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Personal identification is particularly important in information security. There are numerous advantages of using elec-
troencephalogram (EEG) signals for personal identification, such as uniqueness and anti-deceptiveness. Currently, many
researchers focus on single-dataset personal identification, instead of the cross-dataset. In this paper, we propose a method
for cross-dataset personal identification based on a brain network of EEG signals. First, brain functional networks are
constructed from the phase synchronization values between EEG channels. Then, some attributes of the brain networks
including the degree of a node, the clustering coefficient and global efficiency are computed to form a new feature vec-
tor. Lastly, we utilize linear discriminant analysis (LDA) to classify the extracted features for personal identification. The
performance of the method is quantitatively evaluated on four datasets involving different cognitive tasks: (i) a four-class
motor imagery task dataset in BCI Competition IV (2008), (ii) a two-class motor imagery dataset in the BNCI Horizon 2020
project, (iii) a neuromarketing dataset recorded by our laboratory, (iv) a fatigue driving dataset recorded by our laboratory.
Empirical results of this paper show that the average identification accuracy of each data set was higher than 0.95 and the
best one achieved was 0.99, indicating a promising application in personal identification.
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1. Introduction

Personal identification is becoming a key point of personal
information security (Huang et al., 2012). Traditional
personal identification methods are faced with the risk
of being copied or forged easily (e.g., keys, ID cards
and passwords). Hence, biometric methods appear to
be more reliable for identification. Biometrics including
DNA, fingerprint, face, voice-print and iris had been
widely used in identifying people in the last decades (Jain
et al., 2005; Pujol et al., 2016). However, there are
still risks of those being forged. Researches showed that
fake fingerprints made of gelatin could easily cheat the
fingerprint identification system. Iris recognition systems
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also find it difficult to distinguish false iris features etched
on contact lenses from genuine ones. EEG has advantages
of stability, uniqueness and being hard to imitate. In
these virtues, EEG as a new biometric tool for personal
identification has gradually increased people’s attention in
recent years.

Previous studies showed that EEG could be used
for personal identification. Armstrong et al. (2015)
first proposed the concept of “brainprint.” They put
forward that brainprint referred to a unique and durable
biometric, which was generated by the brain and could
be used for personal identification. Paranjape et al.
(2001) recorded EEG signals in resting state and used
an autoregressive (AR) model for identification using
40 subjects. The classification accuracy was higher
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than 80%. Poulos et al. (1999) performed personal
identification experiments based on parametric spectral
analysis of the alpha rhythm. The results showed that
the EEG carried genetic information. The classification
accuracies of the experiments were in the range of
72% to 84%. Das et al. (2009) used rapid visual
evoked EEG activities to analyze the data involved in
a visual perceptual task. They adopted discriminative
spatio-temporal filters to extract features and classified 20
subjects with LDA and support vector machines (SVMs),
which achieved recognition rates ranging from 75% to
94%. Yeom et al. (2013) proposed a novel method
in which people who were confronted with self-face
and a non-self-face would provide different performance,
which can be measured by EEG. They used the EEG
recordings for personal authentication and the mean
accuracy rate was 86.1%. Maiorana et al. (2015) defined
the meaning of eigenbrains and eigentensorbrains by
principal component analysis (PCA) and multilinear PCA
(MPCA). During the experiment, the EEG of 30 subjects
was recorded from the resting state. They used LDA for
classification and got the accuracy of 87.9%.

Although these studies provided evidence to consider
EEG as a powerful tool to assess personal identification,
the amplitude information of signals was only used.
It is easily influenced by random factors. To some
extent, deviation is inevitable if amplitude information
is used in experiments. There is a close relationship
between cognitive brain activity and synchronization of
neurons (Hebb, 2013). Nevertheless, if synchronization
does not show the amplitude relationship, the method
based on the amplitude will not comprehensively analyze
the information of EEG signals. Phase synchronization
analysis can avoid these defects, as it analyzes the
interrelation between EEG pairs based on phase and
synchronization angles. It ignores the effect of amplitude,
but calculates using the instantaneous phase between the
signals, which is more stable.

