
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 4, 771–786
DOI: 10.2478/amcs-2018-0059

CLUSTERING BASED ON EIGENVECTORS OF THE ADJACENCY MATRIX

MAŁGORZATA LUCIŃSKA a,∗, SŁAWOMIR T. WIERZCHOŃ b

aDepartment of Management and Computer Modelling
Kielce University of Technology, Al. 1000-lecia PP 7, 25-314 Kielce, Poland

e-mail: lucinska@tu.kielce.pl

bInstitute of Computer Science
Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warsaw, Poland

The paper presents a novel spectral algorithm EVSA (eigenvector structure analysis), which uses eigenvalues and eigen-
vectors of the adjacency matrix in order to discover clusters. Based on matrix perturbation theory and properties of graph
spectra we show that the adjacency matrix can be more suitable for partitioning than other Laplacian matrices. The main
problem concerning the use of the adjacency matrix is the selection of the appropriate eigenvectors. We thus propose an
approach based on analysis of the adjacency matrix spectrum and eigenvector pairwise correlations. Formulated rules and
heuristics allow choosing the right eigenvectors representing clusters, i.e., automatically establishing the number of groups.
The algorithm requires only one parameter—the number of nearest neighbors. Unlike many other spectral methods, our
solution does not need an additional clustering algorithm for final partitioning. We evaluate the proposed approach using
real-world datasets of different sizes. Its performance is competitive to other both standard and new solutions, which require
the number of clusters to be given as an input parameter.

Keywords: spectral clustering, adjacency matrix eigenvalues/eigenvectors, graph perturbation theory, eigengap heuristics.

1. Introduction

Cluster analysis is concerned with the division of data
into homogeneous groups (clusters) such that data items
within one cluster are similar to each other, and those
within different clusters are dissimilar. All clustering
algorithms aim at one or both of the following goals: to
find a proper partition and to determine the number of
clusters.

Spectral clustering techniques belong to the most
popular and efficient clustering methods (see, e.g., von
Luxburg, 2007; Jia et al., 2014). In these methods
compactness (characteristic of K-means algorithms) is
replaced by connectivity, which better identifies clusters
in many cases. Spectral algorithms arise from concepts
developed within spectral graph theory (Chung, 1997).
The basic idea is to represent relationships between the
elements of the dataset by a similarity matrix which can
be viewed as a generalized adjacency matrix, defining
the so-called similarity graph. The nodes in this
graph represent elements of the dataset and each edge

∗Corresponding author

reflects the similarity between the pair of appropriate
elements. Selected eigenvectors of the affinity (or some its
transformation) matrix provide a new coordinate system
of reduced dimensionality. It is important to note that
spectral clustering can be applied to the case of metric
and nonmetric data. In fact, representation of data is
irrelevant for spectral clustering: what we operate with
is the similarity matrix. The elements of this matrix can
be computed automatically (e.g., as a transformation of a
distance between elements with metric representation) or
attached subjectively in the case of nonmetric data.

There are two main approaches used in spectral
clustering. The first one relies upon recursively splitting
a given group into two smaller groups until the desired
partition is obtained. Here a single eigenvector gives
us guidance on how to partition the group, and initially
the whole dataset is considered such a group. The other
solution involves taking a few eigenvectors and applying
a simplified clustering algorithm, such as K-means, to
divide the data described by the coordinates derived from
these eigenvectors. Both methods require prior knowledge

lucinska@tu.kielce.pl

772 M. Lucińska and S.T. Wierzchoń

of the number of clusters K or a quality function that
indicates the end of a recursive partitioning procedure.
However, some recent spectral solutions try to detect
the number of clusters automatically. The algorithm
proposed by Azran and Ghahramani (2006) makes use
of the relation between the magnitude of the eigenvalues
and the Gaussian scaling parameter in order to address the
issue. Zheng and Lin (2004) estimated cluster numbers
also with the help of the scaling parameter σ from the
Gaussian kernel

KG(x, y) = exp
(
− ‖x− y‖2

2σ2

)
. (1)

They established the number of clusters on the basis of
the eigengap, i.e., the difference between two successive
eigenvalues, sorted in ascending order. The right number
of clusters should remain the same for relatively big
changes in the Gaussian scaling parameter σ.

Zelnik-Manor and Perona (2004) proposed an
iterative method based on eigenvectors. For each integer
k, it creates an eigenvector matrix X and tries to find a
rotation R such that each row in the matrix XR has a
single nonzero entry. It is possible to fulfill the condition
only when the number of eigenvectors equals that of
clusters. Taking more eigenvectors will result in more
than one nonzero entry in some of the rows. The smaller
number of eigenvectors fails to create a full basis spanning
the subspace of the canonical coordinate system.

Another problem with spectral clustering methods
concerns the choice of the right eigenvectors, which,
enable proper partitions. Numerical experiments suggests
that it is not guaranteed that the largest K eigenvectors
can well detect the structure of the data. Xiang and
Gong (2008) were the first to use eigenvector selection
to improve the performance of the spectral clustering
method. Liu et al. (2014) proposed an eigenvector
selection method based on latent tree models. For each
integer k from an established range, they built a latent tree
model using k eigenvectors. In order to determine the
number of clusters, the BIC score (Schwarz, 1978) was
used as the performance index.

Shi et al. (2009) developed theoretical results to use
clustering information contained in the eigenvectors of
the adjacency matrix based on a radial kernel function
with a sufficiently fast tail decay. They designed a data
spectroscopic clustering (DaSpec) algorithm that utilizes
properly selected eigenvectors to determine the number of
clusters automatically and to group the data accordingly.

In this paper we present a solution which addresses
all the above mentioned challenges. It is similar to the
DaSpec algorithm. It does not require a user to know the
number of clusters a priori, selects the right eigenvectors
and does not need any additional clustering algorithms
nor partitioning quality functions. The solution is based
on some geometric properties of the eigenvectors of an

adjacency matrix. Careful analysis of the eigenvectors
allows one to obtain proper partitioning without the need
to give the number of clusters or to use additional tools for
clustering.

We also increased the flexibility of the DaSpec
algorithm by taking into consideration a larger group
of eigenvectors and distinguishing between two subsets
on the basis of eigenvector entry signs. The presented
algorithm is called EVSA (eigenvector structure analysis)
and constitutes an extension of the SpecLoc2 algorithm
described in our previous paper (Lucińska and Wierzchoń,
2014). While the algorithm is largely heuristic, it does
seem to perform very well on a range of cases, reliably
producing the expected number of clusters and giving
reasonable results when applied to difficult real-world
examples.

In Section 2, notation and standard spectral methods
are presented, and the next section explains the main
concepts used in the EVSA algorithm, which is presented
in detail in Section 4. Then, in Section 5, we compare the
performance of our algorithm with that of other solutions.
Finally, in Section 6, the main conclusions are drawn.

2. Spectral methods

Spectral clustering methods have a strong connection with
graph theory. The set of data points to be clustered will be
denoted by X = (x1, x2, . . . , xn). To each pair of points
i and j, a symmetric similarity sij ∈ [0, 1] is attached.
The value sij > 0 implies the existence of the undirected
edge i ∼ j in the graph G spanned over the set of vertices
X . The matrix S = [sij] plays the role of the adjacency
matrix for G.

Let di =
∑

sij denote the degree of node i and let
D be the diagonal matrix with di’s on its diagonal. In an
undirected and unweighted graph, the degree of a node is
given by the number of its adjacent edges.

The set of edges between two subgraphs spanned
over the sets A,B ⊆ X is called the edge cut or a cut
between A,B:

cut(A,B) =
∑

xi∈A,xj∈B

sij . (2)

Association, assoc(A,X), of a set A ⊂ X is the total
weight connection from nodes in A to all nodes in the set
X :

assoc(A,X) =
∑

xi∈A,xj∈X

sij . (3)

A clustering C = C1, C2, . . . , CK is a partitioning
of X into the nonempty mutually disjoint subsets
C1, C2, . . . , CK .

The Laplacian matrix associated with graph G is the
n × n matrix L = D − S. The normalized Laplacian is
defined as Ln = D−1/2LD−1/2. Since both D and S

Clustering based on eigenvectors of the adjacency matrix 773

are symmetric real matrices, L and Ln are also symmetric
and real, with non negative real-valued eigenvalues. If
a graph is connected, the second smallest eigenvalue of
its Laplacian is positive (Fiedler, 1975). Eigenvalues are
usually sorted in ascending order in the case of Laplacians
L and Ln and in descending order for I − Ln. The K
dominant eigenvectors are eigenvectors associated with
the K largest eigenvalues of I− Ln .

