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The problem of fault diagnosis in hybrid systems is investigated. It is assumed that the hybrid systems under consideration
consist of a finite automaton, a set of nonlinear difference equations and the so-called mode activator that coordinates the
action of the other two parts. To solve the fault diagnosis problem, hybrid residual generators based on both diagnostic
observers and parity relations are used. It is shown that the hybrid nature of the system imposes some restrictions on the
possibility of creating such generators. Sufficient solvability conditions of the fault diagnosis problem are found. Examples
illustrate details of the solution.
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1. Introduction

Hybrid systems (HSs), considered in this paper, are
dynamic systems, whose behavior is determined by
interaction of a number of discrete-time systems (DTSs)
described by difference equations and a finite automaton
(FA) with discrete-event dynamics. The DTS depends on
parameters that take values from a set of real numbers,
and the values are determined by the outputs of the FA.
A switching occurs whenever states of the DTS reach
some given domains, defined through a set of inequalities.
This type of HS has been studied earlier (Cocquempot
et al., 2004; Gruyitch, 2007; Yang et al., 2010; Leth and
Wisniewski, 2014), also in the context of fault diagnosis
(Shumsky and Zhirabok, 2012; Shumsky et al., 2012).

There exist numerous descriptions of hybrid systems
and switching rules, including time- and state-dependent
switching schemes. Our choice is motivated mostly
by three aspects. First, this description is general
enough and accommodates some other descriptions based
on state-dependent switching. Second, actual complex
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systems have two main parts: one is a control system
that has a finite number of states, and the other is an
operational system with discrete dynamics. Our model
is well suited to describe such a class of actual systems.
Third, the algebraic tools we will apply (algebra of
partitions/functions) work both for DTSs and FAs. The
algebra of partitions was developed for FAs by Hartmanis
and Stearns (1966). A similar approach to DTSs, called
the algebra of functions (Zhirabok and Shumsky, 2008),
was inspired by the approach of Hartmanis and Stearns
(1966) and mimics the latter. Since the two theories
are interlinked, this helps us to build a bridge between
the theories of FAs and DTSs. The partitions can be
replaced by functions generating them, and analogous
operations/operators are introduced. These aspects are
advantages of the suggested approach over the existing
methods.

Numerous methods have been elaborated for fault
detection and isolation (FDI) in dynamic systems
within the scope of the analytical redundancy concept.
According to this concept, FDI is based on checking
relations that exist among system inputs and outputs
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measured over a finite time window. The FDI process
includes residual generation as a result of a mismatch
between the system behavior and its reference model
behavior, followed by decision making through evaluation
of the residual. This paper concentrates only on the stage
of residual generation.

There are two basic approaches to residual
generation. One is based on closed-loop techniques
(diagnostic observers, Kalman filters) (Alcorta and
Frank, 1997; Shumsky and Zhirabok, 2006; Li
et al., 2016), while the other involves open-loop
techniques (redundancy or parity relations) (Patton et
al., 2000; Blanke et al., 2006). In this paper, both
approaches are considered.

In the framework of the latter technique, there exists
a promising method of fault diagnosis in technical systems
known as a data-driven, or model-free, or nonparametric
method (see, e.g., Ding, 2014). A notable feature
of this method is that parameters of the system under
consideration may be unknown.

Hybrid residual generators constructed in this paper
have dynamic and finite automaton parts. The former
coincides with its counterpart in the ordinary residual
generators except for parameters, whose values are
changed under time- or state-dependent switchings. The
latter provides the main fault diagnosis properties such
as sensitivity and insensitivity to faults, reliability,
robustness with respect to disturbances, model errors,
and measurement noise. These properties are the
same as in the ordinary residual generators; they are
well-investigated in numerous papers and books (see,
e.g., Gertler, 1998; Blanke et al., 2006; Ding, 2014;
Witczak, 2014; Zhirabok et al., 2017), and therefore are
not considered in the present paper.

Note that the finite automaton part of hybrid systems
imposes some restrictions on the possibility of creating
the dynamic part of a residual generator when states
of the FA part (hybrid system modes) are immediately
unobservable. This aspect is not sufficiently studied
in the literature. The present paper accents studying
these restrictions; its main purpose is to find sufficient
solvability conditions of the fault diagnosis problem
for hybrid systems for the case when their modes are
immediately unobservable. This is the main contribution
and novelty of the present paper.

