1997), along
with the stability of a class of nonlinear fractional-order

systems (Kaczorek, 2016; 2015c). Application of the
Drazin inverse to the analysis of descriptor fractional
discrete-time linear systems was presented by Kaczorek
(2013). A comparison of three methods of the analysis of
descriptor fractional systems was presented by Sajewski
(2016a). Stability of linear fractional order systems with
delays was analyzed by Busłowicz (2008), and simple
conditions for practical stability of positive fractional
systems were proposed by Busłowicz and Kaczorek
(2009). Stability of interval positive continuous-time
linear systems was addressed by Kaczorek (2018b).

In this paper the asymptotic stability of interval
positive fractional discrete-time linear systems will be
investigated.

The paper is organized as follows. In Section 2
some basic definitions and theorems concerning positivity
and stability of fractional discrete-time linear systems are
recalled. Stability of interval positive fractional linear
systems is analyzed in Section 3. A convex linear
combination of Schur polynomials and the stability of
interval positive fractional discrete-time linear systems
are investigated in Section 4. Concluding remarks are
contained in Section 5.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of real n × m matrices; Rn×m

+ ,
the set of real n × m matrices with nonnegative entries
and R

n
+ = R

n×1
+ ; Mn, the set of n × n Metzler matrices

(real matrices with nonnegative off-diagonal entries); In,
the n × n identity matrix; for A = [aij ] ∈ R

n×n and
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B = [bij ] ∈ R
n×n the inequality A ≥ B means aij ≥ bij

for i, j = 1, 2, . . . , n.

2. Preliminaries

Consider the autonomous fractional discrete-time linear
system

Δαxi+1 = Axi, 0 < α < 1, i ∈ Z+, (1)

where

Δαxi =

i∑

j=1

cjxi−j , (2a)

cj = (−1)j
(
α

j

)
,

(
α

j

)
=

{
1 for j = 0,
α(α−1)...(α−j+1)

j! for j = 1, 2, . . .
(2b)

is the fractional α-th order difference of xi. Here xi ∈ R
n

and ui ∈ R
m are the state and input vectors, respectively,

and A ∈ R
n×n.

Substitution of (2) into (1) yields

xi+1 = Aαxi −
i+1∑

j=2

cjxi−j+1, i ∈ Z+, (3a)

where

Aα = A+ Inα. (3b)

Lemma 1. (Kaczorek, 2012a) If 0 < α < 1 then

−cj > 0 for j = 1, 2, . . . , (4a)
n∑

j=1

cj = −1. (4b)

Definition 1. (Kaczorek, 2012a) The fractional system
(1) is called (internally) positive if xi ∈ R

n
+, i ∈ Z+ for

any initial conditions x0 ∈ R
n
+.

Theorem 1. (Kaczorek, 2012a) The fractional system (1)
is positive if and only if

Aα ∈ R
n×n
+ . (5)

Definition 2. The fractional positive system (1) is called
asymptotically stable if

lim
i→∞

xi = 0 for all x0 ∈ R
n
+. (6)

Theorem 2. (Kaczorek, 2012a) The fractional positive
system (1) is asymptotically stable if and only if one of the
following equivalent conditions is satisfied:

(i) All coefficients of the characteristic polynomial

pA(z) = det[In(z + 1)−A]

= zn + an−1z
n−1 + · · ·+ a1z + a0

(7)

are positive, i.e., ak > 0, for k = 0, 1, . . . , n− 1.

(ii) All principal minors of the matrix

Ā = In −A

=

⎡

⎢⎣
ā11 . . . ā1n

... . . .
...

ān1 . . . ānn

⎤

⎥⎦
(8)

are positive, i.e.,

|a11| > 0,

∣∣∣∣
ā11 ā12
ā21 ā22

∣∣∣∣ > 0,

. . ., det Ā > 0. (9)

(iii) There exists a strictly positive vector λT =
[ λ1 · · · λn]

T , λk > 0, k = 1, . . . , n such that

[A− In]λ < 0. (10)

Theorem 3. The fractional positive system (1) with (3b)
is asymptotically stable if and only if there exists a strictly
positive vector λ > 0 such that

Aλ < 0. (11)

Proof. Note that the positive fractional system (3) can
be interpreted as a positive linear system with numbers of
delays increasing to infinity. It is well known (Kaczorek,
2012a) that the stability of positive discrete-time linear
systems depends only on the sum of state matrices

Â = Aα −
∞∑

j=2

cjIn, (12)

From (4b) we have

−
∞∑

j=2

cj = 1− α. (13)

Substituting (13) into (12), we get

Â = Aα + (1− α)In = A+ In, (14)

since Aα = A+ Inα.
Applying the condition (10) to (14), we obtain (11).