In the last few years, it was proved that phase
synchronization in chaotic systems could be applied to
biological sciences. Moreover, it could be also used
to confer the functional connectives of EEG signals.
Phase synchronization was widely used in physiological
research. It is assumed that a functional network could be
made up by a coherent electrophysiological activity which
could span multiple brain regions (Fries, 2005). Brain
networks based on EEG phase synchronization were often
used for observation and prediction of diseases. Ling
et al. (2015) employed the phase synchrony index matrix
to construct brain networks. They found that patients had
a further loss of small-world attribute than healthy people.
Jamal et al. (2015) extracted synchrostate properties from
EEG signals and then utilized them to measure phase
synchronization to generate the brain connectivity graph.
However, processing on a specific task-based dataset

was a common way to validate their hypothesis. The
main reason was that the method they used could only
effectively process a single type of EEG data. In the
experiments, subjects always performed one specific type
of task or had to stay in a regular environment (Su
et al., 2010).

In this paper, we introduce a methodology that could
be used for EEG-based personal identification with phase
synchronization analysis. Brain functional networks
constructed with phase synchronization values are used
for personal identification. The connectivity matrix,
generated by the phase locking value (PLV) matrix, would
create a weighted undirected network. Then, we utilize
combined attributes of the network including the degree of
a node, the clustering coefficient and the global efficiency
to represent each person. The calculation method of
these attributes is related to the work of Rubinov and
Sporns (2009) as well as Vukašinović et al. (2014).
These attributes represent the activity of the brain. The
features composed of these attributes would be a good
representation for personal identification. In contrast to
related works, our method applied phase synchronization
of EEG signals, rather than amplitude information. Phase
synchronization of EEG signals could describe a relation
which may exist between two channels. The proposed
method is evaluated on four different data sets from
different tasks, in contrast to just one type of EEG signals
from one task. Two of the data sets were public data sets,
the other two were collected by our lab.

This paper is structured as follows. In Section 2,
we introduce the method of constructing the brain
network and classification. In Section 3, we analyze the
attributes of the brain network as features for personal
identification. In Section 4, experimental results and
analysis of classification in different wave bands are
presented. The last section present conclusions.

2. Method

2.1. Preprocessing. EEG is a non-stationary signal.
A copious amount of external noise will affect EEG
recording. Preprocessing raw EEG can minimize
disturbances of other noise signals. In our experiments,
EEG data were filtered between 2 Hz and 47 Hz. The
value of each channel was dealt with using the common
average reference (CAR) method (McFarland et al.,
1997). Then, Butterworth band-pass filters were used to
select the corresponding band.

2.2. Phase synchronization. Phase synchronization is
a new way to analyze EEG signals. It can inhibit the
impact of amplitude and retain phase components of EEG
signals. Phase synchronization is quantified by the phase
locking value (PLV).
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The PLV of two continuous time series x(t) and y(t)
is calculated as follows:

PLV = |〈exp(j{Φx(t)− Φy(t)})〉|, (1)

where 〈 · 〉 means the averaging operator in continuous
time t, while Φx(t) and Φy(t) are the respective
instantaneous phases of x(t) and y(t) at an instant of time
t.

There are two general ways to calculate the
instantaneous phase. One is a Hilbert transform and the
other is a Gabor wavelet transform (Le et al., 2001).
McFarland et al. (1997) claimed that there was no much
difference between these when processing EEG signals.
In this paper, we use a Hilbert transform to calculate
the instantaneous phase of EEG signals. The Hilbert
transform for a given continuous time series x(t) is

x̃(t) =
1

π
P

∫ +∞

−∞

x(t)

t− τ
dτ, (2)

where P denotes the Cauchy principal value. It can avoid
the appearance of a singular value when t = τ . Here x(t)
is described in this way, because the narrow band signal is
characterized by a spectrum limited to a narrow frequency
range. The envelope and phase changes are slow. Thus
x̃(t) is used to represent x(t).