A partition of the nodes of a graph into K clusters
is known as a K-way graph cut: in a special case when
K = 2 we speak about bipartitioning. Spectral clustering
algorithms can be classified according to two approaches:
recursive spectral bipartitioning algorithms and direct
K-way spectral clustering ones. The former solutions use
the right eigenvector associated with the second smallest
eigenvalue of the normalized or unnormalized Laplacian
matrix, which is called the Fiedler vector. Divisions are
recursively repeated until a K-way partition is found.
Direct K-way methods use the first K eigenvectors and
directly find partitions with the help of some heuristics.

The algorithm proposed by Shi and Malik (2000)
is a well-known example of recursive methods. It aims
at minimizing the normalized cut criterion proposed by
the same authors. The normalized cut between two sets
A,B ⊆ X is defined as

Ncut(A,B)

= cut(A,B)
(1

assoc(A,X)
+

1

assoc(B,X)

)
. (4)

According to the authors, the set X is partitioned into
two clusters C,C′ = X − C that minimize Ncut(C,C′)
over all possible two way partitions of X . The algorithm
consists of the steps shown in Algorithm 1.

Algorithm 1. Shi and Malik algorithm.
Input: Similarity matrix S, number K of clusters to
construct.
Output: Clusters C1, . . . ,CK

Step 1. Given a set of features, set up a weighted graph
G and compute its similarity matrix S and its degree
matrix D.

Step 2. Solve a generalized eigenproblem (D − S)y =
λDy for eigenvectors with the smallest eigenvalues.

Step 3. Use the eigenvector related to the second smallest
eigenvalue (y2) to bipartition the graph by finding the
splitting point such that Ncut is minimized.

Step 4. Decide if the current partition should be
subdivided and recursively repartition the segmented parts
if necessary.

The number of groups segmented by this method
is controlled directly by the minimum allowed
Ncut. The second smallest Laplacian eigenvector

y2 carries significant structural information regarding
the connectivity of the graph. In an ideal case of two
nonconnected subgraphs, y2 assumes just two discrete
values, and the signs of the values can indicate exactly
how to partition the graph. In a real case, the second
eigenvector can take on continuous values and a splitting
point must be chosen to cluster the components of y2.
The authors suggested a few different ways of choosing a
splitting point such as the zero or median values or finally
the minimum Ncut, which is the approach they took
in the presented algorithm. They checked a few evenly
spaced possible splitting points, and computed the best
Ncut among them.

One of the most popular K-way algorithms is NJW,
proposed by Ng et al. (2001) and shown in Algorithm 2.

Algorithm 2. NJW algorithm.
Input: Similarity matrix S, number K of clusters to
construct.
Output: Clusters C1, . . . ,CK

Step 1. Construct the complement of the normalized
Laplacian matrix, Lc = I− Ln.

Step 2. Find y1,y2, . . . ,yK largest eigenvectors of Lc

and form the matrix Y = [y1,y2, . . . ,yK] by stacking
the eigenvectors in columns.

Step 3. Form the matrix F from Y by renormalizing each
of Y’s rows to have unit length; in other words, project
data onto a unit k-sphere.

Step 4. Treating each row of F as a point, cluster them
into K clusters via K-means algorithm.

Step 5. Finally, assign the original point xi to cluster j if
and only if row i of the matrix F was assigned to cluster j.

The authors used a matrix perturbation theory
argument to theoretically explain the algorithm. For a
connected graph, the normalized Laplacian Ln is positive
definite and has exactly one eigenvector with eigenvalue
1 and other eigenvalues smaller than 1. When the graph
consists of K connected components, i.e., it can be
perfectly separated into K non overlapping communities,
the matrix Lc will be (with the rows ordered by clusters)
block diagonal with K blocks. It will have exactly one
eigenvector with eigenvalue 1 for each block. Therefore,
each row in the matrix F will have exactly one entry
equal to 1, all the others being zero and the data in
this K-dimensional space will cluster on the unit length
vectors on the coordinate axis. In more general cases,
when the clusters are not strongly separated and the matrix
Lc is not block diagonal, the validity of the algorithm
is related to the existence of a large eigengap, i.e., the
(K +1)-th eigenvalue of Lc needs to be significantly less
than 1 to guarantee stability of the selected eigenspace
under perturbations.

The eigengap heuristic is also a tool for establishing

774 M. Lucińska and S.T. Wierzchoń

the number of clusters. Here the goal is to choose the
number K such that all eigenvalues 1, . . . , K are close
to 1 but K + 1 is relatively small. In the case of weakly
separated clusters the task is quite difficult, since the gap
could be very small.

3. Properties of adjacency matrix spectra

3.1. Partitioning criteria based on the adjacency
matrix. Recursive bipartitioning algorithms exploit the
structure of the Laplacian’s second smallest eigenvector
only. On the other hand, K-way algorithms utilize
K dominant eigenvectors, although they do not take
into consideration the special structure properties of the
eigenvectors, using usually the K-means algorithm for
the final partitioning. In the EVSA algorithm, we applied
the approach that utilizes ideas of both from the above
described solutions.

Most spectral methods use eigenvectors and
eigenvalues of different Laplacian matrices. Only a
few of them take into consideration eigendecomposition
of an adjacency matrix (e.g., Shi et al., 2009). The
adjacency matrix of a simple graph presents in a straight
way relations in a graph. As a diagonally constant,
symmetric, and nonnegative matrix it has the eigenvectors
and eigenvalues with some useful features, which will be
presented below.

As mentioned in Section 2, Shi and Malik (2000)
showed that the normalized Laplacian matrix leads to a
normalized cut criterion. A similar argument can be set
forth for an adjacency matrix.

Let us consider the Rayleigh quotient (Meyer, 2000)
of the adjacency matrix S given as

R(S,y) =
yTSy

yTy
, (5)

where y is a nonzero vector.
According to the Courrant–Fischer theorem, the

maximum of the Rayleigh quotient can be obtained as
the largest eigenvalue λmax of the adjacency matrix S
and ymax that yields this maximum is the corresponding
eigenvector of λmax,

max
y �=0

R(S,y) = λmax =
yT
maxSymax

yT
maxymax

. (6)

If we replace ymax with a characteristic function of
a partition A ⊆ X , i.e., ymax(i) = 1 if the vertex xi

belongs to the cluster A and ymax(i) = 0 otherwise, then

yT
maxSymax

yT
maxymax

=

∑
xi∈A,xj∈A sij

|A| . (7)

The right-hand part of the above equation equals the
ratio association Rassoc (Shi and Malik, 2000), which is

another plausible criterion for partitioning, instead of the
normalized cut criterion,

Rassoc(A,A) =
assoc(A,A)

|A| , (8)

where |A| denotes the number of nodes in A.
Maximizing the ratio association leads to the largest

within-cluster association relative to the size of the cluster.
The eigenvector corresponding to the largest eigenvalue
indicates the partition A with the maximum number of
edges connecting nodes belonging to A.

By the Perron–Frobenius theorem (Meyer, 2000),
since S is real, symmetric, and nonnegative, the entries of
the eigenvector corresponding to the largest S eigenvalue
are all nonzero and positive. This means that ymax should
be relaxed to take on real values, but it still includes the
clustering information. Nodes with relatively large entries
in ymax belong to A, whereas those with entries close to
zero belong to B = X \A.

Maximization of the Rayleigh quotient for an
adjacency matrix also allows us to distinguish partitions
on the basis of the eigenvector sign. Let us assume that
the entries of an indicator eigenvector y′ equal 1 if a node
belongs to A and −1 otherwise. The objective can be
written as maximization, i.e.,

R(S,y′
max) =

y′T
maxSy

′
max

y′T
maxy

′
max

. (9)

The numerator of the expression y′T
maxSy

′
max takes the

following form:

max(assoc(A,A) + assoc(B,B)− 2cut(A,B)). (10)

The maximum of the Rayleigh quotient for the matrix
S and vector y′ leads to the largest within-cluster
association of A and B together with the smallest number
of edges between the two clusters. The right part of the
above expression constitutes a combined association/cut
criterion, which reflects both intra-connectivity within the
groups and inter-group linkage simultaneously.