Various aspects of fault diagnosis in hybrid systems
were studied in the literature: structural diagnosability
(Pröll et al., 2015), active diagnosis (Tabatabaeipour et al.,
2009), fault estimation (Laboudi et al., 2015), diagnosis
in linear hybrid systems (Farhat and Koenig, 2017; Zhao
et al., 2015), fault-tolerant control (Cocquempot et al.,
2004; Yang et al., 2010), disturbance decoupling (Zattoni,
2018).

In this paper, both diagnostic observers and parity
relations in nonparametric form are used for fault

diagnosis in nonlinear HSs. In comparison with the
earlier works (Shumsky and Zhirabok, 2012; Shumsky
et al., 2012), where HSs with continuous-time systems
are studied, here we consider an HS with discrete-time
systems that allows using a unified mathematical
technique to analyze the DTS and the FA. Besides,
additional possibilities to construct the diagnostic HS are
used, which allows to us extend a class of systems for
which the FDI problem can be solved.

The rest of the paper is organized as follows. In
Section 2, the HS is described and the problem statement
is formulated. Section 3 recalls some facts from the
algebra of partitions/functions, important to prove the
results of this paper. In Section 4, residual generators
are constructed. Section 5 is devoted to the hybrid part
of diagnostic system design. A practical example is
considered in Section 6. Section 7 concludes the paper.

2. Basic models and problem statement

The HS is represented schematically in Fig. 1. In this
figure, there are three basic elements: the FA, the DTS
(actually a set of them, one for each mode), and the
so-called mode activator (MA), which coordinates the
actions of the FA and the DTS. The FA is described by
the model A = (I, S,O, δ, λ), where I , S and O are finite
sets of inputs, states, and outputs, while δ and λ are state
transition and output functions, respectively, described by

s+ = δ(s, i), o = λ(s), (1)

where s+ ∈ S is the new state after transition from the
state s ∈ S, initiated by the input i ∈ I , and o ∈ O
is the output. It is assumed that both functions δ and λ
are specified by appropriate tables. The automaton A is
assumed to be minimal (irreducible), i.e., the number of
its states cannot be decreased.

The DTS is described by a set of nonlinear difference
equations of the form

x(t+ 1) = fo(x(t), u(t)), o ∈ O,

y(t) = h(x(t)),
(2)
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Fig. 1. Structure of a hybrid system.
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where x ∈ X ⊆ R
n, u ∈ U ⊆ R

m, y ∈ Y ⊆ R
l are

states, controls, and measured outputs, respectively. The
function fo in (2) depends on the system mode, activated
by the output o ∈ O of the FA.

It is assumed that the functions fo and h contain
parameters from the set C = {a1, . . . , ap}, whose values
depend on o. This dependence is described by the function
specified by an appropriate table. It is assumed that some
parameters from C do not depend on O they reflect faults:
if there are no faults, aj = aj0, where aj0 is the nominal
value of the parameter aj , but if the j-th fault occurs, aj
becomes an unknown function of time.

The mode activator is described by the function β as

i(t) = β(x(t)). (3)

The hybrid diagnostic system we are looking for has
a similar hybrid structure and is shown in Fig. 2. The
notation corresponds to that of the original HS in Fig. 1;
just a letter “D” (from the word “diagnosis”) is added. The
description of the FAD subsystem is also similar, except
that we use the subindex “*” everywhere:

s+∗ = δ∗(s∗, i∗), o∗ = λ∗(s∗). (4)

The MAD is given by

i∗(t) = β∗(y(t), x∗(t)), (5)

where β∗ is a function specified below, x∗ ∈ R
n∗ is

the state of the residual generator (RG) described in
Subsections 4.1 and 4.2, n∗ ≤ n.

Use of the state x∗(t) in (5) may cause the mode
difference when the mode of the HS under diagnosis and
that of the RG may be asynchronous. However, if the RG
is disturbance decoupled, this problem does not arise. If
not, x∗(t) should be removed from (5).

In Section 5.4 we show that use of x∗(t) in (5) allows
us to extend the class of hybrid systems for which the FDI
problem can be solved. Nevertheless, the asynchronous
problem exists, and it will be considered in future works.

