
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 4, 803–815
DOI: 10.2478/amcs-2018-0061

OPTIMIZATION ON THE COMPLEMENTATION PROCEDURE
TOWARDS EFFICIENT IMPLEMENTATION OF

THE INDEX GENERATION FUNCTION

GRZEGORZ BOROWIK a

aFaculty of Internal Security
Police Academy in Szczytno, Marszałka Józefa Piłsudskiego 111, 12-100 Szczytno, Poland

e-mail: g.borowik@wspol.edu.pl

In the era of big data, solutions are desired that would be capable of efficient data reduction. This paper presents a summary
of research on an algorithm for complementation of a Boolean function which is fundamental for logic synthesis and data
mining. Successively, the existing problems and their proposed solutions are examined, including the analysis of current
implementations of the algorithm. Then, methods to speed up the computation process and efficient parallel implementa-
tion of the algorithm are shown; they include optimization of data representation, recursive decomposition, merging, and
removal of redundant data. Besides the discussion of computational complexity, the paper compares the processing times
of the proposed solution with those for the well-known analysis and data mining systems. Although the presented idea is
focused on searching for all possible solutions, it can be restricted to finding just those of the smallest size. Both approaches
are of great application potential, including proving mathematical theorems, logic synthesis, especially index generation
functions, or data processing and mining such as feature selection, data discretization, rule generation, etc. The problem
considered is NP-hard, and it is easy to point to examples that are not solvable within the expected amount of time. How-
ever, the solution allows the barrier of computations to be moved one step further. For example, the unique algorithm can
calculate, as the only one at the moment, all minimal sets of features for few standard benchmarks. Unlike many existing
methods, the algorithm additionally works with undetermined values. The result of this research is an easily extendable
experimental software that is the fastest among the tested solutions and the data mining systems.

Keywords: data reduction, feature selection, indiscernibility matrix, logic synthesis, index generation function.

1. Introduction

The amount of raw data coming into computer systems
has become more and more troublesome, and sometimes
impossible to process. Therefore, computers—just like
people in daily life—must use a selection or aggregation
process for the incoming data to determine their primary
purposes; this is especially true for computations. Another
process, called machine learning, allows a machine (e.g.,
a computer) to make decisions in new situations after
processing the input training data.

During all the stages of data processing, methods of
optimization of combinational circuits—from the field of
digital logic—might be useful. These methods could be
used during automatic analysis of data and the process of
extracting information that is hidden to the human eye,
called data mining (Stefanowski et al., 2017). Thus, it is
possible to develop rules that could be further used for a

certain analysis, such as patient diagnosis, illegal money
transfer, or unauthorized data access.

Many data mining approaches employ feature
selection techniques to speed up learning and improve
model quality. These techniques are especially important
for datasets with tens or hundreds of thousands of features.
That is why extensive research from various points of
view has been made in recent years for fast and efficient
attribute reduction algorithms (e.g., Szemenyei and Vajda,
2017; Liu et al., 2015; Martinović et al., 2014; Sun et al.,
2014; Min et al., 2014; Borowik and Łuba, 2014; Korzen
and Jaroszewicz, 2005; Zhong and Skowron, 2001; Liu
and Setiono, 1997; Łuba and Rybnik, 1992).

Most existing methods represent objects with a single
vectorial descriptor where it is assumed that each vector
has the same number of dimensions. During the reduction,
the decision system is simplified so as to get a minimal set

g.borowik@wspol.edu.pl

804 G. Borowik

of features/attributes that retain the classifying abilities of
the system. The reduction in decision systems consists
in determining reducts (a formal definition can be found
in the work of Komorowski et al. (1999)) and optionally
removing redundant objects. The selection of an attribute
subset plays an important role in knowledge discov-
ery: it forms a basis for more efficient classification,
prediction, and building approximation models. It is
especially important for combinatorial circuits and FPGA
structures, and serves as a basis for the decomposition
process, i.e., splitting a function into smaller independent
blocks (Borowik and Łuba, 2014).

As was shown by Skowron and Rauszer (1992), the
problems of finding all minimal reducts as well as those
of the smallest cardinality are NP-hard. Therefore, it is
easy to point to examples that are not solvable within
the expected amount of time. A barrier of computational
complexity allows only moving the ‘center of gravity’
for computations. Thus, existing algorithms are both
systematic, which allows finding all minimal solutions,
and heuristic, having higher operational speeds.

The problem of finding reducts can be restricted to
finding just those of the smallest size. Such a solution
set could be used in all the problems of data mining
that do not require the full data set. Among others, the
research led by Steinbach and Posthoff (2012) is based
on the DIF(Si,NDM(P)) approach. In this way, the
computation time can be reduced by more than 8 · 108
times, and the result of the algorithm is the set of all
minimal shortest solutions (reducts).

One solution that allows increasing the speed is to
move the intense transformation to graphical processing
units (GPUs). Compared with central processing units
(CPUs), they have thousands of cores—for example,
Nvidia GeForce R© GTXTM TITAN Z has 5760 CUDA
cores—among which each can perform independent
computations. In the case of algorithms presented
by Steinbach and Posthoff (2013), the use of a
GPU to compute the minimal reducts of the smallest
cardinality allowed reducing the computation time 6.5
times, compared with using a CPU. Employing a similar
approach can be similarly effective in the case of the unate
complement procedure.

Because of the large computational complexity for
large data sets, statistical algorithms are useful. Examples
of such approaches are the algorithm of feature extraction
described by Korzen and Jaroszewicz (2005) as well as
the algorithm of data discretization described by Borowik
et al. (2015a).

Some applications require the recognition of
individual vectors of an object. In such cases, it is
essential that the nodes within a single object remain
distinguishable after dimension reduction. Szemenyei
and Vajda (2017) proposed a new discriminant analysis
methods that are able to satisfy two criteria at the same

time: a separation between classes and a separation
between nodes of an object instance.

Martinović et al. (2014) proposed an approach to
dimensionality reduction in the form of a method of
pattern classification where a feature subset selection
uses a wrapper method. Here a designated number
of solutions found throughout differential evolution
execution is archived and then a method of post-evaluation
using k-fold cross-validation is used to generate the final
solution.

This paper presents a new systematic method
of reducing data using a method of logic synthesis,
called the unate complement (UC) procedure. It
was proposed by Brayton et al. (1984). Introductory
research (Borowik and Łuba, 2014) has shown that the
unate complement procedure is a much faster method of
computing reductions than those implemented in Rough
Set Data Explorer 2 (ROSE 2) and Rough Set Exploration
System 2.2 (RSES 2.2) (Predki et al., 1998; Predki
and Wilk, 1999; Bazan et al., 2002; Nguyen, 2006).
In addition, computations performed using the unate
complement procedure can be optimized against memory
usage, which makes it possible to analyze larger data sets
compared with the expert systems mentioned above.