As the eigenvector corresponding to the largest
eigenvalue has only positive entries, the maximum of the
Rayleigh quotient as a function of the vector y′ equals the
second largest eigenvalue of S (assuming A and B have
some edges in common). The vector y′

max is the second
eigenvector and it will be used as the other indicator of
nodes’ membership. Similarly to the previous case, it
should be relaxed to take on real values.

The first eigenvector corresponds to maximization
of connectivity within a cluster, whereas the second one
maximizes the combined criterion including both the
association and cut. Using not only the largest but also the
second largest eigenvector of a cluster, we gain additional
information.

Clustering based on eigenvectors of the adjacency matrix 775

3.2. Case of multiple connected components. The
Laplacian, normalized Laplacian, and adjacency matrices
of a graph G, which consists of K connected components,
are block diagonal and their eigenvalues and eigenvectors
are the union of eigenvalues and eigenvectors of its blocks.
In the case of Laplacians, any connected component
possesses exactly one eigenvector which has a zero
eigenvalue. If a graph has K connected components, then
exactly one eigenvector of the first K eigenvectors of the
Laplacian represents one component. This is not always
true in the case of the adjacency matrix. It could happen
that the two largest eigenvalues of the block diagonal
adjacency matrix come from the same block and another
block does not have its representation among the first
K eigenvectors. Each cluster has its representation in
the group of dominant adjacency matrix eigenvectors, but
the group can include eigenvectors related to eigenvalues
smaller then the K-th eigenvalue. For this reason,
the adjacency matrix is not very often used in spectral
clustering. We will show that the special properties of
adjacency matrix eigenvalues and eigenvectors allow us
to indicate the eigenvectors that reveal a graph structure.

The Perron–Frobenius theorem implies that if G is
connected, then the largest eigenvalue λmax of S(G) has
multiplicity 1. This eigenvalue is a kind of a “graph
average degree.” More precisely, let dmin denote the
minimum degree of G, let d̄ be the average degree, and let
dmax be the maximum degree. Lovász and Vesztergombi
(2002) proved that, for every connected graph G,

max
(
d,
√
dmax

) ≤ λmax ≤ dmax. (11)

Moreover, Mohar (1989) showed that the second
largest eigenvalue λ2 of S(G) has an upper bound

λ2 ≤
√
d2max − h(G)2. (12)

The constant h(G) is called the isoperimetric number or
modified Cheeger constant of G and is defined as

h(G) = min
∅�=C⊂X

|E(C,C|
min(|C|, |C| , (13)

where E(C,C) are the edges connecting vertices in C
with vertices in C, the complement of C. The constant
h(G) can serve as a measure of the connectivity of graphs
and the formula (12) is a Cheeger-type inequality similar
to that introduced by Cheeger (1970). Graphs with low
Cheeger constants are easier to cut, while those with
high Cheeger constants are more robust to losing edges
(Chung, 1997).

Brigham and Dutton (1984) found an upper estimate
for the i-th eigenvalue of a graph as a function of the
number of vertices and edges:

λi <

√
2m

n− i

ni
, (14)

where m is the number of edges in the graph. This
inequality is valid for i = 1, . . . , n.

The above formulas allow us to explain some
properties of the spectrum of the adjacency matrix of a
graph G that consists of K connected components Cj .
An eigenvector y(G) of S(G) representing a cluster Cj

consists of two parts. One equals zero and includes entries
corresponding to other clusters. The other equals the first
eigenvector y1(Cj) of the cluster Cj ,

y(G) =

{
0 if xi /∈ Cj ,
y1(Cj) if xi ∈ Cj .

The eigenvector y1(G) related to the largest
eigenvalue λ1(G) of S(G) corresponds to the most
compact cluster. Clusters that are sparsely connected
are indicated by eigenvectors of S(G) related to smaller
eigenvalues.

When a gap between the first and second eigenvalues,
defined as the spectral gap,

δj = λ1(Cj)− λ2(Cj), (15)

is large, h(Cj) is large and Cj is quite compact.
Moreover, if the density of the cluster Cj exceeds
significantly the density of the others, a few of its
eigenvalues λi(Cj), where i > 2, can precede in the
spectrum of G the first eigenvalue λ1(Cl) of the other
cluster Cl, for l �= j.

3.3. Perturbed eigenvalues and eigenvectors. The
situation gets even more complicated when there are some
edges between the nodes belonging to different clusters.
We treat them as perturbation to an ideal case. Assume we
are given an adjacency matrix S(G) with its K dominant
eigenvalues λ1(G) ≥ λ2(G) ≥ · · · ≥ λK(G) and
its eigenvectors y1(G),y2(G), . . . ,yK(G), respectively,
and a perturbed matrix S̃. The matrix S is block diagonal,
whereas the matrix S̃ contains also edges connecting
different clusters. The perturbations are sufficiently small,
that is, ‖S̃ − S‖ < ε for some small ε, where ‖M‖ is the
Frobenius norm defined as

‖M‖2 =
∑
i,j

M2
i,j. (16)

In our case an adjacency matrix S relates to a graph
consisting of K connected components. The matrix Δ =
S̃ − S represents nodes and edges connecting the subsets
after perturbation of the ideal case. Moreover, only for
the adjacency matrix the relation between Δ, S̃, and S is
true, i.e., the unperturbed part S remains unchanged after
adding perturbation. Contrary to the adjacency matrix,
the block diagonal parts of the Laplacian matrix vary
depending on the grade of each node and are influenced
by perturbations. This is the reason why the adjacency

776 M. Lucińska and S.T. Wierzchoń

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

y1
y2
y1a
y2a

0 20 40 60 80 100
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y1
y2
y1a
y2a

(a) (b)

Fig. 1. Two dominant eigenvectors of the perturbed adjacency matrix (y1, y2) and their approximations (y1a, y2a) for two well sepa-
rated (a) and two weakly separated subgraphs (b).

matrix can generate better partitioning results. Since the
adjacency matrix is symmetric and nonnegative, so is the
perturbed matrix S̃.

The first-order approximation of the eigenpair
(λ̃i, ỹi) of the perturbed matrix S̃ is given by the
following equations (Stewart and Sun, 1990):

λ̃i ≈ λi + yT
i Δyi, (17)

ỹi ≈ yi +
∑
j �=i

yT
j Δyi

λi − λj
yj . (18)

The approximation error increases for eigenvectors
that correspond to eigenvalues of smaller magnitudes.
In other words, the quality and validity of the largest
eigenpairs are not affected by the approximation. Since
embedding into a lower dimensional space with the
use of an adjacency matrix depends on a few largest
eigenvectors, the approximation constitutes a faithful
representation of the original source space. Taking the
above into consideration, it is convenient to use another
form of the perturbed eigenvector approximation given
by Wu et al. (2011):

ỹi ≈ yi +

K∑
j �=i

yT
j Δyi

λi − λj
yj +

1

λi
Δyi. (19)

The last formula is derived from the previous one
with the use of the facts that |λi| � |λj | for all i =
1, . . . ,K (K: the number of clusters) and yT

j Δyi is just
the projection of the vector Δyi onto one of the basis
vectors yj .

We have extended this approximation to K dominant
perturbed eigenvectors, taking into consideration entries
of nodes having neighbors only in one subset. The
condition ‖Δ‖ < ε guarantees that the small number
of eigenvector coordinates has been neglected by such

simplification. Entries of nodes that are not directly
connected with other subsets constitute the majority of all
perturbed eigenvector entries and can be approximated by
the following formula:

ỹi ≈ yi +
K∑
i�=j

yT
j Δyi

λi − λj
yj . (20)

Shmueli et al. (2012) analyzed the accuracy of the
approximations given by the formulas (18)–(20). For the
sake of simplicity, we will illustrate the formula (20) with
an example. Consider a graph consisting of 100 nodes,
creating two clusters (with an equal number of nodes),
which have a few edges in common. The edges between
the subsets make up a couple of percent of all graph edges.
The adjacency matrix eigenvectors that correspond to the
largest two eigenvalues according to our simplifications
take the form of

ỹ1 ≈ y1 +
yT
2 Δy1

λ1 − λ2
y2, (21)

ỹ2 ≈ yT
1 Δy2

λ2 − λ1
y1 + y2. (22)

Figure 1(a) presents two dominant eigenvectors
of the perturbed graph adjacency matrix and their
approximations given by (21) and (22). The number
of edges between the subgraphs comprises about 1% of
edges in one subset. Eigenvectors have nonzero entries
at one subset of nodes and are close to zero at the rest of
graph nodes. The difference between the unperturbed and
perturbed eigenvector entries |ỹi|−|yi| is very small. The
exact and the approximated values agree with each other.
In Fig. 1(b) we can see the eigenvectors when the number
of edges between subgraphs rises about four times. The
entries of the first eigenvector are only a little higher at one
of the subgraphs than at the other. The entries the second

Clustering based on eigenvectors of the adjacency matrix 777

eigenvector are negative for one subset and positive for
the other, but their absolute values differ slightly between
both the subgraphs. The approximation of the perturbed
eigenvectors has become less accurate because the number
of Δ entries has increased.