�
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Example 1. Consider the fractional discrete-time system
(1) for α = 0.6 with the matrix

A =

[ −0.4 0.2
0.3 −0.5

]
. (15)

The fractional system is positive since the matrix

Aα = A+ I2α =

[
0.2 0.2
0.3 0.1

]
∈ R

2×2
+ (16)

has positive entries. It is asymptotically stable since for
λT = [ 1 1 ] we have

Aλ =

[ −0.4 0.2
0.3 −0.5

] [
1
1

]
=

[ −0.2
−0.2

]
< 0 (17)

and the condition (11) is satisfied. �
Consider the set (family) of the n-th degree

polynomials

pn(s) := ans
n + an−1s

n−1 + · · ·+ a1s+ a0 (18a)

with interval coefficients

ai ≤ ai ≤ ai, i = 0, 1, . . . , n. (18b)

Using (18a), we define the following four
polynomials:

p1n(s) := a0 + a1s+ a2s
2 + a3s

3

+ a4s
4 + a5s

5 + . . . ,

p2n(s) := a0 + a1s+ a2s
2 + a3s

3

+ a4s
4 + a5s

5 + . . . ,

p3n(s) := a0 + a1s+ a2s
2 + a3s

3

+ a4s
4 + a5s

5 + . . . ,

p4n(s) := a0 + a1s+ a2s
2 + a3s

3

+ a4s
4 + a5s

5 + . . . .

(19)

Theorem 4. (Kharitonov, 1978) The set of polynomials
(18) is asymptotically stable if and only if the four polyno-
mials (19) are asymptotically stable.

A proof of this result, also called the Kharitonov
theorem, can be found in the work of Kaczorek (2012a).

3. Fractional interval positive linear
continuous-time systems

Consider the interval fractional positive discrete-time
linear system (1) with the interval matrix A ∈ R

n×n
+

defined by
A1 ≤ A ≤ A2

or, equivalently,
A ∈ [A1, A2]. (20)

Definition 3. The interval fractional positive system
with (20) is called asymptotically stable if the system
is asymptotically stable for all matrices A ∈ R

n×n
+

belonging to the interval [A1, A2].

Definition 4. The matrix

A = (1− k)A1 + kA2, 0 ≤ k ≤ 1,

A1 ∈ R
n×n, A2 ∈ R

n×n (21)

is called the convex linear combination of matrices A1 and
A2.

Theorem 5. The convex linear combination (21) is
asymptotically stable if and only if the matrices A1 ∈
R

n×n and A2 ∈ R
n×nare asymptotically stable.

Proof. If the matrices A1 ∈ R
n×n and A2 ∈ R

n×nare
asymptotically stable then by (11) there exists a strictly
positive vector λ ∈ R

n
+ such that

Alλ < 0 for l = 1, 2. (22)

In this case, using (21) and (22), we obtain

Aλ = [(1− k)A1 + kA2]λ

= (1− k)A1λ+ kA2λ < 0 for 0 ≤ k ≤ 1. (23)

Therefore, if the matrices Al, l = 1, 2 are
asymptotically stable, then the convex linear combination
(21) is also asymptotically stable. The necessity follows
immediately from the fact that k can be equal to zero and
one. �

Theorem 6. The interval fractional positive system (1)
with (20) is asymptotically stable if and only if the matri-
ces A1 ∈ R

n×n and A2 ∈ R
n×n are Schur matrices.

Proof. By (11) the matrices A1 ∈ R
n×n and A2 ∈ R

n×n

are Schur matrices if and only if there exists a strictly
positive vector λ ∈ R

n
+ such that (22) holds. The convex

linear combination (21) satisfies the condition Aλ < 0 if
and only if (22) holds. Therefore, the interval fractional
positive systems (1) with (20) is asymptotically stable if
and only if A1 ∈ R

n×n and A2 ∈ R
n×n are Schur

matrices. �

Example 2. Consider the interval fractional positive
linear systems (1) with the matrices

A1 =

[ −0.3 0.1
0.05 −0.4

]
, A2 =

[ −0.5 0.3
0.2 −0.6

]
.

(24)
It is easy to check that for λT = [1 1] we have

A1λ =

[ −0.3 0.1
0.05 −0.4

] [
1
1

]
=

[ −0.2
−0.35

]
< 0,

A2λ =

[ −0.5 0.3
0.2 −0.6

] [
1
1

]
=

[ −0.2
−0.4

]
< 0.

(25)

�



454 T. Kaczorek

Therefore, by Theorem 5 the interval fractional
positive system (1) with (20) is asymptotically stable.

4. Convex linear combination of Schur
polynomials and stability of interval
fractional positive linear systems

Definition 5. The polynomial

p(z) = bnz
n + bn−1z

n−1 + · · ·+ b1z + b0 (26)

is called a Schur polynomial if its zeros zl, l = 1, . . . , n
satisfy the condition

|zl| < 1 for l = 1, . . . , n. (27)

Definition 6. The polynomial

p(z) = (1− k)p1(z) + kp2(z) (28)

for k ∈ [0, 1] is called a convex linear combination of the
polynomials

pi(z) = bi,nz
n + bi,n−1z

n−1 + . . .

