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A repeatable inverse kinematic task in robot manipulators consists in finding a loop (cyclic trajectory) in a configuration
space, which corresponds to a given loop in a task space. In the robotic literature, an entry configuration to the trajectory
is fixed and given by a user. In this paper the assumption is released and a new, indirect method is introduced to find
entry configurations generating short trajectories. The method avoids a computationally expensive evaluation of (infinite)
many entry configurations for redundant manipulators (for each of them, repeatable inverse kinematics should be run).
Some fast-to-compute functions are proposed to evaluate entry configurations and their correlations with resulting lengths
of trajectories are computed. It appears that only an original function, based on characteristics of a manipulability sub-
ellipsoid, properly distinguishes entry configurations that generate short trajectories. This function can be used either to
choose one from a few possible entry configurations or as an optimized function to compute the best initial configuration.
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1. Introduction

For a few decades robots have been working in industry
to perform dull, dangerous and precision tasks. As a
rule, tasks for an industrial robot are described in its task
space (X-space) while controls are planned and executed
in a configuration space (Q-space). Most of the tasks
are cyclic in the X-space as a loop to follow (e.g.,
while welding, painting) is determined by technological
requirements. In order to reduce production costs, there
is a tendency to reduce also volumes of robotic cells and
to make the surrounding of a robot crowdy. Therefore,
cyclic trajectories are sought so that they correspond to
cycles, X-loops, in an X-space. A collision-free motion in
one cycle guarantees also collision avoidance in all cycles
to come.

In the robotic literature this task, called repeatable
inverse kinematics (Chiaverini et al., 2008), has a long
history (Roberts and Maciejewski, 1993). Two main
approaches to solve the task can be distinguished
when an initial configuration, corresponding to the
initial point of the X-loop, is also known. The first
advises to expand original kinematics to non-redundant,

∗Corresponding author

augmented kinematics and to take advantage of the
uniqueness of the inverse augmented kinematics as long
as a planned trajectory does not meet any singular
configuration (Roberts and Maciejewski, 1993; Klein
et al., 1995). Augmenting the original kinematics
can be performed in many ways, especially when
a redundancy (the difference between the dimensions of
the Q and X-spaces) is significant. Functions extending
original kinematics can be selected to optimize some
performance criteria (Tchoń et al., 2009; Karpińska,
2012), e.g., to resemble trajectories generated with
pseudo-inverse Jacobian matrix in the Newton algorithm
of inverse kinematics (Nakamura, 1991). It is known
that, locally, the trajectories minimize displacements in
Q-space preserving desirable effect in X-space. Without
any simplifications, this approach is difficult to apply
as it requires searching for unknown partial differentials
(derivatives of unknown functions with respect to
configuration variables) (Tchoń et al., 2009) that optimize
a performance index over a given region in a Q-space. It is
more tractable when unknown functions are expressed in a
parametric form as linear combinations of parameters with
some basis functions (polynomials, harmonics). In this
case, an optimization is performed in a multi-dimensional
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space of parameters (Karpińska, 2012). Recently this
approach has been improved to make the region task
dependent (Duleba and Karcz-Duleba, 2017).

The other approach to solve repeatable inverse
kinematics with a known initial configuration exploits
continuation methods (Richter and DeCarlo, 1983). The
paradigm has been successfully applied in robotics mainly
to plan paths of mobile robots (Quinlan and Khatib,
1993). Repeatable inverse kinematics were solved using
continuation methods by Duleba and Opałka (2013) with
an elastic band algorithm. In a nutshell, implementation
details of the method (Algorithm 1) will be recalled later
on as the algorithm generates key data, Q-path lengths,
corresponding to given initial configurations. Below, only
the main idea of the method will be outlined. In an
iterative process, the method constructs a sequence of
loops in Q-space (Q-loops). Although reshaped, Q-loops
are invariant in the method (the concept of invariance is
frequently used in other tasks of robotics, too (Németh
et al., 2016). Images of Q-loops (via forward kinematics)
are closer and closer to a given cyclic path in X-space
(X-loop). In this method a Newton algorithm is exploited
with an optimization in a null space of the Jacobian matrix
(Nakamura, 1991).