Problem statement. Find an automaton FAD, described
by (4), under the restrictions imposed by the MAD (5),
and a bank of residual generators to solve the problem of
fault isolation based on the structural residual vector and
the matrix of syndromes (Gertler, 1998).
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Fig. 2. Structure of a hybrid diagnostic system.

3. Algebra of partitions/functions

3.1. General definitions and properties. We briefly
recall the definitions and concepts of the algebra of
partitions/functions from the works of Hartmanis and
Stearns (1966), Zhirabok and Shumsky (2008), Shumsky
and Zhirabok (2010) as well as Kaldmäe et al. (2013) used
to solve the problem. Note that the algebra of partitions
operates with partitions of some set S and the algebra of
functions operates with vector functions, defined on the
set S. Let FS be a set of vector functions with the domain
S.

Definition 1. (Relation of partial preorder) Given α, β ∈
FS , the notation α ≤ β means that there exists a function
γ such that β(s) = γ(α(s)) for ∀s ∈ S.

Definition 2. (Equivalence) If α ≤ β and β ≤ α, then α
and β are called equivalent, which is denoted by α ∼= β.

Note that ∼= is an equivalence relation. It divides the
set FS into the equivalence classes containing equivalent
functions. Denote by FE the set of all these equivalence
classes; then the relation ≤ is a partial order on this set
and the pair (FE ,≤) is a lattice. There exist two special
vector functions 0 and 1, such that for every function α,
0 ≤ α ≤ 1. The function 0 is equivalent to the identity
function, and 1 to a constant function.

Since the pair (FE ,≤) is a lattice, two binary
operations × and ⊕ exist defined by

α× β = inf(α, β), α⊕ β = sup(α, β).

In simple cases, the second expression may be used to
compute α⊕ β. The rule for the operation × is simple:

(α× β)(s) =

(
α(s)
β(s)

)
.

Example 1. Let FS = R
3, α(s) = (s1+s2, s3)

T , β(s) =
(s1s3, s2s3)

T . Then (α × β)(s) ∼= (s1 + s2, s3, s1s3)
T

and (α⊕ β)(s) = s3(s1 + s2). �

Definition 3. (Binary relation Δ) Given α, β ∈ FX ,
(α, β) ∈ Δ we mean that there exists a function f∗ such
that β(f(x, u)) = f∗(α(x), u) for all (x, u) ∈ X × U .
Here f is a function fo for any o ∈ O.

The binary relation Δ is used for the definition of the
operators m and M.

Definition 4. The operator m(α) is a function in FX that
satisfies the following conditions:
(i) (α,m(α)) ∈ Δ,
(ii) if (α, β) ∈ Δ, then m(α) ≤ β.

Definition 5. The operator M(β) is a function in FX that
satisfies the following conditions:
(i) (M(β), β) ∈ Δ,
(ii) if (α, β) ∈ Δ, then α ≤ M(β).
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The main properties of the operations and operators
are as follows (Zhirabok and Shumsky, 2008).

Lemma 1. Let α and β be some functions. Then
1. α ≤ β ⇒ M(α) ≤ M(β); α ≤ β ⇒ m(α) ≤ m(β);
2. M(m(α)) ≥ α, m(M(β)) ≤ β;
3. α ≤ M(β) ⇒ (α, β) ∈ Δ; m(α) ≤ β ⇒ (α, β) ∈ Δ;
4. M(α× β) = M(α) × M(β).

To evaluate the operations and operators,
webMathematica based software has been developed
so that anyone can use it with only an internet browser
(http://webmathematica.cc.ioc.ee/mathe
matica/NLControl/main/index.html).

The set of vector functions with the domain S and the
set of partitions of S are closely linked. A vector function
α induces a partition πα as follows:

∀s, s′ ∈ S α(s) = α(s′) ⇔ s ≡ s′(πα). (6)

When πα and πβ are some partitions of S, one says
that πα ≤ πβ iff s ≡ s′(πα) ⇒ s ≡ s′(πβ). The notation
s ≡ s′(πα) means that s and s′ are in the same block of
the partition πα. If πα ≤ πβ and πβ ≤ πα, then πα = πβ .

On the analogy of functions, one may define
operations × and ⊕, a binary relation Δ, and operators
m and M.