+ bi,1z + bi,0, i = 1, 2. (29)

Theorem 7. (Kaczorek, 2018b) Any convex linear combi-
nation of Hurwitz polynomials is also a Hurwitz polyno-
mial.

For positive linear systems we have the following
relationship between Hurwitz and Schur polynomials.

Theorem 8. The polynomial

p(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0 (30)

is Hurwitz and the polynomial

p(z) = bnz
n + bn−1z

n−1 + · · ·+ b1z + b0 (31)

is a Schur polynomial if and only if their coefficients ai

and bi i = 0, 1, . . . , n are related by

a0 = b0 + b1 + · · ·+ bn,

a1 = b1 + 2b2 + · · ·+ nbn,

...

an−1 = bn−1 + nbn,

an = bn.

(32)

Proof. It is well known (Kaczorek, 2012a) that for
positive linear discrete-time and continuous-time systems
the zeros zl, l = 1, . . . , n of the polynomial (31) and the
zeros sl, l = 1, . . . , n of the polynomial (30) are related
by

zl = sl + 1, l = 1, . . . , n. (33)

Substituting z = s+1 into the polynomial (31), we obtain

bn(s+ 1)n + bn−1(s+ 1)n−1 + · · ·+ b1(s+ 1) + b0

= ans
n + an−1s

n−1 + · · ·+ a1s+ a0 (34)

and it is easy to verify that the coefficients ai and bi i =
0, 1, . . . , n are related by (32).

The polynomial (30) is Hurwitz if and only if ai > 0
for i = 0, 1, . . . , n and the polynomial (31) is Schur if and
only if bi > 0 for i = 0, 1, . . . , n. From (32) it follows that
bi > 0, i = 0, 1, . . . , n implies ai > 0 for i = 0, 1, . . . , n.

�

Example 3. The polynomial

p(z) = z2 + 0.6z + 0.08 (35)

of a positive discrete-time linear system is a Schur
polynomial since its zeros are z1 = −0.2 and z2 = −0.4.

Substituting z = s+ 1 into (35), we obtain

p(s) = (s+ 1)2 + 0.6(s+ 1) + 0.08

= s2 + 2.6s+ 1.68
(36)

with zeros s1 = −1.2 and s2 = −1.4. Therefore, the
polynomial (36) is Hurwitz. �

Theorem 9. The interval positive fractional discrete-
time linear system with the characteristic polynomial (31)
with interval coefficients bi ≤ bi ≤ bi is asymptotically
stable if and only if the lower bounds bi, i = 0, 1, . . . , n
are positive.

Proof. Observe that from (32) it follows that bi > 0,
i = 0, 1, . . . , n implies ai > 0 for i = 0, 1, . . . , n and the
characteristic polynomial (30) is Hurwitz. By Theorem 2
the continuous-time system is asymptotically stable. A
similar result is obtained for the upper bound. Therefore,
the interval fractional positive discrete-time system (31) is
asymptotically stable if the lower and upper bounds of the
coefficients are positive. �

Remark 1. The equalities (32) can be used to compute
the lower and upper bounds of the coefficients ai, i =
0, 1, . . . , n of polynomial (30) knowing the lower and
upper bounds of the coefficients bi, i = 0, 1, . . . , n of
polynomial (31).

Example 4. Consider the characteristic polynomial

p(z) = b2z
2 + b1z + b0 (37)

of positive fractional discrete-time systems with the
interval coefficients

1 ≤ b2 ≤ 3, 2 ≤ b1 ≤ 3, 1 ≤ b0 ≤ 4. (38)
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The equivalent characteristic polynomial of the
continuous-time system has the form

p(s) = b2(s+ 1)2 + b1(s+ 1) + b0

= a2s
2 + a1s+ a0,

(39)

where

a2 = b2, a1 = b1 + 2b2, a0 = b0 + b1 + b2. (40)

Therefore, the interval coefficients of the characteristic
polynomial of the continuous-time system are

1 ≤ a2 ≤ 3, 4 ≤ a1 ≤ 9, 4 ≤ a0 ≤ 10. (41)

By Theorem 9 the interval positive discrete-time
linear system with the characteristic polynomial (37) is
asymptotically stable since the lower and upper bounds
(41) are positive. �

5. Concluding remarks

The asymptotic stability of interval fractional positive
linear discrete-time systems has been investigated. It has
been shown that:

1. The interval fractional positive system (1) with (20)
is asymptotically stable if and only if the matrices
Ai, i = 1, 2, are Schur matrices (Theorem 6).

2. Any convex linear combination of Hurwitz
polynomials is also a Hurwitz polynomial
(Theorem 7).

3. An interval fractional positive system is
asymptotically stable if the lower and upper
bounds to the coefficients of its characteristic
polynomial are positive (Theorem 9).

The discussion has been illustrated with numerical
examples of positive interval discrete-time systems.
An open problem is an extension to continuous-time
and discrete-time standard (nonpositive) fractional linear
systems.
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