Then x(t) is defined as

Zx(t) = x(t) + jx̃(t) = Ax(t)e
jΦx(t), (3)

where Ax(t) and Φx(t) are the instantaneous amplitude
and the instantaneous phase of x(t), respectively. Φx(t)
can be defined as

Φx(t) = atan
x̃(t)

x(t)
, (4)

and Φy(t) stands for the instantaneous series y(t).
If the phase difference Φxy(t) between x(t) and y(t)

satisfies

Φxy(t) = |nΦx(t)−mΦy(t)| ≤ const, (5)

where n and m are integers and const represents a
constant boundary of instantaneous phase difference, then
x(t) and y(t) are called n : m phase synchronization.
In the experiments, the value of const was 0.035, the
reason why we used this value can be found in the work
of Rosenblum et al. (1996). 1 : 1 phase synchronization is
commonly used as a neurobiological signal, for instance,
in Kong’s research on EEG (Kong et al., 2017). Therefore,
1 : 1 phase synchronization is also used in this paper.

According to the value of the instantaneous phase at
time t, the PLV of two time series x(t) and y(t) could
be calculated (Rosenblum et al., 2012). We selected a
one-second time window to compute the PLV of different

band signals. There are H non-overlapping time segments
of each sample, and the average PLV is the mean of the H
seconds phase locking value. Therefore, the average PLV
can be written as

PLVavg =
1

H

∣∣∣
H∑

h=1

〈exp(jΔΦ)〉
∣∣∣, (6)

where ΔΦ denotes the phase difference between Φx(t)
and Φy(t), i.e., ΔΦ = Φx(t) − Φy(t), and h =
1, 2, . . . , H is the number of segments.

We treated every channel as a separate time series
and computed phase synchronization for every pair of N
EEG signals, obtaining an N ×N symmetric matrix

V =

⎡
⎢⎢⎢⎢⎢⎣

1 v12 . . . v1n
v21 1 . . . v2n

...
...

...
...

v(n−1)1 v(n−1)2 . . . v(n−1)n

vn1 vn2 . . . 1

⎤
⎥⎥⎥⎥⎥⎦
. (7)

The elements vij represented the average PLV between
the i-th and j-th channels. The symmetric matrix V was
used as the connectivity matrix of the brain network, cf.
Fig. 1.
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Fig. 1. Symmetric PLV matrix V with 15 channels. The color
scale varies from 0 to 1, and the closer the chroma to
1, the more synchronized the EEG signals between two
channels.

2.3. Brain network. The brain network describes
the activities among neurons, neuronal clusters and brain
areas. There are three types of brain networks related
to connectivity: anatomical connectivity, functional
connectivity and effective connectivity (Bullmore and
Sporns, 2009; Park and Friston, 2013). Methods for
measuring functional connectivity may be divided into
nonlinear and linear (Stam, 2009). The brain network may
be theoretically represented by a graph, and graph theory
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could be adopted to analyze it (Sakkalis et al., 2015).
The graph is obtained through calculating the connectivity
matrix of the brain network.

Furthermore, we used the PLV to calculate functional
connectivity. The method of constructing the connectivity
matrix was similar to that in the study of Chavez
et al. (2010). In order to ensure that there was no
self-connection, the diagonal of the connectivity matrix
was set to zero. According to graph theory, a weighted
undirected graph G is generated by the connectivity
matrix, where G = {N,E,W}; N represents a set
of nodes of the graph, E is a set of undirected edges
between nodes, W is a set of weights that describe the
strength of the connections. In order to keep up with the
information from phase synchronization, the connectivity
matrix does not need to have threshold processing. Then,
a fully connected weighted undirected graph G could be
obtained.

2.3.1. Network analysis. After computing the PLV, an
N × N weighted undirected graph could be constructed
from the connectivity matrix. N equaled the number
of EEG channels and every node represented an EEG
channel. Each edge meant that there was phase
synchronization between two channels. The weights of
edge described the strength of phase synchronization.
According to graph theory, the attributes of the brain
network are important characteristics:

• Degree of a node.