The primary purpose of this paper is to show how
this procedure for data analysis can be used in medical
and telecommunication areas (e.g., Łuba et al., 2014;
Abraham et al., 2007; Su et al., 2009; Sasao, 2011; 2015).
The list of possible areas in which this proposed solution
and algorithm can be applied is not limited to these two,
however, since many applications can be found in business
(stock trading), statistics, and banking (Jankowski et al.,
2015), among others.

2. Fundamental information

2.1. FPGAs with a built-in memory. The basic
problem of reducing arguments is to find the smallest
sets of input parameters of Boolean functions for which
the data remains consistent. For example, for a function
presented in Table 1, variables x1, x3, and x5 are
redundant; after removing them, each pair of rows of
various decisions differs by at least one position.

The result from argument reduction presented in
Table 2 is just one of three possible solutions.

Argument reduction is fundamental because
decreasing the number of input parameters can decrease
the time required for further optimization. In the
case where the function is implemented in a field
programmable gate array (FPGA) chip, after reducing
arguments, the in-chip implementation of the function
has fewer inputs. Also, parallel decomposition is based
on argument reduction (Borowik and Łuba, 2014).

This is particularly important for FPGAs with a
built-in memory for which the number of input variables

Optimization on the complementation procedure towards efficient implementation . . . 805

Table 1. Example of a truth table.
U x1 x2 x3 x4 x5 x6 x7 y

1 1 0 0 0 1 0 1 0
2 1 0 1 1 1 1 0 0
3 1 1 0 1 1 1 0 0
4 1 1 1 0 1 1 1 0
5 0 1 0 0 1 0 1 1
6 1 0 0 0 1 1 0 1
7 1 0 1 0 0 0 0 1
8 1 0 1 0 1 1 0 1
9 1 1 1 0 1 0 1 1

Table 2. One of three possible solutions of argument reduction
for the truth table from Table 1.

U ′ x2 x4 x6 x7 y

1 0 0 0 1 0
2 0 1 1 0 0
3 1 1 1 0 0
4 1 0 1 1 0
5 1 0 0 1 1
6 0 0 1 0 1
7 0 0 0 0 1
8 0 0 1 0 1
9 1 0 0 1 1

Table 3. Example of a decision table.
U x1 x2 x3 x4 y

1 1 0 0 1 1
2 1 0 0 0 1
3 0 0 0 0 0
4 1 1 0 1 0
5 1 1 0 2 2
6 2 2 0 2 2
7 2 2 2 2 2

Table 4. Table of minimal rules.
x1 x2 x3 x4 y

1 0 − − 1
0 − − − 0
− 1 − 1 0
− − − 2 2

affects the complexity of the implementation. An example
is the synthesis of an index generation function (Sasao,
2011; 2015).

2.2. Data mining. At the same time, argument
reduction—also known as attribute reduction or attribute
selection—has broad applications in data mining.
Sometimes the collected data is redundant, and using
a subset of the parameters is enough to make an
unambiguous decision. Surveys are a good example to

that, especially the ones used by doctors while diagnosing
patients.

Further, the approach presented in this paper is
used for inducing decision rules, that is, generalization
of objects in the decision table (Table 3) (Borowik et
al., 2015b). The goal is to obtain rules that will enable
classifying new data. For example, after generating a table
of minimal rules (Table 4) for a row of ones (1111), it is
possible, with some probability, to predict the value that
should appear in column y. In this particular case, it would
be the decision equal to ‘0’. It is easy to imagine that
such a procedure could be useful as an aid for medical
diagnosis. If the decision is not firm, the computer system
could make it conduct additional examinations in order to
arrive at a proper diagnosis.

Another direct use of the algorithm is the
discretization of continuous data. This issue is described
in detail by Borowik (2013) and Komorowski et al.
(1999).

2.3. Reduction methods. During the basic
implementation of the reduction method, the term
indiscernibility table (indiscernibility matrix) is defined
(a formal definition is given by Komorowski et al.
(1999)). It is a matrix that is created by pairwise
comparison of all rows of a truth table having different
values. Each row of the indiscernibility table contains
a ‘1’ for those arguments for which compared rows differ
for a given value and ‘∗’ (indeterminate value) in those
places where the values are the same or for which at least
one value is indeterminate. In the case of polyvalent
discrete data, where arguments and decisions can have
more than two values, the procedure of generating
comparisons is exactly the same, i.e., rows with different
decisions are compared and attribute diversity is marked
with the value ‘1’, otherwise the symbol ‘∗’ is used. The
issue of creating an indiscernibility table is shown in
Fig. 1.

A term that is directly related to the indiscernibility
table is a minimal column coverage, which is a set of
columns in the indiscernibility table for which the rows
contain at least one ‘1’ and no proper subset of this set
meets these criteria. For example, for the matrix on the
right in Fig. 1, x1 and x4 constitute a minimal column
coverage; meanwhile, x1, x2, x4 is a column coverage
but is not minimal. Minimal column coverages computed
for the indiscernibility table are called reducts. They are
minimal sets of arguments/attributes required to represent
a given Boolean function or decision function.

One of the methods in determining all the minimal
column coverages is to represent the indiscernibility table
in the form of a discernibility function. Such a function
is a logical product of sums of arguments. Then, it
is transformed into the form of the sum of products of
arguments (Petrick, 1956; Skowron and Rauszer, 1992).

806 G. Borowik

U x1 x2 x3 x4 y
1 0 0 1 0 0
2 1 1 1 − 0
3 0 0 1 1 1
4 2 1 0 1 1

x1 x2 x3 x4

1 & 3 ∗ ∗ ∗ 1
1 & 4 1 1 1 1
2 & 3 1 1 ∗ ∗
2 & 4 1 ∗ 1 ∗

Fig. 1. Indiscernibility table generated comprises comparisons between each pair of objects from different decision classes.

x1 x2 x3 x4 y
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

x1 x2 x3 x4 y
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0

x1 x2 x3 x4 y
0 ∗ ∗ 0 0
∗ 0 0 0 0

Fig. 2. Illustration of function complementation.

Each factor of such an expression represents one minimal
column coverage. For example, the indiscernibility table
from Fig. 1 can be written down as a product of sums
having the following form:

x4(x1 + x2 + x3 + x4)(x1 + x2)(x1 + x3),

which is transformed into the form of the sum of products,
according to Boolean algebra,

x1x4 + x2x3x4.

In this way, two reducts are created, x1, x4 and
x2, x3, x4. Thus, in order to represent the function
from Fig. 1, not all arguments presented in the table are
required; instead, only arguments x1, x4 or x2, x3, x4 can
be used.