We can use the above theoretical results to determine
two indicators that provide information about in-group
membership. First of all, we take into consideration
absolute values of eigenvector entries. Nodes having the
largest entry in one eigenvector belong to the same subset.
The other important factor, determining division into
subgraphs, is the sign of an eigenvector entry. It allows us
to detect weakly separated clusters with common edges.
Depending on the graph structure and eigenvector shape,
it is therefore possible to use two different criteria to
divide a graph.

We will explain our policy with the help of an
example. Figure 2 presents the first, second, third, and
fifth dominant eigenvectors of the Iris adjacency matrix.
The adjacency matrix graph is constructed on the basis
of the k-nearest neighbor metric with k = 10. The
graph G consists of one well separated and two very
close subgraphs. First we have to establish eigenvectors,
representing different clusters, each with high entries
within one cluster and small entries outside it. Figure 2
shows that the first dominant eigenvector takes values
rather close to zero at nodes having large components
in the second dominant eigenvector and vice versa.
They therefore correspond to two different, completely
disconnected subgraphs. The nonzero entries of each
of them are proportional to the first eigenvector of the
adjacency matrix related to the appropriate cluster. The
first eigenvector represents the more dense subgraph (the
number of edges m = 1314 and the subgraph average
degree d = 26.28) than the second one (m = 1234 and
d = 12.34).

Let us divide the graph into two subgraphs according

0 50 100 150
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

e1
e2
e3
e5

Fig. 2. First, second, third, and fifth dominant eigenvectors of
the Iris dataset.

to the first and second eigenvector entries. The first 50
nodes belong to the subgraph A, whereas nodes from 51
to 150 create the subgraph B. If we calculate spectra
for each subset separately, we can see that the second
eigenvector y2(A) of the subset A creates a nonzero
part of the fifth eigenvector y5(G) of the whole graph.
Similarly, y2(B) appears as a nonzero part of y3(G) and
y3(B) as y4(G) (the last one omitted in the picture for the
sake of clarity). Do the third and fifth eigenvectors have
different entry signs in different subgraphs? Should they
both be used in partitioning?

According to (13), a large gap between the first and
the second eigenvalue indicates a very compact subgraph.
In the case of the subset A, not only the large spectral gap
(λ1(A) = 24.635 and λ2(A) = 14.291) proves its high
density, but also the fifth place of λ2(A) in the spectrum
of the whole graph. Taking the above into consideration,
we can draw the conclusion that partitioning according to
y5(G) signs would make no sense. Groups produced on
the basis of the fifth eigenvector would have many edges
in common. Things look quite different in the case of the
subset B. Its first and second eigenvalues appear directly
one after the other in the spectrum of the whole graph. The
spectral gap between the eigenvalues is relatively small
(λ1(B) = 20.617 and λ2(B) = 19.491). This means
that the subset B has an internal structure and the signs
of the entries of the third eigenvector represent different
subgraphs.

Let us divide the subset B according to the sign of the
nonzero part of y3(G) into subsets B1 and B2 and then
calculate mean absolute values of y2(G) entries for both
the subsets. The difference between the mean absolute
values in the subsets is about 20 percent. Moreover, the
mean absolute value of y2(G) entries is higher in the
subset B1, whereas the mean absolute value of y3(G)
entries is higher in the subset B2. Partitioning the subset
A according to the sign of y5(G) entries into two subsets
A1 and A2 gives quite different results. First of all both
y1(G) and y5(G) have higher mean absolute values in
the subset A1 compared to the subset A2. Moreover, the
mean absolute value of y1(G) entries in the subset A1
exceeds only by about 7% the same value in the subset A2.
The facts prove that the subset A as a compact subgraph
can be divided only into subsets that have many edges in
common, and matrix perturbation theory is not applicable
in such a case.

The example illustrates also that, in order to find
nodes belonging to the subset A, we have to compare the
absolute values of the two dominant eigenvector entries.
In the case of the weakly separated subsets B1 and B2,
the difference between the eigenvector absolute values in
the subsets is quite vague. Therefore, the above criterion
can lead to many mistakes. Better results will be obtained
on the basis of the y3(G) entry sign.

778 M. Lucińska and S.T. Wierzchoń

Such an analysis of eigenvector properties allows
us to establish the proper number of clusters. First, we
have to find eigenvectors representing strongly separated
subgraphs, i.e., with high entries within a group of nodes
and small ones outside of it. Then the more difficult task
is to indicate eigenvectors with different entry signs for
two groups of nodes, allowing identification of weakly
separated subgraphs. Having the right eigenvectors,
we have the number of clusters. Of course, in some
cases the decision whether partitioning on the basis of
eigenvector entry signs leads to true group membership
is ambiguous, similarly to visual judgments. As the
choice of an eigenvector for clustering is made not only
on the basis of its structure but also on the position of its
corresponding eigenvalue in the spectrum, the partitioning
depends on the properties of the whole dataset. The
decision on whether or not a given subset should be
divided is influenced by cohesion of other subsets.

3.4. Correlation between eigenvectors. In order
to find eigenvectors representing different clusters, we
calculated the correlation coefficient for each pair of the
eigenvectors, taking the absolute values of the vector
entries. The Pearson correlation coefficient between two
vectors yi and yj is defined as

ρ(yi,yj) =

∑N
k=1(yik − yi)(yjk − yj)√∑N

k=1(yik − yi)2
√∑N

k=1(yjk − yj)2
.

(23)
The correlation coefficients ρ(yi,yj) range from −1 to 1.
If two vectors are linearly dependent, then the correlation
between them will equal +1 or −1. The value of −1
indicates a perfect negative linear relationship between
the vectors, and 0 means the lack of a linear relationship
between the vectors. The correlation coefficient was
chosen as an efficient indicator of whether or not two
eigenvectors correspond to the same subgraph.

In Fig. 3 we can see absolute values of two simplified
eigenvectors of a perturbed graph. We assume that both of
them have only two entry values. The first eigenvector y1

is concentrated on parts I and III, and its values in this
region equal a1 and are larger than the mean ȳ1. Entries
outside the subset are smaller than the mean and equal b1.
In order to cover all possible relations between the values
of two vectors, the second eigenvector is larger than its
mean in parts II and IV and smaller for the rest of nodes.
The eigenvectors are given by the following formulas:

y1 = a1x̂1 + b1x̂2 + b1x̂3 + a1x̂4, (24)

y2 = b2x̂1 + a2x̂2 + b2x̂3 + a2x̂4, (25)

where ai ≥ ȳi > bi for i = 1, 2, and x̂j equals 1 in nj

nodes of the j-th part and 0 in the remaining parts.

The mean values of the eigenvectors y1 and y2 equal

ȳ1 =
a1(n1 + n4) + b1(n2 + n3)

n
, (26)

ȳ2 =
a2(n2 + n4) + b2(n1 + n3)

n
, (27)

where nj is the number of nodes belonging to the j-th part
and n = n1 + n2 + n3 + n4 the number of nodes in the
perturbed graph.

After splitting the sum into four parts and
substituting ci = ai − ȳi and di = ȳi − bi for i = 1, 2,
the numerator of the correlation coefficient of y1 and y2

according to (23) equals

num ρ(y1,y2) = −c1d2n1 − d1c2n2

+ d1d2n3 + c1c2n4. (28)

Using (26) and (27), describing the mean values of
y1 and y2, we have

c1 = a1 − ȳ1 =
(a1 − b1)(n2 + n3)

n
, (29)

d1 = ȳ1 − b1 =
(a1 − b1)(n1 + n4)

n
. (30)

From (29) and (30) we obtain

b1 =
a1(n1 + n4)

n2 + n3
, (31)

b2 =
a2(n2 + n4)

n1 + n3
. (32)

Substituting there results in (28), we get

num ρ(y1,y2) =
nc1c2(n3n4 − n1n2)

(n1 + n3)(n2 + n3)
. (33)

As the denominator of the correlation coefficient is
always nonnegative, ρ(y1,y2) is negative if the product
n1n2 is larger than n3n4 and positive otherwise.