The degree is the most important feature to describe
statistical characteristics of nodes in a graph. For a
weighted undirected graph G, the degree of a node
represents the sum of the weight value (wij ∈ W ) of
connecting with others, where wij is the connection
strength between nodes i and j. The degree of node
i is defined as below:

kwi =
∑

i,j∈N,i�=j

wij . (8)

• Global efficiency.

The global efficiency of a network describes
information transmission efficiency (Lei et al.,
2014). A higher value indicates that exchanging
information in the network has a lower cost. It
is an indicator of the traffic capacity of a network
(Boccaletti et al., 2006). The global efficiency is
defined as the reciprocal of the harmonic mean of all
nodes in the network (Latora and Marchiori, 2001):

E =
1

n− 1

∑
i∈N

∑
j∈N,j �=i (d

w
ij)

−1

n− 1
. (9)

In the weighted undirected network, dwij =∑
a∈gw

i↔j
f(a), where f is a map (e.g., an inverse)

from weight to length and gwi↔j is the shortest
weighted path between i and j.

• Clustering coefficient.

The clustering coefficient characterizes the local
connectivity of the network (Saramäki et al., 2007).
The clustering coefficient of a network is another
important parameter of measuring the network. It
indicates that a node has many connected nodes. It
is defined as

C =
1

n

∑
i∈N

2ti
ki(ki − 1)

, (10)

where ti is the geometric mean of triangles around

vertex i, ti = 1
2

∑
j,h∈vi

(wijwjhwih)
1
3 ; vi denotes

the neighborhood of vertex i, j, h ∈ vi (Onnela et al.,
2005); ki denotes the number of edges connected to
vertex i.

The feature vector of each sample contained the
degree of nodes, the global efficiency and the clustering
coefficient. The software to calculate graph theoretical
measures can be the Brain Connectivity Toolbox (Rubinov
and Sporns, 2009) (http://www.brain-connecti
vity-toolbox.net/).

2.4. Linear discriminant analysis. LDA is a classic
pattern recognition algorithm, also called the Fisher
discriminant analysis. It is a well-known supervised
classifier based on a linear discriminant function (Ye
et al., 2004). The basic concept of LDA is to project the
sample of high dimension onto the optimal discriminant
sub-space (Peng and Lu, 2017). The aim of LDA is to
make the distance between classes as great as possible
and the distance within class as close as possible (Kim
et al., 2003).

For a given sample set, there are M samples in
N classes, and each sample is a d-dimensional feature
vector. Each feature vector is defined as xi =
{xi

1, x
i
2, x

i
3, . . . , x

i
d}, i = {1, 2, . . . , N}. M samples are

divided into N classes. The projection function y = wTx
is used to project samples onto a sub-space. According
to these results, the samples from different classes can be
separated as far as possible. Therefore, the goal is changed
to find the best w. For a multi-classification problem, a
k-dimensional W is required for projection. The results
of samples after projection are expressed as Y . Thus we
have Y = WTx.

The mean of each class is defined as

mi =
1

Mi

∑
x∈Ni

x (11)

where Ni stands for class i, and Mi signifies the sample
numbers of class Ni.

http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
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Fig. 2. Specific process of the proposed method.

A matrix that describes the degree of dispersion of
all kinds of classes is defined as

Si =
∑
x∈Ni

(x−mi)(x −mi)
T (12)

The matrix Si is called a scatter matrix.
Within-class (Sw) and between-class (SB) scatter

matrices are respectively defined as

Sw =

N∑
i=1

Si =

N∑
i=1

∑
x∈Ni

(x−mi)(x−mi)
T , (13)

SB =

N∑
i=1

Mi(mi −m)(mi −m)T , (14)

where N is the number of classes and x are samples, mi

is the i-th class mean, m is the global mean. We define

J(W ) =
WTSBW

WTSwW
. (15)