The aforementioned two approaches were compared
by Duleba and Karcz-Duleba (2018). It appears that
the second one over-performs the first as it runs faster,
generates shorter trajectories, does not introduce extra
singular configurations and is easy to implement. A fixed
initial configuration assumption in repeatable inverse
kinematics was relaxed by Duleba and Karcz-Duleba
(2016). It appears that the configuration has got a huge
impact on the quality (length) of the resulting Q-loop.
However, selecting an optimal initial configuration is
a hard numeric problem as it involves a multi-dimensional
optimization and an evaluation of each trial point within
the space requires to solve a time-consuming repeatable
inverse kinematic task with a fixed entry configuration.

The main goal of this paper is to check whether it
is possible to simplify this task and to determine factors
that depend on initial configurations and correlate with
the lengths of the resulting Q-loops. The answer to
this question is important while a few possible initial
configurations should be evaluated on-line and there is
no time to solve a repeatable inverse kinematic task
for each of them. The other possible application is to
incorporate the factors into the steepest descent algorithm
while searching for the best configuration within a space
of all possible initial configurations.

The paper is organized as follows. In Section 2
a repeatable inverse kinematic task is stated formally and
an elastic band algorithm, solving its version with the
initial configuration fixed, is recalled. The algorithm
serves as a tool for getting a reasonable amount of
pairs: an initial configuration—the length of a Q-loop

corresponding to the configuration. In Section 3 a few
functions, derived from a Jacobian matrix (manipulability
matrix) of a robot, are introduced to evaluate initial
configurations. The functions describe an efficiency of
a local motion in X-space around an initial configuration
in averaged, optimistic and pessimistic sense and do not
take into account the shape of a given X-loop. To
retrieve this dependence, an original function is proposed
to evaluate initial configurations according to privileged
directions of motion within X-space. To construct
this function, an algorithm of a manipulability ellipsoid
intersection with a hyper-plane was developed. In
Section 4 standard statistical tools are provided to verify
correlations of proposed functions, evaluated at initial
configurations, with the lengths of the resulting Q-loops.
In Section 5 simulation results are presented. The data
for simulations were collected from planar and spatial
pendula manipulators tracing selected X-loops. Section 6
concludes the paper.

2. Repeatable inverse kinematics

Forward kinematics

q → k(q) = x, dim(q) = n ≥ m = dim(x), (1)

transform a configuration q from a configuration space Q

to a point x in a task space X (Spong and Vidyasagar,
1989) which is a subset of the special Euclidean group
SE(3). In this paper only redundant manipulators are
considered and the redundancy index equals r = n−m >
0. In the task space, a closed path (X-loop) is given,

{x(s), s ∈ [0, smax], x(0) = x(smax)}, (2)

where s denotes the current path length. In the
configuration space an initial configuration q(0) is defined
which satisfies k(q(0)) = x(0). A repeatable inverse
kinematics task is to determine a cyclic path q(·) ∈ Q

(Q-loop) which corresponds to X-loop (2), i.e.,

∀s∈[0,smax] k(q(s)) = x(s), q(0) = q(smax). (3)

It appears that the most effective method of solving
the task (Duleba and Karcz-Duleba, 2018) is based on
the continuation principle (Richter and DeCarlo, 1983).
Main steps implementing this method are presented in
Algorithms 1 and 2.

3. Evaluations

3.1. At a given configuration. To evaluate a given
configuration, some measures should be defined. Most
of them are based on a Jacobian matrix. At a particular
configuration, the Jacobian J becomes a matrix of real
numbers and it can be decomposed using the singular
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Algorithm 1. Implementation of the elastic band method
in repeatable inverse kinematics.
Step 1. Read in a prescribed X-loop (2) and an
initial (current) sequence of (s-value, configuration) pairs
Ldisc = ((0, q(0)), (smax, q(0))). The initial Q-loop is
trivial as it is composed of just a single point.

Step 2. Interpolate linearly points in Ldisc to get
a continuous Q-loop, Lcont(·).
Step 3. Compute the distance between the image (via
forward kinematics) of Lcont(·) and the given X-loop (2)

err(Lcont(·)) =
∫ smax

s=0

‖x(s)− k(Lcont(s))‖ ds, (4)

where ‖ · ‖ is a norm in X ⊂ SE(3).