Fig. 3. Entries of two vectors presenting all possible relations
between the dominant and another eigenvector of a con-
nected graph.

Clustering based on eigenvectors of the adjacency matrix 779

If y1 and y2 are two most dominant eigenvectors,
representing different clusters, the number of nodes in
which they are both large (n4) will be zero or very small.
If the clusters do not have any edges in common, there will
be no node with large entries in both eigenvectors. In such
a case the product n3n4 equals zero and the correlation
coefficient is negative. A few edges connecting the
clusters will result in a small value of n4 and the value
of the correlation coefficient will be close to zero.

Quite a different situation takes place if y1 is the
most dominant eigenvector and y2 is the secondary
eigenvector of the same subgraph. They are concentrated
on the same subset, so the number of nodes in which
both of them are large (n4) and both of them take
values smaller than their average (n3) is significant. As
eigenvectors corresponding to smaller eigenvalues are
usually subject to a larger perturbation than the most
dominant eigenvector, they can have large entries outside
the subset considered (part II). On the other hand, they
can be small in the regions where y1 is large (part I).
Such a situations happen not very often, only in the case
of nodes that have edges connecting two subgraphs. This
means that the product n1n2 is smaller than n3n4, and the
correlation coefficient is positive.

A similar relationship occurs not only for the first
two but for all eigenvectors of a subgraph. However,
the correlation coefficient is usually the largest one
between the first pair of eigenvectors due to the increasing
perturbation.

After calculating pairwise correlation coefficients for
a few dominant eigenvectors of perturbed graphs, we
are able to find both the eigenvectors connected with
strongly separated subgraphs and the eigenvectors whose
sign indicates weakly separated clusters. In the first case,
the correlation coefficient between the eigenvector and
the other eigenvectors, related to larger eigenvalues, is
negative or close to zero. The secondary eigenvectors have
a positive, rather large, correlation coefficient with only
one preceding eigenvector.

4. Eigenvector structure analysis algorithm

The EVSA algorithm constitutes an extension of
SpecLoc2 (Lucińska and Wierzchoń, 2014), although
some of their stages are executed in quite a different
way. The main steps of our new solution are listed
in Algorithm 3 and described in detail in the sequel.
To create the matrix S, the k-nearest neighbors were
determined for each point xi on the basis of the Euclidean
metric. The adjacency matrix was obtained with the help
of a mutual k-nearest neighbor graph. The graph was
constructed by connecting xi to xj if xi was among the
k-nearest neighbors of xj and vice versa. If two nodes
are connected, the appropriate value in the adjacency

Algorithm 3. EVSA algorithm.
Input: Adjacency matrix S
Output: Clusters C1, . . . , CK

Step 1. Find c dominant eigenvectors of S.

Step 2. Calculate the pairwise correlation matrix of the
dominant eigenvectors.

Step 3. Choose eigenvectors representing strongly
separated subgraphs.

Step 4. Round the chosen eigenvectors.

Step 5. Partition nodes on the basis of the absolute values
of the eigenvector entries.

Step 6. Choose eigenvectors having positive entries for
one cluster and negative for others or vice versa.

Step 7. Partition nodes on the basis of the eigenvector
entry sign.

matrix S equals 1, otherwise it is 0. The parameter
k was chosen experimentally; however, there are some
general heuristics which help to asses it. Brito et al.
(1997) studied the relationship between the connectivity
of a mutual k-nearest neighbor graph and the presence
of a clustering structure and outliers in the data. They
provided theoretic bounds on the value of k for which the
mutual neighborhood graph remains disconnected and the
connected components correspond to clusters.

Then we computed c dominant eigenvectors of the
adjacency matrix. The number c = 20 was estimated as
twice the maximum expected number of clusters, which
guarantees a representation of each cluster by at least one
eigenvector.

In order to find eigenvectors representing different
clusters, we calculated the correlation coefficient for each
pair of the c eigenvectors, taking the absolute values
of the vector entries. The eigenvectors representing
strongly separated subgraphs were chosen according to
the discussion of the values of the correlation coefficient
described in Section 3.4. These are eigenvectors that
have a negative or close-to-zero correlation coefficient
with others related to larger eigenvalues. The correlation
coefficient between two eigenvectors representing two
subgraphs is larger if the subgraphs have many edges in
common than in the case of well separated subgraphs.
In order to decide whether an eigenvector represents
a subgraph, a dataset structure should be taken into
consideration. We have introduced a parameter called
the correlation threshold, which can take on one of the
three values: 0.1, 0.2, and 0.3. In order to established the
threshold value, the mean of the correlation coefficients
between the first eigenvector and the other c dominant
eigenvectors was calculated. The threshold value was
chosen as a minimum that is larger than the mean
correlation coefficient. We assumed that an eigenvector

780 M. Lucińska and S.T. Wierzchoń

yu represents a strongly separated cluster if the following
condition is met:

ρ(|yu|, |yj |) ≤ tc, (34)

where j > u, and tc is a correlation threshold. In
our experiments we obtained the same results even if the
values of the correlation threshold differed by a factor of
about 0.2. Eigenvectors yu form the set U .

According to Section 3.2, in the unperturbed case
the first eigenvector of each connected component does
not change the sign in nodes belonging to the component
and has zero values in the remaining nodes. As each
eigenvector from the set U is the first eigenvector of one
subgraph, we rounded them in order to remove the same
part of the perturbation. First we establish that of the
eigenvector that equals the sign of its maximum absolute
value. The sign of the maximum absolute value equals
always +1 or −1 and never 0, because the eigenvectors
are normalized. Then all entries with different signs were
leveled to zero. In the rounded eigenvector there remain
only entries of the same sign. The rounding procedure is
shown in Algorithm 4.

Algorithm 4. Rounding procedure.
Input: Set U of eigenvectors representing strongly
separated subgraphs
Output: Set UR of rounded eigenvectors from U
For each chosen eigenvector yi ∈ U :
Step 1. Find a node xi

max with the maximum absolute
entry in yi.

Step 2. Determine a set of nodes Ci that have a different
sign in yi than that of xi

max.

Step 3. In yi assign zero value to nodes of Ci.

After the process of rounding, the chosen
eigenvectors are used for partitioning nodes on the
basis of absolute values. They are compared, and each
point is given the label of the eigenvector in which it has
the highest absolute value of the entry. In such a way all
the nodes of the set are labeled, as all of them should be
covered by nonzero parts of the rounded eigenvectors.

Each of the previously chosen eigenvectors
corresponds to the first eigenvalue λ1(Ci) of S(Ci).
In the next step of the algorithm, we checked whether
each subgraph Ci can be divided into smaller subgraphs.
If this is the case, the spectrum of S(Ci) and especially
the second largest eigenvalue λ2(Ci) of S(Ci) and the
eigenvector related to it should have special features,
as described in Section 3. First, we checked whether
the subgraph Ci is less dense than the other, already
established, subgraphs Cj . Only not very compact
subgraphs are subject to further division. Afterwards we
examined the potential partitions to see if they comply
with perturbation theory. Finally, we created a set UC

containing selected eigenvectors. In the sixth step of the
main algorithm the procedure shown in Algorithm 5 was
executed.

Algorithm 5. Procedure of choosing eigenvectors with
different signs in two clusters.
Input: Set of c dominant eigenvectors of S and set UR
Output: Set UC of eigenvectors having nonnegative
entries for one cluster and negative for other or vice versa
Initialize UC = ∅.
For each eigenvector y1(Ci) ∈ UR:
Step 1. Choose a set of eigenvectors having their largest
correlation coefficient with y1(Ci).

Step 2. In the above set find the eigenvector related to the
largest eigenvalue, i.e., λ2(Ci).

Step 3. Check whether the spectral gap of Ci is small
compared with the other spectral gaps of Cj ⊂ X .

Step 4. Check whether λl(Ci) < λ1(Cj) for j �= i in the
spectrum of S(X).

Step 5. Divide the subset, labeled by y1(Ci) in the
previous step of the main algorithm, into two subsets
according to nonnegative and negative entries of y2(Ci).

Step 6. Calculate mean absolute values of y1(Ci) in both
subsets.

Step 7. Check whether the difference between the mean
absolute values is sufficiently large.

Step 8. Add the eigenvector y2(Ci) to the set UC if the
conditions 3, 4 and 7 are met.