The discriminant criterion is argmaxwJ(W ). The
solution process for W proceeds as follows:

{
W = argmaxwJ(W ) = argmaxw

WTSBW
WTSwW .

such that WTSwW = c �= 0

(16)
A Lagrange multiplier is introduced to calculate the
maximum of WTSBW ; then the problem is changed to

resolve the following issue:

L(wi, λ) = wi
TSBwi − λ(wi

TSwwi − c). (17)

The condition of getting an extremum of the formula (16)
is that the derivative of wi is zero. Thus,

SBwi = λSwwi, (18)

and then
S−1
w SBwi = λwi. (19)

W is a matrix that consists of feature vectors
corresponding to k generalized feature values of S−1

w SB ,
where k ≤ N − 1. Thus W was obtained, where W =
{w1, w2, . . . , wk}.

After projecting the EEG data onto a sub-space, the
nearest neighbor rule was used for classification.

2.5. Summary of the proposed method. In this
paper, the average PLV was used as the weight of brain
functional network connectivity. The brain network
attributes were combined as feature vectors for personal
identification. The detailed steps were as follows (see
Fig. 2):

Step 1. Raw EEG data were obtained from experimental
data sets. All data were preprocessed and filtered to four
bands.

Step 2. The PLV of the preprocessed EEG data
was calculated for each one-second segment. H
non-overlapping time segments (one second as a time
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segment) were taken as a sample. The average PLV was
computed to get an N ×N symmetric matrix V .

Step 3. The symmetric matrix V was used as the
connectivity matrix of brain network to weigh brain
network functional connectivity. The diagonal elements
of the matrix V were set to zero to avoid self-connection,
which was labeled as V

′
. Then the brain functional

network was represented as a weighted undirected graph
G by the matrix V

′
.

Step 4. The attributes including the degree of nodes, the
clustering coefficient and the global efficiency of brain
network for each sample were computed. A feature vector
combined these attributes was used for classification.

Step 5. The LDA projection space was trained by training
data. Test data were projected to the LDA projection
space, and the category of the test sample was determined
by the nearest neighbor rule.

3. Experiments

In this paper, four data sets were used for personal
identification. Differences in the accuracies in beta,
gamma, alpha and theta bands were discussed. For
each dataset, 480-second raw data of each subject were
recorded. The data were partitioned using a 30-second
window segment without overlapping to calculate the
mean PLV matrix. The attributes of the brain network
were combined as a feature vector of each sample.
Therefore, there were 16 samples collected from each
subject. The attributes contained the degree of the
node, the global efficiency and clustering coefficient.
The samples of each subject were averagely assigned
to training dataset and the test dataset. Then the LDA
classifier was used for classification.

3.1. Data acquisition. Four datasets were used in this
paper. Two of them were international public data sets. In
the following context, we referred to them as BCI data
and Motor data. The other two were recorded by our
laboratory. The one collected through a neuromarketing
experiment would be referred to as NMK data. The
other one, collected from a complex task during a fatigue
driving experiment, would be referred to as DRI data.

3.1.1. BCI data. The dataset was obtained from BCI
Competition 2008—Graz data set A (Brunner et al.,
2008). The dataset contained EEG data recorded from
9 subjects. Each subject undertook four different motor
imagery tasks: left hand (class 1), right hand (class 2),
both feet (class 3), and tongue movements (class 4). For
each subject, 2 sessions of data were recorded. Each
session was composed of 6 runs. Participants took a short
break between each run. One run consisted of 48 trials

(12 for each of the four possible classes), yielding a total
of 288 trials per session. The sampling frequency of EEG
data was 250 Hz. There were 22 EEG channels and 3 EOG
channels. In our experiment, we used only 22-channel
EEG data. The montage of BCI data is indicated in Fig. 3.