Step 4. If the error is below an acceptable threshold
ρ, stop the computations and output Lcont(·). Otherwise
progress with Step 5.

Step 5. Modify Ldisc the discrete version of Q-loop.

Step 6. Continue with Step 2.

value decomposition, or SVD (Golub and Reinsch, 1970),
into

J = U
[
D 0

]
V T , (7)

where rotation matrices U ∈ SO(m) (SO(m) denotes
an orthogonal group of order m), V ∈ SO(n), D =
diag(di), i = 1, . . . ,m is the diagonal m × m matrix
collecting (non-negative) singular values di and 0 is a zero
matrix. Equation (7) admits a nice physical interpretation.
At first, a sphere ‖q̇‖ = 1 (or more precisely, a constant
small radius sphere) in a tangent space to the configuration
space (to which velocities q̇ belong to) is rotated by the
matrix V T in Rn. Then the sphere is scaled and projected
onto Rm to get a manipulability ellipsoid with semi-axes
lengths equal to di. Finally, the ellipsoid is rotated with
the matrix U in Rm to get another ellipsoid.

This construction shows how to map a fixed
displacement from Q space into the corresponding one
in X space. Notice that displacements are equivalent to
velocities when a motion time is fixed and short. From
a practical point of view, it is more important to get
the inverse relationship, i.e., the displacement in Q-space
corresponding to a fixed motion in X-space,

J# = V

[
D−1

0T

]
UT , (8)

where D−1 = diag(d−1
i ) is the inverse of D.

A standard method to evaluate a given configuration
is based on an m × m non-negative definite, symmetric
manipulability matrix (Maciejewski and Klein, 1989)

M (q) = J(q)JT (q) = UDDTUT . (9)

Algorithm 2. Details of Step 5.
Step 5a. On the path (2) determine the furthest point
x(s�) from k(Lcont(·))

‖x(s�)− k(Lcont(s
�))‖ =

smax
max
s=0

‖x(s)− k(Lcont(s))‖.

Step 5b. Based on s�, within Ldisc select two neighbor
pairs (sj , q(sj)), (sj+1, q(sj+1)) such that sj < s� <
sj+1 and denote by q1 = q(sj), q2 = q(sj+1) their
configuration components.

Step 5c. Run the Newton algorithm with the optimization
in the null space of the Jacobian matrix (Nakamura, 1991)

qi+1 = qi + ξi · J#(qi)(x(s
�)− k(qi))

+ ηi(In − J#(qi)J(qi))
∂f

∂q
|q=qi

,
(5)

where

• i is the iteration counter and superscript T signifies
matrix transposition,

• J = dk/dq denotes the Jacobian matrix,

• J# = JT (J JT )−1 is the pseudo-inverse of J ,

• x(s�) is the current goal point,

• ξi, ηi are positive parameters,

• an initial configuration

q0 = λ · q1 + (1 − λ) · q2, (6)

where

λ =
(s� − sj)

(sj+1 − sj)
,

• the optimized function f(q) = ‖q − q1‖+ ‖q − q2‖.

The Newton algorithm is completed when an error
‖k(qi)− x(s�)‖ drops below a given threshold δ.

Step 5d. Result of the Newton algorithm run: a pair
(s�, q(s�)), satisfying k(q(s�)) = x(s�), is added into
the appropriate place in Ldisc to preserve the ordering of
the sequence with respect to the variable s.

From Eqn. (9), the manipulability index

ρ(q) =
√
det(M(q)) =

m∏
i=1

di(q) (10)

is derived, which is proportional to the volume of
the manipulability ellipsoid. The manipulability index
evaluates an averaged behavior of the manipulator
when all its possible local directions of motion are
uniformly distributed within Rm. The index (10) allows
one to determine the most and the worst promising
displacements in X-space when q̇ is restricted and small
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(only in this case a Jacobian matrix reasonably describes
the infinitesimal behavior of the manipulator). The
displacements correspond to dmax, dmin, respectively,

dmin(q) =
m
min
i=1

di(q), dmax(q) =
m

max
i=1

di(q). (11)

The minimal singular value dmin ≥ 0 and the
manipulability index (10) sometimes serve as detectors
of singular configurations. At those configuration both
indices attain the value of zero.