The problem of designating all minimal column
coverages can be solved by computing the complement
of the discernibility function, which takes columns of the
indiscernibility table as arguments. It is assumed that the
values of the function for all the rows of indiscernibility
table are set and equal to ‘1’. The complement of such
a function is the set of rows (cubes) that do not have any
elements in common with the other rows of the table.

The construction of the function is done in the
following way. All cubes from the indiscernibility table

from Fig. 1 are written down as binary vectors and each
assumes a value of ‘1’. For binary vectors not belonging
to this set, the value of ‘0’ is assumed (the far left table in
Fig. 2). The others, shown in the middle table in Fig. 2,
can be minimized (generalized) according to the concept
of least upper bound (lub) used by Brzozowski and Łuba
(1997) as follows:

lub{0000, 0010, 0100, 0110}= 0 ∗ ∗0
and

lub{0000, 1000}= ∗000.
The resulting cubes, shown in the far right table

in Fig. 2, are identical with the earlier minimal column
coverages.

Another way to quickly determine all the minimal
column coverages is by using the unate complement
procedure (Borowik and Łuba, 2014). This method
determines the complements of a monotonic function, i.e.,
a function for which there is no column having zeros and
ones at the same time in the table representation. This
procedure allows finding all the largest complementary
cubes (i.e., the most general complementary cubes); when
applied to the indiscernibility table, it determines all the
minimal column coverages.

The unate complement procedure works as follows:

Optimization on the complementation procedure towards efficient implementation . . . 807

1. recursive decomposition of the function, according
to the Shannon scheme;

2. computing complements using De Morgan laws;

3. merging the resulting partial complements.

During the last stage, all redundant cubes are
discarded, i.e., cubes that are logically included in others,
according to cube calculus (Brzozowski and Łuba, 1997).

For the monotonic function, the formula for Shannon
decomposition is simplified to the forms (Brayton et al.,
1984)

f = xjfxj + fxj (1)

for a monotonically increasing function and

f = fxj + xjfxj
(2)

for a monotonically decreasing function. Similarly, for the
complement we have

f = fxj
+ xjfxj

(3)

for a monotonically increasing function and

f = xjfxj
+ fxj

(4)

for a monotonically decreasing function.
All the methods that implement the algorithm to find

the minimal column coverage require earlier creation of
the indiscernibility table. The number of rows in such
a table depends, quadratically, on the number of objects
in the analyzed data set, and can be expressed by using
the formula ∑

(p<r)∈k

npnr,

where k is the decision set, p and r run through all the
pairs of the set k, and np and nr are the numbers of rows
for decisions p and r, respectively.

2.4. Rule induction and data discretization. Data
mining problems other than attribute reduction can
be converted into the problem of finding a function
complement, and so the unate complement procedure can
be used. In such situations, the only difference in the
application of the UC procedure is the way the input
indiscernibility table is generated.

For example, in the process of the induction of
decision rules (Borowik et al., 2015b), the indiscernibility
tables are generated using methods similar to those
for attribute reduction. The difference is that each
decision class must have separate indiscernibility matrices
generated. These matrices are created as a result of
comparing the object of a certain decision class with
objects of other decision classes. The number of
matrices shows the computational complexity of this task:

0 1 ∗ 0 1 1 0 1
∗ ∗ 1 ∗ 0 1 1 0 0 0 1 0
0 ∗ 1 ∗ 1 0 1 0

Fig. 3. Representation of a unate function.

usually, it is not solvable in polynomial time. In this
case, the restrictions should be interpreted as a tradeoff
between solution completeness and reasonable processing
time (Borowik and Kowalski, 2015).

During discretization, some initial cut set is
required (Borowik, 2013; Komorowski et al., 1999). Next,
each object in the indiscernibility table is created by
comparing two objects of different decisions so that each
cut is checked whether it lies between the values of
the analyzed objects. In such cases, the row of the
indiscernibility table contains ‘1’ for this cut, or ‘0’
otherwise.

3. Algorithm

The basic algorithm for processing the indiscernibility
table, using the unate complement procedure, can be
described in the following steps:

1. Matrix representation.
The input matrix contains only 0s and 1s (no
indeterminate values). Since the unate complement
procedure transforms only unate functions, the
following transformation can be applied: columns
having 0s will contain 1s in the places where 0s
initially were, and the indeterminate values will be
replaced by 0s. As mask remembering columns
have 0s (Fig. 3), such a transformation is exact and
reversible. Thus, it is possible to recover the output
matrix by using the mask stored in the memory.

2. Verification.
Verification is used if there is a possibility of
direct determination of the complement by using De
Morgan laws. According to these, if a matrix

(a) does not contain any row, then a tautology
(the matrix containing all possible rows) is
its complement; tautologies in cube calculus
are represented with a cube containing only
‘∗’ elements; in memory representation, such
a cube will have a form of a row containing
only 0s;

(b) contains a row with only 0s (the representation
of the row with only ‘∗’), its complement is an
empty matrix;

(c) contains just one row, its complement is
a matrix containing that number of rows, as the
number of 1s exists in a given row, and each of

808 G. Borowik

those rows has exactly one ‘1’ at the position
relevant to 1s of the original row (Fig. 4).

If a given matrix has one of the forms (a)–(c), it
must be verified and the complement computed;
otherwise, the algorithm proceeds to the next step.

3. Choice of a variable against which Shannon decom-
position will be performed.
The choice of such a variable can be done in several
ways. The most important methods of choosing
a variable are discussed further in this paper.

4. Shannon decomposition using a simplified formula.
Two new matrices are created (left and right),
according to the selected divider variable. The left
matrix is created by replacing all 1s with 0s in the
column referred by the variable. The right matrix
contains only rows that had 0s in the referred column
(Fig. 5).

5. Recursive execution of the algorithm for both parts
of the matrix.
The decomposition must be repeated until all leaves
of the matrix tree have the form (a), (b), or (c) from
Step 2; then, the complement is computed.

1 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0

Fig. 4. Complement using De Morgan laws.

0 0 1 0
1 1 0 0
1 0 1 1

x1 x1

0 0 1 0
0 1 0 0
0 0 1 1

0 0 1 0

Fig. 5. Matrix decomposition using the Shannon formula.

0 0 1 0
0 1 0 0

0 0 1 0
0 0 0 1

x1 x1

0 0 1 0
0 1 0 0
1 0 1 0
1 0 0 1

Fig. 6. Matrices merging using the Shannon formula.

6. Merging the complements created in Step 5.
Similarly to decomposition, merging is performed
using the Shannon formula. The right-hand
side complement is multiplied by the divider
variable, whereas the left-side complement remains
unchanged. The right-hand side matrix is then
combined with the left-hand side matrix into a new
set (matrix) (Fig. 6). It should be natural that this task
is included in the recursive part of the algorithm.