3.1.2. Motor data. The Motor data is a public dataset
obtained from the BNCI Horizon 2020 project. It is
a two-class motor imagery task data set recorded by
Steyrl et al. (2016). There were 14 participants in the
experiment. The paradigm was based on the training
paradigm of the cue-guided Graz BCI (Pfurtscheller and
Neuper, 2001). The session consisted of 8 runs, 5 of
them for training and 3 feedback for validation. Here, we
just used the 5 runs for training as our experiment data
set. One run was composed of 20 trials. Participants
performed 5-second imaginative movements of the right
hand and feet. EEG signals were recorded with a biosignal
amplifier. The data were sampled at 512 Hz. The montage
of Motor data is indicated in Fig. 4.

3.1.3. Neuromarketing data. The NMK data were
recorded from an experiment with 20 subjects (Kong
et al., 2013). Subjects were equally divided into men
and women. They were all healthy and had no personal
history of neurological disorders. The stimulus was a
ten-minute video, which was composed of a neutral video
(8 minutes) and 6 advertising video clips (around 30
seconds) interspersed into the neutral video. During the
experiment, the subjects sat in a quiet room, passively
experimenting stimuli, and were instructed to look at the
screen in front of them. They knew little about the purpose
of the experiment. The EEG data were recorded by
16-channel G-Tec equipment and the sampling frequency
was 256 Hz. The montage of the experiment was shown
in Fig. 5. The red electrodes were selected for utilization
in our experiment.

3.1.4. Fatigue driving data. The DRI data were
recorded through a fatigue driving experiment (Kong
et al., 2015). This experiment included 12 subjects aged
between 23 and 25. All the subjects held a driver’s
licence. Each subject was right side dominant and had
no history of neurological or psychiatric disorders. A
simulation driving system with an imitation cab was used.
During the experiment, there were 8 different conditions.
The subjects had to drive under these conditions with
the priority of the driving control. The EEG data
were recorded by a 16-channel G-Tec equipment at the
sampling rate of 256 Hz, and the impedances were kept
below 5 kΩ.

3.2. Attribute analysis. In order to verify that the
attributes of the brain network can be used as indices for
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Fig. 3. EEG montage of the BCI data.

Fig. 4. Small Laplacian electrode placing scheme centered at
C3, Cz, and C4. Distances between neighboring elec-
trodes are 2.5 cm.

Fig. 5. EEG montage of the NMK data.

personal identification, the degree of the node, the global
efficiency and the clustering coefficient were presented.
Topographic maps of brain and other mathematical
statistics forms were used to show the attributes of the

brain network.

3.2.1. Degree of a node. For the brain network, each
node had a degree, which was discussed in Section 2. For
the sake of generating a brain network, an EEG channel
was used as a network node. The brain topographic map
for each subject was presented through the mean values of
nodes in the EEG signal. In this section, the BCI, NMK
and DRI data were taken as examples (see Figs. 6–8). For
the Motor dataset, as shown in Fig. 4, there was no direct
mapping of the electrodes in that data set on the 10–20
system except for the positions C3, Cz, C4. The others
were in between 10–20 system electrodes. Their system
was equidistant. All electrodes had a distance of 2.5 cm
from the surrounding. Hence we could not show brain
topographic maps of the Motor dataset.

Figures 6, 7 and 8 represented brain topographic
maps for BCI, DRI and NMK dataset respectively. As
shown in the figures, the connection strength exhibited a
certain symmetry between the left and right hemisphere
for each subject. However, the distribution of the
connection strength for each subject showed significant
differences. The brain topographic maps for the DRI
data are shown in Fig. 7. In the fatigue driving
experiment, subjects were required to execute relatively
complex tasks. When facing the same problem, people
with different levels of knowledge or habits would have
different responses. Therefore, there were differencies in
their thinking process (e.g., the cognitive process of the
brain). As shown in Fig. 7, the maps of some subjects
varied between each subjects while some subjects’ maps
(subjects 5 and 9) were similar.

In order to verify the robustness of the degree of a
node as the index for personal identification, we selected
4 epochs of 12 subjects in the DRI to draw the brain
topographic maps which are shown in Fig. 9.