Indices (10) and (11) are averaged, pessimistic and
optimistic predictions of motion quality in X-space. Their
reciprocals 1/dmin, 1/dmax, and 1/ρ are more appropriate
to evaluate motion in Q-space.

The indices (10) and (11) or their inverses do not
cover a real motion in X-space along a particular direction
or a sub-space of possible directions. The directions
are available when X-loop (3) is given. To cover also
this case, a manipulability ellipsoid will be sectioned
at a selected configuration with a hyper-plane passing
through the origin of Rm and spanned by some vectors
forming a basis for a sub-space of predicted directions.

3.2. Manipulability sub-ellipsoid. Assume that
a set of j ≤ m m-dimensional orthonormal versors
(unit-length vectors perpendicular to each other) bi, i =
1, . . . , j anchored at the origin of Rm are given. The
vectors can be arranged into an m × j matrix B,
which satisfies rank(B) = j, and span a j-dimensional
hyper-plane.

At a given configuration q, a Jacobian matrix J(q)
is computed and expanded with the SVD algorithm
as in Eqn. (7). As we are interested in intersection
of an m-dimensional ellipsoid with a j-dimensional
hyper-plane, only the term UD is important. Vectors B
rotated with matrix UT and scaled with DT = D,

BT U D = (DT UT B)T = JB, (12)

define a j ×m matrix JB . This matrix is expanded with
the SVD algorithm into

JB = Ũ D̃ Ṽ
T

(13)

to form a sub-ellipsoid in Rj . For this sub-ellipsoid,
a manipulability index, cf. Eqn. (10), ρ̃ =

∏j
i=1 d̃i

evaluates a motion ability in a hyper-plane spanned by
vectors B.

Three remarks concerning construction of the
sub-ellipsoid are important:

1. bi, i = 1, . . . , j should be unit-length vectors. To
prove this, let us assume that U in Eqn. (12) is the
identity matrix Im and there is only one vector b1 =
(α, 0, . . . , 0)T with α 	= 0 spanning a line. In this
trivial case, one can expect that the manipulability

sub-ellipsoid will have only one singular value equal
d1. However, from Eqn. (13) one gets Ũ = I1 Ṽ =
Im and the only singular value equals α d1. Thus
‖α‖ = 1 and b1 is a unit-length vector.

2. The set bi, i = 1, . . . , j should be orthonormal. Once
again, assume that U = Im and b1 = (1, 0, . . . , 0)T ,
b2 = (0, 1, 0, . . . , 0)T . Direct calculations show, as
expected, that the diagonal elements of D and D̃
coincide for i = 1, 2. For another set of unit-length,
non-perpendicular vectors b1 = (1, 0, . . . , 0)T , b2 =
(1/

√
2, 1/

√
2, 0, . . . , 0)T the required property does

not hold.

3. The vectors bi, i = 1, . . . , j can be rotated
simultaneously around any hyper-plane
perpendicular to the hyper-plane spanned by
original B and passing through the origin of Rm.
In other words, the semi-axes of the constructed
sub-ellipsoid are invariant with respect to these
particular rotations of the orhonormal set B. Any

such rotation influences Ũ and Ṽ
T

in Eqn. (13) but
not D̃.

A dual construction of using J# instead of J is also
possible and basis vectors B are mapped into Q-space via

V

[
D−1

0T

]
UTB. (14)

It is worth noticing that selecting for B the identity matrix
Im in Eqn. (14) gives just J#, cf. Eqn. (8).

A special case is particularly important where B
is composed of only one unit-length vector-direction b1.
In this case one-dimensional subspace is defined with
a manipulability given by the expression

1

d

Δ
= ‖D−1UTb1‖. (15)

3.3. Other evaluation functions. The performance
indices from the previous subsections were defined for
a single configuration only. For relatively long X-loops,
it is expected that configurations along the path will
change significantly. To take into account also this fact
and do not increase a computational effort substantially,
we take another configuration, say qm, along the path
corresponding to the most distant point fromx(0). For qm

the same functions are evaluated as in q0 and the results
are averaged to get the final evaluation of q0. In order to
compute qm, it is enough to run the very first step of the
elastic band algorithm presented previously.