The second eigenvector y2(Ci) of S(Ci) is the
first of the eigenvectors of S(X) that have the largest
correlation with y1(Ci). As shown in Section 3.4,
eigenvectors concentrated on the same subgraph have high
positive values of the correlation coefficient. According to
our previous observations, the subset Ci can be divided if
the spectral gap δi = λ1(Ci)− λ2(Ci) is relatively small
(Section 3.2). We assumed that the spectral gap is small
if it does not exceed half of the mean value of the other
spectral gaps δj = λ1(Cj) − λ2(Cj), where Cj is the
already established subset of X and i �= j:

δi <
1

2

∑
j

δj
|U | . (35)

According to the discussion in Section 3.2 the subgraph
density exceeds significantly the densities of the other
subgraphs ofX when a few of its eigenvalues appear at the
very beginning of the spectrum of S(X). In the algorithm
we assumed that the subgraph having l = 4 subsequent
eigenvalues at the very beginning of S(X) is much denser
than the rest.

Further we considered the difference between the
eigenvector mean absolute values in the subsets obtained

Clustering based on eigenvectors of the adjacency matrix 781

after the potential division. If it exceeded 20 percent,
we assumed that the eigenvector y2(Ci) distinguishes two
separate subgraphs. As the eigenvector y1(Ci) precedes
the eigenvector y2(Ci), its components are less perturbed
than these of y2(Ci). The difference between its mean
absolute values in the two parts of the subgraph, obtained
on the basis of the y2(Ci) sign, should be more significant
than for y2(Ci) itself. This is a reason for comparing the
mean values of y1(Ci). Both the parameters, the number
of subsequent eigenvalues and the difference between
mean values, were chosen experimentally.

In the last step of the algorithm, the final partitioning
on the basis of the eigenvector sign was applied to these
subsets that have an internal structure. The division was
made with the help of the eigenvectors from UC.

In our algorithm we make use of the first and
secondary eigenvectors of each cluster. They were found
thanks to the correlation coefficients calculated for each
pair of eigenvectors. First, we chose eigenvectors with
negative or close to zero correlations with the proceeding
ones. They indicated strongly separated subgraphs. Next,
for each first eigenvector the secondary one was found
as positively correlated with the first. If some conditions
were met, further partitioning was executed.

The main influence on the computational complexity
of our algorithm has two steps: construction of
the k-nearest neighbor graph and solution of the
eigenproblem. The first step generates the complexity
of computing distances between all pairs of datapoints
(O(n2)) and selecting k-nearest neighbors (O(m +
nlogn)). To compute eigenvectors, we used the eigs
function in MATLAB, which has a time complexity in
O(mch + nc2h + c3h), where m and n are respectively
the numbers of edges and vertices of the graph, c is
the number of eigenvectors to be computed, and h is
the number of iterations for eigs to converge. Since
c < n and h is constant, the running time of eigs
can be simplified to O(mc + nc2). Complexity of the
other steps, like calculating the correlation matrix, finding
valid parts of eigenvectors, establishing the set UC, and
finally partitioning, does not exceed O(nc2)). To sum
up, the overall computational complexity of our algorithm
is O(mc + nc2 + n logn). The clustering problem can
be solved in a reasonable amount of time for matrices of
orders up to several thousands.

The computational complexity can be improved if
other approximate methods of solving the eigenvalue
problem are used instead of the algorithms implemented
in MATLAB. Application of some Nyström methods (Lin
et al., 2015) guarantees linear time complexity O(n).

5. Experimental tests

5.1. Benchmark algorithms and datasets. We
compared the performance of the EVSA algorithm

(implemented in MATLAB) with four other related
clustering methods: the Ng, Jordan, and Weiss
(NJW) algorithm (it was introduced in Section 2),
the Zelnik-Manor and Perrona (ZMP) self-tuning spectral
algorithm (the code available at http://www.visio
n.caltech.edu/lihi/Demos/SelfTuningClu
stering.html), the algorithm by Liu (LTM-rd) (the
code available at http://www.cse.ust.hk/˜
lkmpoon/), and our previous solution SpecLoc.
The first algorithm needs the number of clusters to
be given as a parameter, whereas the others detect
them automatically. The parameters needed for of the
construction of the similarity matrix, i.e., the number of
nearest neighbors k and the Gaussian scaling parameter
σ, were established experimentally for each dataset. For
each algorithm, k was chosen by testing many subsequent
values. In the case of the NJW, SpecLoc, and EVSA
algorithms, we constructed the similarity matrix on the
basis on an unweighted graph. In order to tune the
Gaussian scaling parameter for the LTM-rd algorithm,
we systematically scanned a wide range of σ’s (the range
was set manually). The width of the Gaussian function in
ZMP was adaptively assigned. As the presented solution
constitutes an alternative to the K-means algorithm, we
would like to show differences in their performance in
exactly the same conditions. Therefore, the K-means
algorithm was applied to the eigenvectors found by our
solution.

First, we tested the algorithms with the help of
very popular benchmark datasets from the UCI Machine
Learning Repository (Dua and Karra Taniskidou, 2017).
The smaller datasets include Iris, Breast cancer, Balance,
Segment, Glass, Ecoli, and Yeast. Other examples
from the UCI Machine Learning Repository are image
datasets. The first one, a handwritten digit data set,
Pendigit, consists of 250 samples from 44 writers. In
our experiments the training and testing sets were used
as two datasets, which are denoted by Pentra and Pentest,
respectively. The second image dataset, LetterRec,
contains the features of 26 capital letters of the English
alphabet. The character images are based on 20 different
fonts. They are randomly distorted. Another group
consists of large data sets of handwritten digits, generated
from the test dataset of MNIST (Yann and Corinna, 2009).
It contains 10 handwritten digits with a total of 10,000
examples. Each example is a 28×28 gray-level image,
and the dimensionality is 784. In addition, we constructed
a few subsets of MNIST, namely, MNIST3 consisting of
the examples of digits 3, 5, and 8, MNIST4 (digits 1, 2,
3, and 4), MNIST6 (digits 0, 3, 4, 6, 8, and 9), MNIST7
(digits 2, 3, 5, 6, 7, 8, and 9), MNIST8 (digits 0, 2, 3,
4, 5, 7, 8, and 9), MNIST9 (digits 1, 2, 3, 4, 5, 6, 7,
8, and 9). the US Postal Service (USPS) handwritten
digit (Hull, 1994) contains ten digits 0–9, each sample
being a 16x16 image. Two subsets of the USPS were also

http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
http://www.cse.ust.hk/~lkmpoon/
http://www.cse.ust.hk/~lkmpoon/

782 M. Lucińska and S.T. Wierzchoń

Table 1. Summary of datasets.
Dataset No. of instances No. of features No. of classes

Iris 150 4 3
Breast 683 9 2
Balance 625 4 3
Segment 2310 18 7
Glass 214 10 6
Ecoli 366 8 8
Yeast 1484 8 10
Pentest 3498 16 10
Pentra 7494 16 10
USPS 9298 256 10
USPS3 2357 256 3
USPS4 3919 256 4
MNIST3 2876 784 3
MNIST4 4159 784 4
MNIST6 5913 784 6
MNIST7 6903 784 7
MNIST8 7907 784 8
MNIST9 9020 784 9
MNIST 10000 784 10
Letters 20000 16 26

formed, which are denoted by USPS3 (digits 3, 5, and 8)
and USPS4 (digits 1, 4, 7, and 9). The basic information
on the datasets is summarized in Table 1. All the datsets
are real-world examples, with the number of data points
varying from 150 to 20,000, the number of dimensions
from 4 to 784, and the number of groups from 2 to 26.

All the datasets are labeled, which enables evaluation
of the clustering results against the labels using clustering
accuracy (CA) and normalized mutual information (NMI)
as popular measures of partition quality. For both
measures a higher number means a better partitioning. We
refer the interested reader to the work of Manning et al.
(2008) for details regarding the measures. One should
be aware, however, that specifying the true clustering
is difficult, especially for real world data. Mostly the
knowledge of domain experts is required and class-labels
may not be adequate for the structure of the data or the
evaluated cluster model.

5.2. Results. The performance of the algorithms is
shown in Tables 2 and 3. We can see the superiority
of the EVSA algorithm over the other tested solutions
in the case of 70 percent of the datasets. The results
illustrate that the presented method is competitive to the
other solutions in terms of the quality of partitioning,
measured with the help of NMI and clustering accuracy.
For the algorithmsLTM-rnd and NJW, the average values
of CA and NMI as well as the standard deviations were
computed on the basis of 20 runs. Furthermore, the
best values among these 20 runs are reported. The other

algorithms do not use any random methods. Standard
deviations of their results are connected only with the
accuracy of eigenvector computation and are smaller than
0.5 percent. There are no results for the Letters dataset in
one case because it is too large for ZMP to run.