7. Yield of the complement.
The matrix created at the top of the recursive
algorithm tree is the complement of the original
function.

4. Analysis of the original implementation
and optimization suggestions

The advanced unate complement procedure was
implemented in the 1980s in the Espresso software
using the C programming language. Despite the
use of many breakthrough algorithms, enabling fast
computation, this implementation has some drawbacks.

4.1. Memory operations and partitioning. Espresso
uses a single-dimension array of 32-bit unsigned integer
variables to store the indiscernibility table in the memory.
This table is virtually divided into rows, and the first field
of unsigned int is used to store the control flags data;
further k fields, especially k = 1, contain the actual data.
Despite using such a memory-efficient structure, Espresso
faces insufficient memory problems. This is because the
implementation of the complement procedure, in which a
new matrix is created for each node of the algorithm tree,
is not well thought out. For both the left- and right-hand
side matrices, the memory for the size of the input matrix
(the one being decomposed) is allocated regardless of
the number of rows that actually will be placed in the
matrix. Owing to this approach, de-allocating the matrix
memory was very fast; however, the total memory used
for the algorithm tree equals the size of the input matrix
multiplied by the depth of the algorithm tree.

Probably because of the memory problems, an
algorithm for removing redundant rows can be found
in the original implementation of unate complement
in Espresso. Rows are removed from the input
indiscernibility matrix before executing the actual unate
complement procedure. Redundant rows are those that are
enclosed in other rows, according to the cube calculus,
especially when they are enclosed in a single other
row. It must be remembered that 0s, in fact, represent
indeterminate values (Fig. 7).

The recursive unate complement procedure allows
investigating which of the branches (left or right)
will be processed first. The authors of the Espresso

Optimization on the complementation procedure towards efficient implementation . . . 809

0 1 1 0 x2, x3 x2, x3 includes x2, x3, x4

0 1 1 1 x2, x3, x4 second row is redundant

Fig. 7. Illustration of cube redundancy.

0
2
3
1

0 0 1 0
0 1 0 0
1 0 1 0
1 0 0 1

Fig. 8. Pointers to the row map.

implementation decided first to traverse the tree to the
left. According to the analysis, after going to the second
branch, regardless of which direction was chosen earlier,
there is no need to store the previous matrix in the
memory; instead of allocating a new memory, the input
matrix could be modified. In the case of such an operation,
the idea of choosing the right branch as the first for
processing seems a much better idea. Then, zeroing
the column indicated by the divider variable is the only
modification required. When traversing the tree, as in the
Espresso implementation, copying must be done at the
time of branching left; when branching right, it would
be necessary at least to mark rows that would have been
ignored during further steps.

For the improvement, minimizing the usage of the
memory, only matrix rows containing 0s in a column
referenced by the divider variable are copied at the
branching right step. To do this, before branching right,
the rows to be copied must be counted and allocated in a
smaller table in the memory accordingly. The advantage
of such an approach is that, if the order of traversing
a tree is changed and branching to the right is done first,
then copying the matrix during stepping to the left is not
necessary. The only required action is zeroing the contents
of the column referred by the divider variable. Those
two solutions minimize the amount of required memory
to the constant amount dependent on the frequency of
occurrence of 1s in the indiscernibility table—the more 1s
in the indiscernibility table, the bigger memory utilization.

In the case presented above, when branching right,
the size of the allocated memory can differ; thus,
organizing the memory in blocks of a constant size as
in Espresso does not reflect the algorithm behavior and
would be inefficient.

4.2. Memory operations and merging. In the final
implementation, the focus was on memory consumption
of the algorithm. Despite considering the speed of
the computation as the most important criterion, the
biggest advantage of the implementation is extremely
low memory consumption. This allows processing

the examples given earlier that, when started in other
programs, resulted in errors related to the insufficient free
memory. In the proposed algorithm, realizing the unate
complement procedure, the size of the memory used is
approximately the size of the area required to store the
indiscernibility table. In this way, Shannon decomposition
does not perform matrix copying and has no need to
increase the memory during the process of traversing the
algorithm tree. To achieve this, when making the step
to the right, instead of selecting and copying particular
rows, the process of sorting rows is referred by a column
indicated by the divider variable. Moreover, during the
later stages of the algorithm, only a subset of computed
rows is used. When the right side of the tree undergoes
processing, it is enough to return to the full matrix size,
and restoring the earlier order of the rows is not necessary.
When branching left, the column of the divider variable is
zeroed; after this branch of the tree has been examined,
the appropriate rows must be restored.

Restoring rows turned out to be fairly difficult in the
implementation. As opposed to working on particular
rows, the solution is to treat the 1s in zeroed columns
the same way as if they were 0s. Such a property can
be achieved by using a special row, known as the mask.
Before each reading of the row, the operation of logic
AND is performed on a given row and the mask, and the
result is passed on for further processing. At the beginning
of the algorithm operation, the mask is a row containing
just 1s, so executing the AND operation does not affect
the processed row. Next, during each step to the left in
the tree, on the position of the divider variable the value
of ‘0’ is set, and when returning back the value of ‘1’ is
set back. This way zeroing the entire column reduces to
changing one bit at one position.

For the sake of realization of the algorithm in the
memory of a fixed size, it is required to mark these rows
that are used in further stages of the procedure. The Polish
Flag sorting algorithm is chosen for the proposed solution,
along with remembering the number of rows with 0s
in the column referred by the divider variable. Such a
solution could be improved using a map of pointers to
rows. Eventually during the sorting process, rows remain
in their places and only pointers in the map are modified
(Fig. 8).

Thanks to the proposed solution, no objects in
the list are exchanged, just values in the related cells;
despite the necessity of referring to the rows through the
additional table, this decreases the tree traversing time.
The difference in the computation time, in this case, is of
minor importance, while the stability of the data in the
matrix is of primary significance. The use of pointers
along with the mask assures complete constancy of the
data during the tree traversing, so possible multi-threaded
implementation can share the main memory. This is
because the position in the tree in which the algorithm is

810 G. Borowik

currently working depends only on the state of the mask,
the map, the saved size of the matrix, and the saved divider
variables required to generate the complement.