4. Correlations

Evaluation functions ei, i = 1, 2, . . . give some
characteristics of an initial configuration q0 possibly
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supplemented by another configuration qm which also
contributes to evaluation of q0. For each generated q0, the
elastic band algorithm is run and the length of the Q-loop
corresponding to a given X-loop is obtained. In this way
a set of pairs (L(q0), ei(q0)) is available and the goal is
to find whether the two variables, L and ei, are correlated
or not.

Generally, a correlation is a number that defines how
strong a relationship between two random variables (L
and ei in our case) is. There are many types of correlation.
However, this term is usually referred to the Pearson
correlation coefficient, PCC (Dixon and Massey, 1969),
defined as follows:

ρL,e =
E[(L− μL)(e − μe)]

σLσe
, (16)

where ‘E’ denotes the expected value, μZ is the mean of
Z , σZ stands for the standard deviation of Z and e denotes
one function from the set ei, i = 1, . . .. For sample
sets of random variables containing N values, ρL,e can
be estimated with

pL,e =

N∑
i=1

(Li − L)(ei − e)

√
N∑
i=1

(Li − L)2

√
N∑
i=1

(ei − e)2

, (17)

where z is the sample mean from the set {z1, . . . , zN}.
PCC is a number from the interval [−1, 1] quantifying a
linear relationship between data sets (random variables).
The values close to 0 means incoherence of variables,
close to +1 (resp., −1) their strong, positive (resp.,
negative) linear dependence.

Due to the limitation of PCC in detecting non-linear
relationships, in this paper also Spearman’s rank
correlation coefficient, SRCC (Dixon and Massey, 1969;
Kendall and Gibbons, 1990) will be used. SRCC is simply
PCC, where rough data-sets are overridden by values of
their ranking functions,

sL,e =
E[(rg(L)− μrg(L))(rg(e)− μrg(e))]

σrg(L)σrg(e)
. (18)

rg(·) denotes a ranking function (each rough value is
replaced with its index in an ordered sequence of all values
of a given variable). SRCC is particularly well suited
to detect monotonous relationship between variables. It
attains the value of +1 (resp., −1) for increasing (resp.,
decreasing) functions.

5. Simulations

A first few simulations were carried out on models of
n-dimensional planar pendula q = (q1, . . . , qn)

T with

a two-dimensional (x, y)T task-space, dimQ > dimX

described by kinematics

(x, y)T = k(q) = (

n∑
i=1

aic1,i,

n∑
i=1

ais1,i)
T . (19)

In Eqn. (23), and later on, a standard robotic convention
to denote sine/cosine functions was utilized, c1,i =

cos(
∑i

j=1 qj). All lengths of links are equal to ai =
1 [m]. The pendula are easy to visualize and a desired
degree of redundancy can be obtained easily.

In Task 1, the 3-DoF pendulum traced forth
and back a straight-line in X-space between points
x(0) = (2, 0.1)T and x(0.5) = x(0) + (0, R)T with
parameter R varied in the range from 0.1 to 1.5. 150
initial configurations q0 were examined with evaluation
functions derived from maximal and minimal singular
values,

e1 =
1

d1
=

1

dmax
, e2 =

1

d2
=

1

dmin
, (20)

from the manipulability index,

e3 =
1

d1d2
, (21)

and directional characteristics,

e4 =
1

d
, (22)

based on the vector b1 = (x(0.5) − x(0))/‖x(0.5) −
x(0)‖ = (0, 1)T . Results depicted in Fig. 1, and others
not presented here, lead to the following conclusions:

1. General purpose functions e1, e2, e3, evaluated at q0,
are not correlated with lengths of Q-loops (PCC,
SRCC are relatively small and sometimes change
their signs). The directional evaluation function
e4 is strongly and positively correlated with the
Q-loop length. As predicted, correlation coefficients
approach +1 for very short line X-paths because, in
this case, the Jacobian matrix at q0 is almost the same
as for other configurations along the X-path.