Apart from partitioning, our solution finds the
number of clusters. In 9 out of 20 cases it was capable
of indicating the right number of groups on the basis of
eigenvalue and eigenvector analysis. Moreover, in 5 cases
our solution failed to find only one cluster. The maximum
difference between the true number and the number found
by our method equals 3, whereas for the other algorithms
the maximum difference is between 8 and 17. The mean
difference between the true number of groups and the
number found equals 1.05 for the EVSA algorithm, 3.4
for LTM-rd, 1.95 for SpecLoc, and 3.2 for the ZMP
algorithm.

Clustering results of our solution did not depend
on starting, randomly chosen settings, which is in sharp
contrast to K-means clustering. Moreover, they were
not very sensitive to the number of neighbors (the only
parameter in our algorithm). Changes in the accuracy
and NMI do not exceed 20% when the neighborhood size
varied from 20 to 30 or 40 (Table 5).

6. Conclusions

The results show that the performance of our method is
competitive with the other tested solutions not only in
terms of the quality of clustering but also taking into

Clustering based on eigenvectors of the adjacency matrix 783

Table 2. Comparison of the EVSA, LTM-rnd, NJW, SpecLoc, and ZMP algorithms in terms of the NMI.
Dataset EVSA LTM-rd LTM-rd NJW NJW SpecLoc ZMP

max mean ± std max mean ± std

Iris 0.89 0.77 0.73 ± 0.08 0.81 0.78 ± 0.01 0.86 0.76
Breast 0.80 0.45 0.39 ± 0.02 0.80 0.75 ± 0.02 0.76 0.62
Balance 0.62 0.23 0.21 ± 0.04 0.30 0.29 ± 0.03 0.25 0.03
Segment 0.68 0.60 0.54 ± 0.03 0.57 0.55 ± 0.04 0.66 0.41
Glass 0.40 0.34 0.29 ± 0.05 0.43 0.41 ± 0.05 0.38 0.44
Ecoli 0.63 0.60 0.58 ± 0.03 0.61 0.59 ± 0.05 0.65 0.68
Yeast 0.28 0.27 0.23 ± 0.05 0.27 0.23 ± 0.04 0.25 0.22
Pentest 0.86 0.72 0.65 ± 0.07 0.80 0.75 ± 0.03 0.85 0.68
Pentra 0.85 0.82 0.73 ± 0.06 0.83 0.78 ± 0.04 0.84 0.80
USPS 0.79 0.82 0.79 ± 0.04 0.78 0.77 ± 0.03 0.76 0.40
USPS3 0.88 0.84 0.79 ± 0.06 0.92 0.88 ± 0.04 0.87 0.65
USPS4 0.91 0.93 0.87 ± 0.02 0.71 0.69 ± 0.02 0.90 0.66
MNIST3 0.66 0.62 0.58 ± 0.03 0.59 0.58 ± 0.03 0.65 0.15
MNIST4 0.94 0.87 0.85 ± 0.04 0.83 0.81 ± 0.04 0.90 0.73
MNIST6 0.85 0.84 0.79 ± 0.06 0.75 0.72 ± 0.04 0.79 0.59
MNIST7 0.79 0.78 0.71 ± 0.07 0.70 0.68 ± 0.05 0.62 0.34
MNIST8 0.76 0.71 0.68 ± 0.07 0.79 0.72 ± 0.06 0.61 0.38
MNIST9 0.80 0.74 0.71 ± 0.06 0.77 0.73 ± 0.05 0.70 0.32
MNIST 0.80 0.73 0.69 ± 0.09 0.70 0.67 ± 0.06 0.76 0.31
Letters 0.43 0.35 0.31 ± 0.08 0.42 0.39 ± 0.05 0.44 /

Table 3. Comparison of the EVSA, LTM-rnd, NJW, SpecLoc, and ZMP algorithms in terms of accuracy.
Dataset EVSA LTM-rd LTM-rd NJW NJW SpecLoc ZMP

max mean ± std max mean ± std

Iris 0.97 0.83 0.79 ± 0.03 0.93 0.91 ± 0.01 0.95 0.67
Breast-w 0.97 0.77 0.73 ± 0.02 0.97 0.95 ± 0.06 0.95 0.84
Balance 0.89 0.70 0.66 ± 0.05 0.60 0.59 ± 0.05 0.75 0.28
Segment 0.71 0.49 0.44 ± 0.02 0.48 0.45 ± 0.05 0.69 0.29
Glass 0.53 0.51 0.49 ± 0.03 0.44 0.37 ± 0.03 0.52 0.47
Ecoli 0.68 0.52 0.48 ± 0.03 0.72 0.65 ± 0.04 0.63 0.77
Yeast 0.48 0.41 0.30 ± 0.05 0.36 0.31 ± 0.04 0.46 0.41
Pentest 0.95 0.72 0.65 ± 0.07 0.71 0.68 ± 0.03 0.79 0.50
Pentra 0.82 0.67 0.62 ± 0.06 0.78 0.72 ± 0.03 0.86 0.80
USPS 0.73 0.71 0.68 ± 0.05 0.77 0.73 ± 0.07 0.70 0.30
USPS358 0.97 0.83 0.81 ± 0.03 0.98 0.91 ± 0.04 0.97 0.65
USPS1479 0.98 0.96 0.91 ± 0.03 0.63 0.61 ± 0.03 0.97 0.59
MNIST358 0.88 0.65 0.63 ± 0.04 0.83 0.79 ± 0.07 0.88 0.54
MNIST1234 0.99 0.79 0.75 ± 0.05 0.95 0.83 ± 0.09 0.97 0.71
MNIST034689 0.94 0.81 0.78 ± 0.04 0.71 0.61 ± 0.06 0.79 0.61
MNIST2356789 0.88 0.77 0.71 ± 0.09 0.78 0.74 ± 0.06 0.58 0.28
MNIST02345789 0.86 0.68 0.65 ± 0.08 0.62 0.58 ± 0.05 0.55 0.36
MNIST123456789 0.81 0.77 0.75 ± 0.07 0.65 0.59 ± 0.04 0.61 0.36
MNIST0123456789 0.81 0.71 0.66 ± 0.08 0.71 0.63 ± 0.04 0.72 0.22
Letters 0.31 0.30 0.28 ± 0.09 0.32 0.30 ± 0.03 0.33 /

consideration the determined number of clusters. The
special features of the adjacency matrix allow us to obtain
more exact results in the case of our algorithm. As
the changes after adding perturbation in the adjacency

matrix structure are smaller than for the other matrices,
the adjacency matrix eigenvalues and eigenvectors give
clearer picture of partitioned data. However, in a few cases
the performance of our solution was poorer than that of the

784 M. Lucińska and S.T. Wierzchoń

Table 4. Comparison of the EVSA, LTM-rnd, SpecLoc, and ZMP algorithms in terms of the number of clusters.
Dataset true EVSA LTM-rd SpecLoc ZMP

Iris 3 3 3 3 2
Breast 2 2 12 2 5
Balance 3 2 8 2 6
Segment 7 9 10 17 4
Glass 6 5 8 5 5
Ecoli 8 5 9 4 4
Yeast 10 9 12 6 6
Pentest 10 12 8 10 5
Pentra 10 13 11 10 10
USPS 10 9 14 7 2
USPS3 3 3 4 3 2
USPS4 4 4 5 4 4
MNIST3 3 3 7 3 2
MNIST4 4 4 5 4 5
MNIST6 6 6 7 4 4
MNIST7 7 7 10 5 2
MNIST8 8 8 11 5 3
MNIST9 9 8 15 6 3
MNIST 10 8 11 8 2
Letters 26 29 9 30 /

Table 5. Influence of the number of mutual nearest neighbors on EVSA performance.
Dataset k range NMI max NMI mean ± std CA max CA mean ± std

Balance 20–30 0.62 0.53 ± 0.06 0.89 0.86 ± 0.02
Segment 20–40 0.68 0.64 ± 0.01 0.71 0.57 ± 0.03
Pentest 20–40 0.86 0.83 ± 0.03 0.95 0.77 ± 0.07

other algorithms. This can be explained by the fact that for
all the datasets we used a very simple metric, contrary to
the other cases.