4.3. Redundancy. As a result of the unate complement
procedure, part of the solution is redundant (reducts are
not minimal), and before finalizing the solution they must
be filtered out. A redundant solution is one that is enclosed
in another reduct that exists in the solution set, according
to the cube calculus (Fig. 7). To verify which solutions
(rows of a complement) are redundant, they must be
compared one with another. Knowing that only the longer
reduct (longer in terms of the number of 1s) can be
redundant in a certain pair, the following procedure can
be used: before starting pairwise comparisons, reducts
are sorted by the number of 1s, and then each row is
compared only with rows shorter than that one. Two
identical reducts will never be produced by the algorithm;
therefore, comparing rows of the same length is not
necessary. It is important to mention that the shorter the
row is, in terms of the number of 1s, the more often it can
cross out the other rows. Because of this, when comparing
rows, it is worth starting from the shortest ones. A time
analysis of this method showed that as the input data size
increased, more and more time had to be spent to remove
the redundant reducts (Fig. 9). For example, the time
required to remove redundant reducts for an input matrix
having 30 attributes takes 99% of the total processing
time. The process of discarding redundant solutions has
O(n2) complexity; therefore, it causes the biggest delays
in the algorithm operation. The number of redundant
reducts changes with respect to the number of rows must
be checked, so the question is whether indiscernibility
table partitioning would provide any expected advantages.
Borowik and Łuba (2014) described the results of research
regarding these issues.

4.4. Variable selection. It is natural to endeavor the
fastest reach of one of these forms in which it is possible
to determine the complement by using De Morgan laws.
To achieve this, rows with the minimal number of 1s
could be selected and pursued to get a row with only
0s. Another approach is to choose columns containing
the maximum number of 1s and pursuing to get a single
row in the matrix. Espresso uses both the approaches
simultaneously. Among all the rows, those with the
minimum number of 1s are selected, and then 1s are
counted in columns of the selected rows in order to choose
the best divider variable.

An interesting mechanism implemented in Espresso
is choosing multiple divider variables in one step. In
an exceptional case, when there is a row with just one
‘1’, after selecting its position for the divider variable,
the empty set is the complement of the left side, i.e.,

10 20 21 22 23 24 26 28 30

0

20

40

60

80

100
100 100 100 100 100 100 100 100 100

60 60

49

36

22 19
12

3 1

30

8 6 3 1 1 1

size of square indiscernibility table [row = col]

p
ro
ce
ss
in
g
ti
m
e
[%

]

generation of indiscernibility table

Shannon decomposition

removal of redundant reducts

Fig. 9. UC processing time for all stages (in %).

which has the empty set as a complement according to
the De Morgan laws. In this situation, the second divider
variable can be chosen. Then the right-hand side matrix
will be filled only with rows that have 0s at the positions
of divider variables. The left-hand side matrix will receive
rows having 0s for the first divider variable, remembering
that the column for the second divider variable must be
zeroed.

Mindful that the right-size memory is filled with
rows having ‘0’ at the column referred by the divider
variable, further memory savings can be achieved by
a well-thought-out selection of divider variables. To
achieve this, the algorithm adopted from Espresso was
implemented; that is, the selection of the divider variable
was based on the row with a minimum number of 1s, and
then a column was selected that has ‘1’ in this row and, at
the same time, contains more 1s than other columns.

The analysis of the unate complement procedure
showed that the method used for choosing divider
variables has a tremendous effect on the number
of redundant reducts. For example, when using a
similar method for choosing the divider variable as
the one implemented in Espresso, for the dermatology
database (Bache and Lichman, 2013), the number of
reducts is 143093, and the number of reducts, including
the redundant ones, just after traversing the tree is
210688. Thus, for the most effective choice, every third
reduct must be rejected. When choosing the divider
variable randomly without analyzing data in the matrix,
this number increases to 2522447—only every 17th is
required for the solution. According to computational
complexity, a tenfold growth in the number of reducts

Optimization on the complementation procedure towards efficient implementation . . . 811

leads to around a hundredfold increase in the time
spent on rejecting redundant reducts; so, in this case, it
increases from 1 minute to 90 minutes. In addition, the
time of traversing the algorithm tree grows from below
1 second to 17 seconds. Even ignoring the significant
increase in computation time, for a large database, such
as lung-cancer (Bache and Lichman, 2013), the number
of redundant reducts in the case of randomly choosing
a divider variable is so huge that the program terminates
the operation due to insufficient memory. An ideal
solution would be to choose the divider variable in such
a way that no redundant reducts are produced. However,
this research showed that it is easy to construct examples
for which redundant solutions will always be generated.

4.5. Concurrency. When concurrent programming is
used to traverse the tree faster, computing reducts in
the leaves of an algorithm tree are essential. Thanks
to a vector of present divider variables, each node
has the complete information necessary to compute the
complement for a given part of the input matrix. In
such cases, multiple threads can separately compute
complements for different (independent) nodes in the tree.
It is important that, during each step of the algorithm, the
problem of finding the complement can be divided into
two separate threads. Therefore, if any of the threads
finished computations of their part of the tree, another
thread can assign it computations related to another, newly
created node in another part of the tree in order to balance
the processing load. The concurrent algorithm can be
described using the following steps:

1. One of the threads starts computations, and the rest
of the threads are declared as waiting.

2. Before repeating the algorithm for two new matrix
parts, the thread checks if there is any waiting thread:

(a) if a waiting thread exists, the checking thread
delegates the right-hand side part of the matrix
to the waiting thread and itself proceeds with
computations for the left-hand side part of the
matrix;

(b) if a waiting thread does not exist, the checking
thread continues computations for both sides of
the matrix.

Repeating this operation in each node guarantees that
threads will not remain too long in the waiting state. On
the other hand, if small matrices dividing them might be
unprofitable, it is better if matrices above a certain size are
passed to concurrent processing.

When a thread finishes computing the complement
for its tree branch, it changes its state to waiting and
remains idle until it is assigned a new task. Also, when
a thread switches to the waiting state, it must ensure that

there exists at least one more thread that is still processing
at that time in order to avoid the situation in which all
threads are in the waiting state and the complement is
already computed.

4.6. Subset of solutions. The use of the unate
complement procedure, compared with a standard method
of transforming a Boolean expression, considerably
shortens the computing time and allows processing more
complex tasks. This does not mean, however, that
every data set can be processed using the proposed
complementing method in a reasonable amount of time.
Sometimes, computing all the reducts must/might be
traded off for getting the solution as their subset in a given
amount of time.

To get just a subset of attributes, traversing the
entire tree is not necessarily advisable. In such cases,
a method of determining the minimal reduct is necessary;
the best type of method is if the reduct is minimal,
of the smallest length, and found in a minimal amount
of time. At the same time, it is worth noting that
the number of reducts obtained for large indiscernibility
tables, especially because of the number of arguments,
is so huge that there can be a problem with storing
solutions in the computer’s operational memory during
the execution of the algorithm while traversing the tree.
An ideal solution for this problem is to store the solutions
in the hard drive during the algorithm execution, or to
stop traversing the tree down after finding the first reduct
that satisfies the assumptions regarding the number of
attributes.