As presented in Fig. 9, there was an evident similarity
between the brain’s connection strength in different
epochs of the same subject. However, there was a
discrepancy for different subjects.

In order to make the experiment more persuasive, we
performed a statistical analysis on the degree of nodes.
The BCI dataset was taken as an example. We calculated
the mean vector of the degree of nodes from 9 subjects
and 1 mean vector represented a subject. After that the
covariance matrix of the 9 subjects was calculated. The
results are shown in Fig. 10.

As presented in Fig. 10, we could see that there were
differences in the degree of nodes among individuals.

3.2.2. Global efficiency and the clustering coefficient.
The global efficiency and the clustering coefficients are
two necessary elements of the feature vector. To further
explore their influence and performance, we showed
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Fig. 6. Brain topographic map of four-class motor imagery
tasks in the BCI Competition 2008 (BCI dataset). The
black dots denote the EEG channel location while the
light color and the deep color stand for the mean value
of the degree of a node for each EEG channel.

Fig. 7. Brain topographic map for a fatigue driving dataset
recorded by our laboratory (DRI dataset). The black dots
denote the EEG channel location while the light color
and the deep color stand for the mean value of the de-
gree of a node for each EEG channel.

the relationship between the global efficiency and the
clustering coefficient of each subject in the form of a
scatter diagram (see Fig. 11). The global efficiency was
the x-axis and the clustering coefficient was the y-axis.

Figure 11 described the relationship between the
global efficiency and the clustering coefficient of each
dataset. In the subfigures, each subject had a relatively
unique distribution. The linear fitting of the global
efficiency and the clustering coefficient was made. We
found that the relationship value between two subjects was
different. This phenomenon also proved that the global
efficiency and the clustering coefficient had a specific
representation of individuals. Moreover, from the result

Fig. 8. Brain topographic map for a neuromarketing cognitive
task recorded by our laboratory (NMK dataset). The
black dots denote the EEG channel location while the
light color and the deep color stand for the mean value
of the degree of a node for each EEG channel.

Fig. 9. Brain topographic map of mean value of nodes for four
epochs for a fatigue driving dataset recorded by our lab-
oratory (DRI dataset). The black dots denote the EEG
channel location while the light color and the deep color
stand for the mean value of the degree of a node for each
EEG channel.

of linear fitting, we found that the global efficiency and
the clustering coefficient of each sample were close to a
proportional relation. According to Latora and Marchiori
(2001), the clustering coefficient could be seen as first
approximations of efficiency evaluated on a local scale.
The local efficiency was the global efficiency computed
in the neighborhood of the node (Rubinov and Sporns,
2009). The weighted local efficiency broadly parallelled
the weighted clustering coefficient (Onnela et al., 2005).
Therefore, we think that the clustering coefficient and
the global efficiency had a similar variation tendency to
some extent, which was consistent with our experiment’s
results.
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Fig. 10. Mean vector and the covariance matrix of four-class motor imagery tasks in the BCI Competition 2008 (BCI dataset).
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Fig. 11. Relationship between the global efficiency and the clustering coefficient: BCI data (a), DRI data (b), Motor data (c), NMK
data (d).

4. Results of experiments

4.1. Results analysis based on four bands. Brain
waves were spontaneous rhythmic electrical activities.
Generally, they could be divided into four bands as
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and
gamma (30–40 Hz) bands. The EEG signal intensities
were different in the four bands when people were in
different states. Therefore, we made a comparison among
subband data to explore in which band the attributes
from brain network would exhibit better performance in
personal identification. For each data set, we adopted
10 times 2-fold cross validation and drew a line chart of
classification accuracies in four bands. Figure 12 shows
mean classification accuracy results per dataset per band.

As shown in Fig. 12, the accuracies of the beta band,
alpha band and gamma band data were higher than those

of the theta band across the four data sets. Except for
one time in Motor data, the classification accuracy in the
theta band was always lower than the other three bands.
According to the results of this experiment, we thought
that in beta and gamma bands the attributes of the brain
network had better performance in personal identification.