Example 2. Let S = {1, 2, 3, 4, 5, 6}, πα =
{(1, 2), (3, 4), (5, 6)}, and πβ = {(1, 3), (2, 4), (5, 6)}.
Then πα×πβ = {(1), (2), (3), (4), (5, 6)} and πα⊕πβ =
{(1, 2, 3, 4), (5, 6)}. Clearly, πα × πβ ≤ πα ≤ πα ⊕ πβ .

�
Other examples of evaluating the operations× and ⊕

are given in Section 5.
We also introduce two additional operators mI and

MI as follows. The operator mI : FI → FS yields a
minimal function satisfying for χ ∈ FI the condition

χ(i) = χ(i′) ⇒ mI(χ)(δ(s, i)) = mI(χ)(δ(s, i
′))

(7)
for all i, i′ ∈ I and s ∈ S. The operator MI : FS → FI

yields a maximal function satisfying the condition

MI(β)(i) = MI(β)(i
′) ⇒ β(δ(s, i)) = β(δ(s, i′))

(8)
for all i, i′ ∈ I and s ∈ S.

The operator mI is similar to m except that its
domain is FI . Analogously, the operator MI is similar
to M except that it defines the function with the domain I .

Definition 6. Given α ∈ FX , we say that α is
(h, f)-invariant if (α × h, α) ∈ Δ, or α × h ≤ M(α),
or m(α× h) ≤ α.

In the case of smooth functions, Definition 6 is
a generalization of the concept of the (h, f)-invariant
distribution (or codistribution) (Isidori, 1995).

If h = 1 in Definition 6, we say that α is an
f -invariant function. By analogy, we may talk about a
δ-invariant function ξ ∈ FS defined for the FA (1).

Lemma 2. If α and β are (h, f)-invariant, so is α× β.

Proof. Let α and β be (h, f)-invariant. Then α × h ≤
M(α) and β × h ≤ M(β). Multiply the respective right-
and left-hand sides of these inequalities: α×h×β×h ∼=
α × β × h ≤ M(α) × M(β). By Lemma 1, we obtain
(α× β)× h ≤ M(α× β). The last inequality means that
α× β is (h, f)-invariant. �

3.2. Computation of the operators m, M, mI , and
MI . It is known that a function γ exists that satisfies
the condition (α × u) ⊕ f ∼= γ(f); define m(α) ∼= γ
(see Zhirabok and Shumsky, 2008). Examples of how to
compute γ are given by Kaldmäe et al. (2013).

For evaluation of the operator M, see the work of
Zhirabok and Shumsky (2008), though this rule is not used
in the paper.

In the case of partitions, the operators m and M can
be evaluated by

m(π) =
∏
{j}

σj , (π, σj) ∈ Δ,

M(σ) =
∑
{j}

πj , (πj , σ) ∈ Δ,

respectively (Hartmanis and Stearns, 1966). Note that the
symbol

∏
corresponds to applying ×, and the symbol

∑
corresponds to applying ⊕.

To calculate mI for partitions, use the following rule.
Denote by Ωτ the set of all partitions σ such that

i ≡ i′(τ) ⇒ δ(s, i) ≡ δ(s, i′)(σ)

for all i, i′ ∈ I and s ∈ S. Then

mI(τ) =
∏

σ∈Ωτ

σ.

To calculate MI , denote by Ωσ the set of all
partitions τ such that

i ≡ i′(τ) ⇒ δ(s, i) ≡ δ(s, i′)(σ)

for all i, i′ ∈ I and s ∈ S. Then

MI(σ) =
∑
τ∈Ωσ

τ.

Examples for calculations involving the operator m
are given in Example 3 and Section 5.

http://webmathematica.cc.ioc.ee/mathematica/NLControl/main/index.html
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4. Residual generator design

To generate residuals, in this section we use both
diagnostic observers and parity relations. First, consider
an observer based generator. All the results of this section
should be understood as given for a fixed (single) mode.
This holds for the main relations of the section.

4.1. Observer based RG design. To solve the problem
of fault isolation, introduce for the parameter aj a vector
function α(j) with the maximal number of components
such that

∂

∂aj
α(j)(f(x, u)) = 0.

Consider the system (2) for some o ∈ O and
introduce the coordinate transformation

x∗(t) = ϕ(x(t)), y∗(t) = φ(y(t)), t ≥ 0, (9)

such that the transformed system can be used as a
diagnostic observer and is described by

x∗(t+ 1) = f∗(x∗(t), y(t), u(t)) +Kr(t),

y∗(t) = h∗(x∗(t)),
(10)

where f∗ and h∗ are some functions, K is the gain matrix,
r(t) is a residual generated as follows:

r(t) = φ(y(t)) − y∗(t).