Espresso does not provide such a possibility because
partial solutions were multiplied by related divider
variables at the stage of merging results while recursively
leaving the tree. To make it possible to output the results
when the tree leaf is reached, the implementation of
an additional vector is required. Such a vector stores
additional divider variables, but, only those that occurred
during branching to the right while traversing a tree to
reach the particular leaf. Multiplying such a vector with
rows of the complement that were created in a certain
leaf results in the creation of complete reducts. Such
reducts can be multiplied after reaching the leaf of the
tree; it is also possible to write down a vector of divider
variables and a vector before the complement in the form
of a pair. This saves memory space because, instead
of storing multiple rows created during applying the De
Morgan laws, only one pair of rows is stored. Even so,
such a solution is not effective if two identical rows appear
in the matrix at the final stage. Despite the fact that one
of those rows can be discarded, and the complement can
be determined for the remaining row (or written down
as a pair with divider variables), in the further stages
of the algorithm, the matrix built on the doubled row is
decomposed. Decomposition is performed until the empty

812 G. Borowik

matrix is received. Therefore, the complements generated
in leaves have exactly one row identical to a row of present
divider variables, so storing a pair takes twice less the
memory. Thus, to fully utilize this natural method of
compression, the additional algorithm step of catching
and removing doubled rows from the matrix must be
implemented.

5. Experimental results

Prior to efficiency tests, the correctness of the proposed
algorithm operation was verified using benchmark
solutions. They contained all the correct minimal reducts
generated by an independent software application. In
addition, the proper number of reducts was verified for
the smaller result sets, and the results (obtained reducts)
were checked as to whether they were identical. In all the
cases, the results of the proposed algorithm were correct.

The operation times were measured for four
programs, including a software implementation of the
proposed algorithm. The testing machine was a PC based
on an Intel Core i5-3210M processor with a 2.5 GHz
clock, 6 GB RAM, and the MS Windows 7 operating
system. The result of the operation was a set of minimal
reducts constituting the complement of the indiscernibility
table created from the input function (i.e., the Boolean
function or the decision table).

Table 5 presents the comparison of operation time
for the optimized unate complement procedure with
the method of reducing the attributes used in the
known expert systems: ROSE2 (Predki et al., 1998;
Predki and Wilk, 1999), RSES 2.2 (Bazan et al.,
2002), jMAF (Błaszczyński et al., 2013), and to the
unate complement procedure (Borowik and Łuba, 2014)
developed earlier. For example, for the database
agaricus-lepiota-mushroom (Bache and Lichman, 2013),
the ROSE2 system generated just a subset of reducts after
164 seconds of operation, and RSES 2.2 resulted in a
subset after 266 seconds or the entire set of reducts after
1740 seconds. The jMAF system resulted in a complete
reduct set after 198 seconds, the unate complement
procedure developed by Borowik and Łuba (2014) after
287 seconds, and the algorithm proposed in this paper
provided a complete set of reducts in just 112 seconds.

5.1. Efficient implementation of an index generation
function: Practical application. Attribute reduction
is the process of finding the smallest set of attributes
(a reduct) which is sufficient to produce the same decision
from the reduced database as from the original one. When
the data represent a Boolean truth table, the reduction
decreases the number of input variables of the system in
the way that the data remain consistent, and as a result, its
implementation.

X1

X2

variable
reduction

/
r

/
n − r

main
memory/

r

aux
memory

X2 comparator/
n − r

/ n − r

and/
p

Fig. 10. Index generation function.

For FPGA implementations, such a reduction makes
it possible to realize functions as combinational circuits
of fewer inputs. An example is the synthesis of an index
generation function (index generator), where the function
is a strongly undefined Boolean one:

f : Dn → {1, 2, . . . , k}, (5)

with Dn ⊆ {0, 1}n, and |Dn| = k.
A characteristic feature of this function is a large

number of input variables with a relatively small
cardinality of Dn (vectors belonging to the Dn set are
called registered vectors). A consequence of this property
is an efficient reduction of input variables, enabling
the index generator to be implemented in the structure
proposed by Sasao (2011). This structure contains the
main memory, an auxiliary memory, a comparator, and
an AND gate (Fig. 10).

The variable reduction block selects from among all
variables a subset of X1 representing a reduct of the index
generation function (X = X1 + X2). The cardinality of
the reduct equals r; that is also the number of inputs to the
main memory. At the output of the main memory there
is an input vector index. It is represented by a binary
vector with a number of p ≥ �log2(k)� bits. This
index is a valid index of the input vector, considering
that it is a registered vector, and only then does this
index appear on the outputs of the generator. If the input
vector is not a registered vector, the generator yields ‘0’.
The mechanism checking whether the output of the main
memory represents the correct index is implemented in
the auxiliary memory and the comparator. The auxiliary
memory stores the vectors represented by the variables
belonging to the set X2. These vectors are fed to the
comparator input and compared with the actual X2 vector
fed to the comparator’s second input. Of course, the
vector taken from the auxiliary memory is different from
the actual X2 vector when it is not registered. Then, the
comparator output signal ‘0’ will block the output of the
AND gate of the vector generated in the main memory.

Research on efficient implementation of the index
generator was done using the Boolean function analyzed

Optimization on the complementation procedure towards efficient implementation . . . 813

Table 5. Experimental results.
time of calculation [s]

ROSE2a RSES 2.2b jMAFc UC procedured optimized UC number of
database procedure reducts

agaricus-lepiota-
mushroom e (164)* (266)* / 1740 198 287 112 507
audiology e (12449)** (660)** – 14.5 3 37367

breast-cancer-
wisconsin e (<1)* 2 <1 0.8 0.2 27

dermatology e (36639)** (1800)** (145)*** 212 72 143093
house e <1 <1 <1 0.2 0.1 4

kaz d (1906)** 2520 <1 0.2 0.2 5574
kr-vs-kp e 16 62 9 117 5.4 4

lung-cancer e (7634)** (3120)** >360000 403020 286869 3604887
trains e (8)* (6)* / (20280)** – 0.1 0.1 689

urology a (8560)** (12240)** 15 42.7 1.2 23437
* method does not generate all the reducts

** time after which the memory error occurred
*** computations were performed on modified data sets, disregarding rows that contained indeterminate values

– computations could not be performed due to the presence of indeterminate values
a Predki et al., 1998; Predki and Wilk, 1999
b Bazan et al., 2002
c Błaszczynski et al., 2013
d Borowik and Łuba, 2014
e Bache and Lichman, 2013

Table 6. Example of an index generator function (Sasao, 2015).