2. By adding a trail configuration qm, a correlation
between the values of the function e4 and Q-loop
lengths is strengthened as weighted values at q0

and qm better characterize the resulting Q-loop than
a single initial q0. The improvement in the values
of the correlation coefficients is negligible for other
evaluation functions.

In Fig. 2 points on the plane: length of a Q-loop
(L) vs. values of evaluated functions (ei), are visualized
for a single value of parameter R = 0.2 and all initial
configurations q0 generated. There are no regularities in
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Fig. 1. Linear paths of the 3-DoF pendulum. Pearson (PCC)
and Spearman (SRCC) correlation coefficients for pairs
(L, ei) as a function of parameter R. Functions ei, i =
1, . . . , 4 evaluated either at q0 ((a) and (b)) or at q0 and
qm ((c) and (d)).

the set of pairs (L, ei) for i = 1, 2, 3, Fig. 2(a)–(c), but a
linear dependence (L, e4) is clearly visible, cf. Fig. 2(d).
For the same task, in Fig. 3, five postures q0 are presented
generating the shortest and the longest Q-loops. The
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Fig. 2. Linear X-loop of the 3-DoF pendulum. Points (L, ei),
i = 1, . . . , 4, derived from many initial configura-
tions q0.

shortest loops were initialized at configurations requiring
only motion of the first degree of freedom to perform
a desired X-loop (the other DoFs making only minor
corrections). The longest Q-paths were generated with the
last two links arranged in almost a singular configuration
q3 � 0◦. In this case, to move the end-effector along
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Fig. 3. Linear path of the 3-DoF pendulum. Initial postures q0

providing the shortest (a) and the longest (b) Q-loops.

the y-axis, all components of q have to be changed
significantly.

In Task 2, rectangularX-loops were selected to check
the correlations with two directions privileged instead of
one. A family of rectangles with a left bottom corner
placed at (2 − R, 0.1) and shifts along axes (Δx =
R,Δy = 2R) was selected with parameter R varied in
the range from 0.1 to 0.8 with step 0.05. In Fig. 4 only the
(L, e4) correlation coefficients are presented (the other are
less informative, being very similar to linear X-loops). In
Fig. 4, and those to follow, characteristics marked as (0)
were based on q0 while those marked as (0+m) were based
on q0 and qm. We have

e4 = w1 · eX4 + w2 · eY4 ,

where eX4 was computed for the direction b1 = (1, 0)T

while eY4 for the direction b1 = (0, 1)T . The weights were
selected as the percentages of motion in those directions
while tracing the rectangles, i.e., w1 = 1/3, w2 = 2/3.
The observations made for the line path remain valid also
for the rectangular X-paths.

In Task 3 X-line paths of the 5-DoF pendulum were
examined. A path joints point x(0) = (3.5, 0.1)T with
x(0.5) = x(0) + (0, R)T for R ∈ [0.1, 2.5] discretized
with step 0.1. For each R, about 600 initial configurations
q0 were generated. Results are presented in Fig. 5. Also in
this case the regularities observed for the 3-DoF pendulum
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Fig. 4. Rectangular paths of the 3-DoF pendulum. Pearson
(a) and Spearman (b) correlation coefficients for pair
(L, e4) as a function of parameter R.

remain valid but the characteristics drop much faster than
for the 3-DoF pendulum.

Table 1. 5-DoF pendulum, line path with x(0) = (R, 0.1) and
x(0.5) = x(0) + (0, 2)T , for some values of R

R q0 items min max avg σ
[m] [−] [◦] [◦] [◦] [◦]
2.5 2128 51.0 190.3 106.7 26.8
3.0 1150 47.2 198.0 93.9 23.6
3.5 614 44.7 141.2 86.8 20.0
4.0 326 44.4 128.6 88.8 19.3