Since the problem of choosing the matrix K has been
studied in the literature (see, e.g., Alcorta and Frank,
1997; Schreier et al., 1997), it is not considered in this
paper.

It is known (Zhirabok and Shumsky, 2008) that the
model obtained via the state transformation does not
depend on the parameter aj if

α(j) ≤ ϕ. (11)

From (9) and (10) it follows that the functions ϕ and φ
satisfy

ϕ(f(x, u)) = f∗(ϕ(x), h(x), u),
φ(h(x)) = h∗(ϕ(x)).

By the definitions of the relation Δ and the operation ⊕,
we obtain from these equations (ϕ × h, ϕ) ∈ Δ and h ⊕
ϕ = 1. Thus, ϕ is an (h, f)-invariant function satisfying
the condition h⊕ ϕ = 1.

Given γ0 := α(j), compute recursively for c ≥ 1,
using the formula

γc+1 = γc ⊕ m(γc × h), (12)

the sequence of non-decreasing vector functions γ0 ≤
γ1 ≤ . . . . There exists a finite c such that γc ∼= γc−1

but γc ∼= γc+d for all d ≥ 1. Define ϕ := γc.

Theorem 1. (Zhirabok and Shumsky, 2008) The formula
(12) yields a minimal (h, f)-invariant vector function ϕ
satisfying the condition α(j) ≤ ϕ.

The minimality of the function ϕ gives the best
choice to satisfy the condition h ⊕ ϕ = 1. If h ⊕ ϕ = 1,
the model (10) independent of the parameter aj does not
exist.

If h⊕ ϕ = 1, we obtain the functions φ and h∗ from
the functional equation φ(h) = h ⊕ ϕ = h∗(ϕ). The
function f∗ can be constructed as follows. Write down

x∗(t+ 1) = ϕ(x(t+ 1)) = ϕ(f(x(t), u(t))

and on the right-hand side of the last expression replace
the variable x by x∗ and y; this is possible since ϕ is an
(h, f)-invariant function.

4.2. RG design based on parity relations. Consider
the system (2) for some o ∈ O and introduce the
coordinate transformation

x∗j(t) = ϕ(j)(x(t)), j = 1, . . . , k,

y∗(t) = φ(y(t)), t ≥ 0,
(13)

such that the transformed system is feedback free:

x∗1(t+ 1) = f1
∗ (y(t), u(t)),

x∗j(t+ 1) = f j
∗ (x∗j−1(t), y(t), u(t)),

j = 2, . . . , k,

y∗(t) = h∗(x∗k(t)),

(14)

where f j
∗ , j = 1, . . . , k, and h∗ are some functions, k

is the dimension of the transformed system. In general,
the feedback free system is of the form x∗j(t + 1) =

f j
∗ (x∗j−1(t), . . . , x∗1(t), y(t), u(t)); we consider (14) for

simplicity.
Note that (14) is a special case of (10) andϕ = ϕ(1)×

· · · × ϕ(k) is an (h, f)-invariant function. Perform in (14)
several temporal shifts and substitutions:

x∗2(t+ 2) = f2
∗ (f

1
∗ (y(t), u(t)), y(t+ 1), u(t+ 1))

= f21
∗ (y(t+ 1), y(t), u(t+ 1), u(t)),

...

x∗k(t+ k) = F∗(y(t+ k − 1), . . . , y(t),

u(t+ k − 1)), . . . , u(t))

for some functions f21
∗ and F∗. Taking into account (14),

we get

y∗(t+ k) = F∗∗(y(t+ k − 1), . . . , y(t),

u(t+ k − 1)), . . . , u(t)),
(15)

where F∗∗ = h∗(F∗).
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Assume for simplicity that the functions fo and h
in (2) are described by polynomials. Assuming that
the functions ϕ(1), . . . , ϕ(k), and φ are polynomials too,
we conclude that the functions f1∗ , . . . , fk∗ , and h∗ are
polynomials as well. As a result, the right-hand side of
(15) can be written in the form

y∗(t+ k) = F∗∗(y(t+ k − 1), . . . , y(t),

u(t+ k − 1), . . . , u(t))