0110000100010000101001100001000100001010 1
0101111101101010001101011111011010100011 2
1111010101110111000011110101011101110001 3
0001111000010001011100011110000100010111 4
0011110000000100010100111100000001000101 5
0111001001000100100101110010010001001001 6
0010001110001111001000100011100011110010 7
1111111111010001111000100011100011110010 8
1110111000110001011011101110001100010110 9
1010000110100100001110100001101001000011 10

previously by Sasao (2015) and delivered here in Table 6.
For this function, Sasao obtained a 5-argument reduct,
r = 5 (Table 7).

It is very easy to notice that the efficiency of the
constructed index generator is determined by the size of
the reduct. For these reasons, in the summary of his
invited talk at the EPFL workshop, Sasao (2015) pointed
out that the study on an efficient attribute reduction
algorithm is the most important research task in the field
of pattern recognition. So it is worth stressing that, using
the algorithm proposed in this paper, one can calculate
a whole series of 4-argument reductions, r = 4. One of
these solutions is given in Table 8.

6. Summary

The article is targeted at both Boolean functions and
multi-valued functions. This is possible due to the
appropriate transformation that produces from a function
the so-called indiscernibility matrix, which is defined in
Boolean algebra.

The computational results confirmed that, with the
use of the unate complement procedure, it is possible to
perform computations related to attribute reduction within
a shorter time than in other expert systems. Further, it is
presumed that it is now possible to perform computations
for databases that have been too big until now because this
implementation saves the computer operational memory.

Efficient implementation of complementing the
Boolean function could especially be applied to the expert
system or the index generation function. Computer
programs based on this implementation could solve the
problems mentioned above faster, and should be able to
solve more complex problems—in terms of the number of
attributes and rows.

References

Abraham, A., Jain, R., Thomas, J. and Han, S.Y. (2007).
D-SCIDS: Distributed soft computing intrusion detection
system, Journal of Network and Computer Applications
30(1): 81–98, DOI: 10.1016/j.jnca.2005.06.001.

814 G. Borowik

Table 7. 5-Argument reduct for the index generator function
from Table 6 published by Sasao (2015).

01100
01011
11110
00011
00111
01110
00100
11111
11101
10100

Bache, K. and Lichman, M. (2013). UCI Machine Learning
Repository, University of California, Irvine, CA, http:/
/archive.ics.uci.edu/ml

Bazan, J.G., Szczuka, M.S. and Wróblewski, J. (2002). A
new version of Rough Set Exploration System, in J.J.
Alpigini et al. (Eds.), Rough Sets and Current Trends
in Computing, Lecture Notes in Computer Science,
Vol. 2475, Springer, Berlin/Heidelberg, pp. 397–404,
DOI: 10.1007/3-540-45813-1_52.

Błaszczyński, J., Greco, S., Matarazzo, B., Słowiński, R. and
Szeląg, M. (2013). jMAF-Dominance-based rough set data
analysis framework, in A. Skowron and Z. Suraj (Eds.),
Rough Sets and Intelligent Systems—Professor Zdzisław
Pawlak in Memoriam, Springer, Berlin/Heidelberg,
pp. 185–209, DOI: 10.1007/978-3-642-30344-9_5.

Borowik, G. (2013). Boolean function complementation based
algorithm for data discretization, in R. Moreno-Díaz et al.
(Eds.), Computer Aided Systems Theory, Lecture Notes in
Computer Science, Vol. 8112, Springer, Berlin/Heidelberg,
pp. 218–225, DOI: 10.1007/978-3-642-53862-9_28.

Borowik, G. and Kowalski, K. (2015). Rule induction based on
frequencies of attribute values, Proceedings of SPIE: Pho-
tonics Applications in Astronomy, Communications, Indus-
try, and High-Energy Physics Experiments 9662: 96623R,
DOI: 10.1117/12.2205899.

Borowik, G., Kowalski, K. and Jankowski, C. (2015a). Novel
approach to data discretization, Proceedings of SPIE: Pho-
tonics Applications in Astronomy, Communications, Indus-
try, and High-Energy Physics Experiments 9662: 96623U,
DOI: 10.1117/12.2205916.

Borowik, G., Kraśniewski, A. and Łuba, T. (2015b).
Rule induction based on logic synthesis methods, in
H. Selvaraj et al. (Eds.), Progress in Systems Engineering,
Advances in Intelligent Systems and Computing, Vol. 330,
Springer International Publishing, Cham, pp. 813–816,
DOI: 10.1007/978-3-319-08422-0_118.

Borowik, G. and Łuba, T. (2014). Fast algorithm of
attribute reduction based on the complementation of
Boolean function, in R. Klempous et al. (Eds.), Ad-
vanced Methods and Applications in Computational Intel-
ligence, Topics in Intelligent Engineering and Informatics,
Springer International Publishing, Cham, pp. 25–41,
DOI: 10.1007/978-3-319-01436-4_2.

Table 8. One of the 4-argument reductions for the index
generator function from Table 6.

0000
1011
1111
1110
1010
0010
0100
1100
1101
0001

Brayton, R.K., Hachtel, G.D., McMullen, C.T. and
Sangiovanni-Vincentelli, A. (1984). Logic Minimiza-
tion Algorithms for VLSI Synthesis, Kluwer Academic
Publishers, Dordrecht, DOI: 10.1007/978-1-4613-2821-6.

Brzozowski, J.A. and Łuba, T. (1997). Decomposition of
Boolean functions specified by cubes, Research report CS-
97-01, University of Waterloo, Waterloo.

Jankowski, C., Reda, D., Mańkowski, M. and Borowik, G.
(2015). Discretization of data using Boolean
transformations and information theory based
evaluation criteria, Bulletin of the Polish Academy
of Sciences: Technical Sciences 63(4): 923–932,
DOI: 10.1515/bpasts-2015-0105.

Komorowski, J., Pawlak, Z., Polkowski, L. and Skowron, A.
(1999). Rough sets: A tutorial, https://eecs.ceas.
uc.edu/~mazlack/dbm.w2011/Komorowski.R
oughSets.tutor.pdf.

Korzen, M. and Jaroszewicz, S. (2005). Finding reducts
without building the discernibility matrix, Proceedings
of the 5th International Conference on Intelligent Sys-
tems Design and Applications, ISDA’05, Wrocław, Poland,
pp. 450–455, DOI: 10.1109/ISDA.2005.45.

Liu, G., Li, L., Yang, J., Feng, Y. and Zhu, K.
(2015). Attribute reduction approaches for general relation
decision systems, Pattern Recognition Letters 65: 81–87,
DOI: 10.1016/j.patrec.2015.06.031.

Liu, H. and Setiono, R. (1997). Feature selection via
discretization, IEEE Transactions on Knowledge and Data
Engineering 9(4): 642–645, DOI: 10.1109/69.617056.

Łuba, T., Borowik, G., Kraśniewski, A., Rutkowski, P. and
Ługowska, I. (2014). Application of logic synthesis
algorithms for data mining in medical databases, 9th Inter-
national Seminar Statistics and Clinical Practice, Warsaw,
Poland, pp. 36–39.