4.2. Efficiency of combined attributes. We compared
the efficiency of single attribute with that of combined
attributes. The latter gave a better estimate for
classification in personal identification. Experiments were
carried out on the four data sets.

Table 1 demonstrates that the combined attributes
as a feature of personal identification could yield better
performance. For four data sets, when a single attribute
was used as a feature, the classification accuracy rate was
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Fig. 12. Four bands classification accuracies for four datasets: BCI data (a), DRI data (b), Motor data (c), NMK data (d).

Table 1. Classification results of different features.

attributes
datasets

BCI data DRI data NMK data Motor data

D 0.980 0.986 0.945 0.991
D+Eg+C 0.992 0.991 0.956 0.994
D: degree of nodes, Eg: global efficiency, C: clustering coefficient

lower than for combined attributes. Although using the
degree of nodes as a feature also guaranteed good results,
the feature of combined attributes was more efficient in
classification. Thus, it could be seen that the global
efficiency and the clustering coefficient were added into
the feature vector as an augmentation index, which was
favorable for classification.

The BCI, Motor, NMK and DRI data included 9,
14, 20 and 12 subjects, respectively. In the four data
sets, NMK contained the largest number of subjects. Its
accuracy rate was the lowest. It could be inferred that
for a bigger sample of subjects there would be a bigger
chance that two persons might have close values of the
discrimination parameters.

4.3. Classification results. For each data set, we
adopted 2-fold cross validation and randomly divided
the samples into the test set and the training set. Ten
times tests were performed. Then, average values were
computed. Table 2 summarized classification accuracies
of the four data sets in the beta band.

From Table 2 it can be observed that for the BCI,
DRI and Motor data the accuracies were ten times all
above 0.99; for NMK data, they were also above 0.95.
Meanwhile, the fluctuation in classification accuracies
was very small. The results showed that the features
consisting of brain network attributes were effective in
personal identification for different data sets.

To further verify the advantage of the features used
in this paper, a fixed feature comprising AR parameters,
and the power spectral density (PSD) was used for
comparison (Poulos et al., 1999; Hema et al., 2009; Su
et al., 2010). This feature was employed to identify the
three datasets in the paper. The comparison results are
shown in Table 3. They demonstrate that the accura-
cies of AR parameters were lower than those of the
brain network attributes. For the three datasets, the brain
network attributes obtained good recognition rates, while
the accuracy of fixed parameters used in BCI data was
higher than in the case of the other two datasets.

Besides, the recognition accuracy of the BCI data
was compared with the results of Nguyen et al. (2012),
who used Mel-frequency cepstral coefficients as features
and the identification accuracy was 0.46 on Graz A 2008
data, which we named BCI data. Clearly, the limitation of
their methods did not exist in our approach.

5. Conclusion

This paper proposed an EEG-based method to estimate
cognitive phenotypes in personal identification. In
contrast to related works, we used properties based on
a brain functional network to extract feature vectors.
We evaluated the method with four datasets involving
different cognitive tasks. Their classification accuracies
were all higher than 0.95. Even for a fatigue driving task,
in which subjects were required to execute a complex
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Table 2. Classification results of the four data sets.
k BCI data DRI data NMK data Motor data

1 1 1 0.944 1
2 0.986 0.990 0.963 1
3 1 1 0.956 1
4 0.972 0.990 0.950 1
5 0.972 0.979 0.944 0.982
6 0.986 1 0.981 0.964
7 1 0.989 0.963 1
8 1 0.989 0.944 0.991
9 1 0.969 0.956 1
10 1 1 0.963 1

Average 0.992± 0.01 0.991± 0.01 0.956± 0.01 0.994± 0.01

task, the method also achieved good performance. Each
individual’s brain network attributes are unique. We also
found that the EEG signals extracted from the beta and
gamma bands were much more expressive through the
perspective of brain networks. The results indicated that
attributes of brain networks could be effective features for
personal identification.
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