One more aspect of varying initial configurations
was checked for Task 3. Fixed length (equal to 2) line
X-loops were placed along the y-axis with the initial
x(0) varied. For each x(0), a family of admissible
initial configurations q0 were generated. Statistical data
(minimal, maximal, average, and the standard deviation
values of lengths of resulting Q-loops) for this task are
collected in Table 1. It appears that the location of a task is
important. The number of possible initial configurations
is much bigger when the task is located relatively close
to the base of the manipulator and decreases substantially
when it is close to a boundary of the task space. Usually,
a lot of initial configurations, being bent and twisted, are
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Fig. 5. Linear paths of the 5-DoF pendulum. Pearson (a) and
Spearman (b) correlation coefficients for pair (L, e4) as
a function of parameter R.

not particularly well suited to initialize short Q-loops.
Moreover, in practical manipulators most of them are
not admissible due to construction constraints. Based on
a heuristic rule, one should locate a task far away from
singular configurations to allow for flexibility in selecting
possible Q-loops either to optimize their lengths or to
avoid possible obstacles. However, this just sketched
task-location problem needs deeper theoretical studies.

The last two simulations were performed on a
4-DoF manipulator, composed of two 2-DoF planar
pendula, with a three-dimensional task space. The second
pendulum works on a plane perpendicular to the second
link of the first pendulum. Kinematics of the manipulator
are given by

⎡
⎣xy
z

⎤
⎦ = k(q) =

⎡
⎣a1c1 + a2c12 − rs12
a1s1 + a2s12 + rc12

a3s3 + a4s34

⎤
⎦ , (23)

where r = a3c3 + a4c34.
Task 4 was to follow a line characterized by its

initial point x(0) = (1, 0, 0.5)T , and the shift vector
Δ1 = (R,R,R)T , where parameter R ∈ (0.1, 1.1) was
varied with step 0.1. In Fig. 6 correlation coefficients of
resulting Q-loop lengths L with directional function e4 are
presented as a function of R. For other functions (e1−e3)
the coefficients are relatively small and do not exceed the
value of ±0.4.
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Fig. 6. Linear paths of the 2-DoF+2-DoF pendulum. Pearson
(a) and Spearman (b) correlation coefficients for pair
(L, e4) as a function of parameter R.

In Task 5 a parallelogram path was traced, anchored
at x(0) and spanned by two vectors Δ1 and Δ2 =
(0, R, 0)T . The parameter R ∈ (0.1, 0.9) while the other
data were selected as in Task 4. The examined correlation
coefficients are visualized in Fig. 7.

All observations made for planar pendula
(a two-dimensional task space) remain valid also for
tree dimensional task spaces.

6. Conclusions

In this paper a task of a fast selection among
initial configurations in repeatable inverse kinematics
for redundant manipulators was solved. An initial
configuration which provides the shortest possible loop
in the configuration space is desirable but, due to
computational time restrictions, the selection cannot be
performed by solving the repeatable inverse kinematic
task for each of possible initial configurations. Generally,
for redundant manipulators, their number is infinite as
the configurations belong to a multi-dimensional subspace
of the configuration space. To avoid a computationally
complex evaluation, an indirect method was proposed to
search for the required initial configuration. Correlation
between the length of the loop initialized at a given
configuration and values of some (fast to compute)
functions evaluated at the configuration was examined.
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Fig. 7. Rectangular paths of the 2-DoF+2-DoF pendulum. Pear-
son (a) and Spearman (b) correlation coefficients for pair
(L, e4) as a function of parameter R.

A local motion ability of a manipulator strongly
depends on its Jacobian matrix. Therefore, general
purpose functions were proposed to evaluate initial
configurations based on data derived from some
characteristics of the singular value decomposition of
the Jacobian matrix. Additionally, a new task-specific
function was designed which is based on some
characteristics of a manipulability ellipsoid section.

Simulation results carried out on multi-dimensional
planar and spacial pendula manipulators have shown
that general-purpose functions evaluated at initial
configurations weakly correlate with the lengths of the
resulting loops in the configuration space. Therefore
the functions are not suitable to distinguish initial
configurations resulting in short loops. However, the
new, dedicated functions display a strong and positive
correlation especially when a given loop in a task-space
is short and composed of a few privileged directions like
in linear and rectangular paths.
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