Łuba, T. and Rybnik, J. (1992). Intelligent decision support:
Handbook of applications and advances of the rough sets
theory, in S.Y. Huang (Ed.), Rough Sets and Some As-
pects of Logic Synthesis, Springer Netherlands, Dordrecht,
pp. 181–199, DOI: 10.1007/978-94-015-7975-9_13.

Martinović, G., Bajer, D. and Zorić, B. (2014). A differential
evolution approach to dimensionality reduction for

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://eecs.ceas.uc.edu/~mazlack/dbm.w2011/Komorowski.RoughSets.tutor.pdf
https://eecs.ceas.uc.edu/~mazlack/dbm.w2011/Komorowski.RoughSets.tutor.pdf
https://eecs.ceas.uc.edu/~mazlack/dbm.w2011/Komorowski.RoughSets.tutor.pdf

Optimization on the complementation procedure towards efficient implementation . . . 815

classification needs, International Journal of Applied
Mathematics and Computer Science 24(1): 111–122,
DOI: 10.2478/amcs-2014-0009.

Min, F., Hu, Q. and Zhu, W. (2014). Feature selection
with test cost constraint, International Journal
of Approximate Reasoning 55(1Pt2): 167–179,
DOI: 10.1016/j.ijar.2013.04.003.

Nguyen, H.S. (2006). Approximate Boolean reasoning:
Foundations and applications in data mining, in
J.F. Peters and A. Skowron (Eds.), Transactions on
Rough Sets V, Lecture Notes in Computer Science,
Vol. 4100, Springer, Berlin/Heidelberg, pp. 334–506,
DOI: 10.1007/11847465_16.

Petrick, S.R. (1956). A direct determination of the irredundant
forms of a Boolean function from the set of prime
implicants, Technical report AFCRC-TR-56-110, Air Force
Cambridge Research Center, Cambridge, MA.

Predki, B., Słowiński, R., Stefanowski, J., Susmaga, R.
and Wilk, S. (1998). ROSE—software implementation
of the rough set theory, in L. Polkowski and A.
Skowron (Eds.), Rough Sets and Current Trends in
Computing, Springer, Berlin/Heidelberg, pp. 605–608,
DOI: 10.1007/3-540-69115-4_85.

Predki, B. and Wilk, S. (1999). Rough set based data exploration
using ROSE system, in Z.W. Raś and A. Skowron (Eds.),
Foundations of Intelligent Systems: 11th International
Symposium, Springer, Berlin/Heidelberg, pp. 172–180,
DOI: 10.1007/BFb0095102.

Sasao, T. (2011). Index generation functions: Recent
developments, 41st IEEE International Sympo-
sium on Multiple-Valued Logic, Tuusula, Finland,
DOI: 10.1109/ISMVL.2011.17.

Sasao, T. (2015). Index generation functions, EPFL Workshop
on Logic Synthesis & Verification, Lausanne, Switzerland.

Skowron, A. and Rauszer, C. (1992). The discernibility matrices
and functions in information systems, in R. Słowiński
(Ed.), Intelligent Decision Support—Handbook of Appli-
cations and Advances of the Rough Sets Theory, Kluwer
Academic Publishers, Dordrecht, pp. 331–362.

Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring
complex and big data, International Journal of Ap-
plied Mathematics and Computer Science 27(4): 669–679,
DOI: 10.1515/amcs-2017-0046.

Steinbach, B. and Posthoff, C. (2012). Improvements of
the construction of exact minimal covers of Boolean
functions, in R. Moreno-Díaz et al. (Eds.), Computer Aided
Systems Theory—EUROCAST 2011, Lecture Notes in
Computer Science, Vol. 6928, Springer, Berlin/Heidelberg,
pp. 272–279, DOI: 10.1007/978-3-642-27579-1_35.

Steinbach, B. and Posthoff, C. (2013). Fast calculation of exact
minimal unate coverings on both the CPU and the GPU,
in R. Moreno-Díaz et al. (Eds.), Computer Aided Sys-
tems Theory, Springer, Berlin/Heidelberg, pp. 234–241,
DOI: 10.1007/978-3-642-53862-9_30.

Su, M.-Y., Yu, G.-J. and Lin, C.-Y. (2009). A real-time network
intrusion detection system for large-scale attacks based on
an incremental mining approach, Computers & Security
28(5): 301–309, DOI: 10.1016/j.cose.2008.12.001.

Sun, L., Xu, J. and Li, Y. (2014). A feature selection approach of
inconsistent decision systems in rough set, Journal of Com-
puters 9(6): 1333–1340, DOI: 10.4304/jcp.9.6.1333-1340.

Szemenyei, M. and Vajda, F. (2017). Dimension reduction
for objects composed of vector sets, International Jour-
nal of Applied Mathematics and Computer Science
27(1): 169–180, DOI: 10.1515/amcs-2017-0012.

Zhong, N. and Skowron, A. (2001). A rough set-based
knowledge discovery process, International Journal of Ap-
plied Mathematics and Computer Science 11(3): 603–619.

Grzegorz Borowik holds a PhD in computer en-
gineering and draws from more than 15 years of
experience as a scientist and a university profes-
sor focused mainly on machine learning and big
data algorithms. His research interests include
computational intelligence, deep learning, opti-
mization techniques, numerical algorithms, IoT,
and cybersecurity. He has worked at the cross-
roads of advanced technology and business inno-
vation since 2012. In 2015 he was nominated by

the Polish Ministry of Science and Higher Education as a participant in
the “TOP 500 Innovators” Program at UC Berkeley in the United States.
In 2016 he was a postdoctoral researcher at the Knowledge Engineering
and Discovery Research Institute at the Auckland University of Technol-
ogy in New Zealand, where he worked on advanced problems of neuro-
science. He is the author of an academic textbook for Polish technical
universities and an author or a co-author of 90+ (2018) publications in
scientific journals as well as conference proceedings. He is currently
an assistant professor at the Police Academy in Szczytno and holds an
R&D management position at Nethone, a data science company special-
ized in AI-driven business intelligence and fraud prevention. ORCID:
0000-0003-4148-4817.

Received: 8 August 2017
Revised: 1 February 2018
Accepted: 10 March 2018

	Introduction
	Fundamental information
	FPGAs with a built-in memory
	Data mining
	Reduction methods
	Rule induction and data discretization

	Algorithm
	Analysis of the original implementation and optimization suggestions
	Memory operations and partitioning
	Memory operations and merging
	Redundancy
	Variable selection
	Concurrency
	Subset of solutions

	Experimental results
	Efficient implementation of an index generation function: Practical application

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