Our algorithm was capable of finding the number of
clusters more accurately than the other presented methods.
Moreover, our solution was faster than the LTM-rd
and ZMP algorithms, because it does not involve any
iterative procedure to accomplish the task. In addition,
the determination of the number of clusters does not
require application of any quality function, contrary to the
other presented solutions. The EVSA algorithm uses only
properties of eigenvalues and eigenvectors.

Although our method at some points resembles that
of Ng, Jordan, and Weiss, we added novel elements which
have significant influence on algorithm performance. First
of all, we gave up partitioning on the basis of a few
dominant eigenvectors but chose eigenvectors that carry
important information about the dataset structure. In
some cases, subgraph densities differ strongly between
themselves and a few eigenvalues of one subgraph can
appear subsequently in the spectrum of the whole graph.
Our approach allows us to find eigenvectors related to
less dense clusters. We took into consideration not only

eigenvectors related to well separated subgraphs, but also
to those with common edges.

As can be seen from Tables 2 and 3 in Section 5.2,
partitioning on the basis of exploiting special features of
eigenvectors is more accurate than that performed with
the help of the K-means algorithm. After applying both
methods to the same eigenvectors, we obtained better
results for our solution. In the case of weakly separated
clusters, entries of nodes belonging to different groups are
sometimes too similar to be distinguished by K-means
algorithm. Our method compares eigenvector entries
using two independent criteria, which results in a better
quality of partitioning. The striking differences in results
of the two algorithms show that our approach may be
complimentary to the K-means (widely used in spectral
clustering) and serve in situations, where the latter fails.

We presented a new spectral clustering algorithm
that is a modification of our previous work. It uses
eigenvectors of an adjacency matrix, obtained on the basis
of a very simple metric. Its novelty lies in making use
of eigenvalue and eigenvector properties, which result
from matrix perturbation theory and graph theory. Our
experiments showed the advantage of the EVSA algorithm

Clustering based on eigenvectors of the adjacency matrix 785

over both the traditional and new spectral clustering
methods. This is because our solution is based on
properly chosen eigenvectors. Moreover, it exploits some
differences between node entries, which are too vague for
K-means algorithm to be detected.

References
Azran, A. and Ghahramani, Z. (2006). Spectral methods for

automatic multiscale data clustering, in A. Fitzgibbon et
al. (Eds.), Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
IEEE Computer Society, Washington, DC, pp. 190–197.

Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learn-
ing Repository, University of California, Irvine, CA, htt
p://archive.ics.uci.edu/ml.

Brigham, R. and Dutton, R. (1984). Bounds on graph
spectra, Journal of Combinatorial Theory: Series B
37(3): 228–234.

Brito, M., Chavez, E., Quiroz, A. and Yukich, J. (1997).
Connectivity of the mutual k-nearest-neighbor graph,
Statistics and Probability Letters 35(1): 33–42.

Cheeger, J. (1970). A lower bound for the smallest eigenvalue of
the Laplacian, in R. Gunning (Ed.), Problems in Analysis,
Princeton University, Princeton, NJ, pp. 195–199.

Chung, F. (1997). Spectral Graph Theory, American
Mathematical Society, Providence, RI.

Fiedler, M. (1975). A property of eigenvectors of nonnegative
symmetric matrices and its application to graph theory,
Czechoslovak Mathematical Journal 25(4): 619–633.

Hull, J. (1994). A database for handwritten text recognition
research, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 16(5): 550–554.

Jia, H., Ding, S., Xu, X. and Nie, R. (2014). The latest research
progress on spectral clustering, Neural Computing and Ap-
plications 124(7–8): 1477–1486.

Lin, M., Wang, F. and Zhang, C. (2015). Large-scale eigenvector
approximation, Pattern Recognition 48(5): 1904–1912.

Liu, A., Poon, L., Liu, T.F. and Zhang, N. (2014). Latent tree
models for rounding in spectral clustering, Neurocomput-
ing 144: 448–462.

Lovász, L. and Vesztergombi, K. (2002). Geometric
representations of graphs, in G. Halász et al. (Eds.), Paul
Erdős and His Mathematics, Bolyai Society Mathematical
Studies, Budapest, pp. 471–498.

Lucińska, M. and Wierzchoń, S.T. (2014). Spectral clustering
based on analysis of eigenvector properties, in K. Saeed
and V. Snasel (Eds.), Proceedings of Computer Infor-
mation Systems and Industrial Management Applications,
Springer, Berlin/Heidelberg, pp. 43–54.

Manning, C., Raghavan, P. and Schütze, H. (2008). An In-
troduction to Information Retrieval, 1st Edn., Cambridge
University Press, Cambridge.

Meyer, C. (2000). Matrix Analysis and Applied Linear Algebra,
1st Edn., SIAM, Philadelphia, PA.

Mohar, B. (1989). Isoperimetric numbers of graphs, Journal of
Combinatorial Theory 47(3): 274–291.

Ng, A., Jordan, M. and Weiss, Y. (2001). On spectral clustering:
Analysis and an algorithm, in T. Dietterich et al. (Eds.),
Advances in Neural Information Processing Systems, MIT
Press, Cambridge, MA, pp. 849–856.

Schwarz, G. (1978). Estimating the dimension of a model, An-
nals of Statistics 6(2): 460–464.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation, IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(8): 888–905.

Shi, T., Belkin, M. and Yu, B. (2009). Data spectroscopy:
Eigenspaces of convolution operators and clustering, An-
nals of Statistics 37(6b): 3960–3984.

Shmueli, Y., Wolf, G. and Averbuch, A. (2012). Updating
kernel methods in spectral decomposition by affinity
perturbations, Linear Algebra and Its Applications
437(6): 1356–1365.

Stewart, G.W. and Sun, J. (1990). Matrix Perturbation Theory,
1st Edn., Academic Press, New York, NY.

von Luxburg, U. (2007). A tutorial on spectral clustering, Statis-
tics and Computing 17(4): 395–416.

Wu, L., Ying, X., Wu, X. and Zhou, Z.-H. (2011). Line
orthogonality in adjacency eigenspace with application to
community partition, in T. Walsh (Ed.), Proceedings of the
22nd International Joint Conference on Artificial Intelli-
gence, AAAI Press, Menlo Park, CA, pp. 2349–2354.

Xiang, T. and Gong, S. (2008). Spectral clustering
with eigenvector selection, Pattern Recognition
41(3): 1012–1029.

Yann, L. and Corinna, C. (2009). The MNIST Database of Hand-
written Digits, http://yann.lecun.com/exdb/mn
ist/.

Zelnik-Manor, L. and Perona, P. (2004). Self-tuning spectral
clustering, in L.K. Saul et al. (Eds.), Advances in Neural
Information Processing Systems, MIT Press, Cambridge,
MA, pp. 1601–1608.

Zheng, X. and Lin, X. (2004). Automatic determination of
intrinsic cluster number family in spectral clustering using
random walk on graph, Proceedings of the International
Conference on Image Processing, Singapore, Singapore,
pp. 3471–3474.

Małgorzata Lucińska received the MSc degree from Jagiellonian Uni-
versity, Kraków, Poland, in 1989, and the PhD degree from the Systems
Research Institute, Polish Academy of Sciences, in 2006. She works at
the Kielce University of Technology, Poland. Her research interests in-
clude computational intelligence, machine learning, pattern recognition,
spectral graph theory, and biologically inspired computations.

Sławomir T. Wierzchoń received the MSc and PhD degrees in com-
puter science from the Technical University of Warsaw, Poland. He
holds a DSc degree in computer science from the Polish Academy of
Science. In 2003 he received the title of a professor from the President

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

786 M. Lucińska and S.T. Wierzchoń

of the Republic of Poland. Currently he is a full professor at the Insti-
tute of Computer Science of the Polish Academy of Sciences. He has
published over 100 peer reviewed papers in various international jour-
nals and conferences, and 11 books in the field of machine learning. He
has cooperated with medical centers in the area of statistical analysis and
knowledge discovery in databases, and has participated in national and
international research projects concerning various topics in the area of
machine learning.

Received: 2 October 2017
Revised: 19 May 2018
Accepted: 10 June 2018

	Introduction
	Spectral methods
	Properties of adjacency matrix spectra
	Partitioning criteria based on the adjacency matrix
	Case of multiple connected components
	Perturbed eigenvalues and eigenvectors
	Correlation between eigenvectors

	Eigenvector structure analysis algorithm
	Experimental tests
	Benchmark algorithms and datasets
	Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