= (Γ1(a) Γ2(a) . . . Γq(a))

×

⎛
⎜⎜⎜⎝

P ∗
1 (t+ k − 1, . . . , t)

P ∗
2 (t+ k − 1, . . . , t)

...
P ∗
q (t+ k − 1, . . . , t)

⎞
⎟⎟⎟⎠ ,

where (Γ1(a) . . . Γq(a)) =: Γ(a) is a row of algebraic
expressions which are functions of parameters from the
set C = {a1, . . . , ap}; P ∗

j (t+ k− 1, . . . , t) := Pj(y(t+
k−1), u(t+k−1), . . . , y(t), u(t)); Pj(y(t+k−1), u(t+
k − 1), . . . , y(t), u(t)), j = 1, . . . , q, is the polynomial
formed by the functions fo and h at instants of time from
t till t+ k − 1.

Write down the expression for y∗ for T instants of
time:

YT (t) = (y∗(t) y∗(t− 1) . . . y∗(t− T + 1))

= Γ(a)PT (t),
(16)

where

PT (t) =

⎛
⎜⎜⎝

P ∗
1 (t− 1, . . . , t− k) . . .

P ∗
2 (t− 1, . . . , t− k) . . .

. . . . . .
P ∗
q (t− 1, . . . , t− k) . . .

. . . P ∗
1 (t− T, . . . , t− k − T + 1)

. . . P ∗
2 (t− T, . . . , t− k − T + 1)

. . .
. . . P ∗

q (t− T, . . . , t− k − T + 1)

⎞
⎟⎟⎠ .

4.3. Residual generation. To generate the residual for
decision making about faults, use the method based on
the matrix PT (t) kernel. In the works of Ding (2014) and
Zhirabok et al. (2017), the size of the temporal window
T is minimal such that rank(PT (t)) = rank(PT−1(t)).
This means that the last column of the matrix PT (t)
linearly depends on other columns, i.e., vector v(T ) exists
such that PT (t)v(T ) = 0 and PT (t) has a nonempty
kernel. From (16) it follows that YT (t)v(T ) = 0, so the
rule

rT (t) = YT (t)v(T ), v(T ) ∈ ker(PT (t))

is robust since it is independent of the values of the system
parameters.

It is well known that calculation of the ranks of
matrices formed on the basis of experimental data is an
ill-conditioned problem. To overcome this difficulty and
reduce computational complexity, one may take T such
that the number of columns of the matrix PT (t) is bigger
than that of its rows, i.e., T ≥ q + 1; here the equality
rank(PT (t)) = rank(PT−1(t)) is valid. In some specific
cases, the value of T may be reduced.

To isolate faults, we construct RGs based on a bank
of observers or parity relations based. Each RG has to
be invariant with respect to some group of faults and
sensitive to other faults. To make a decision, the matrix of
symptoms is used (Gertler, 1998), where rows correspond
to residuals, and columns to faults.

4.4. Condition of parity relation design. It is known
(Zhirabok and Shumsky, 2008) that the model obtained
via the state transformation ϕ = ϕ(1) × ϕ(2) × · · · × ϕ(k)

does not depend on the parameter aj if (11) holds.

Theorem 2. The system (2) can be transformed into the
model (14) independent of the parameter aj if and only if

α(j) ⊕ m(h) = 1, (17)

(α(j) ⊕ h)⊕ m(h× (α(j) ⊕ m(h× . . .

× (α(j) ⊕ m(h)) . . . ))) = 1 (18)

(the operator m is used k times).

Proof.
(Necessity). Assume that the system (1) can be
transformed into the model (14) independent of aj . This
means that there exist functions ϕ(1), . . . , ϕ(k), and φ
such that α(j) ≤ ϕ = ϕ(1) × · · · × ϕ(k) and y∗ =
φ(y). The last condition yields α(j) ≤ ϕ(c) for all c.
Consider the first equation in (14) and replace x∗1(t + 1)
with ϕ(1)(x(t + 1)) and y(t) with h(x(t)): ϕ(1)(x(t +
1)) = ϕ(1)(f(x(t), y(t))) = f1∗ (h(x(t)), u(t)). By the
definitions of relation Δ and operator m, this implies
(h, ϕ(1)) ∈ Δ and ϕ(1) ≥ m(h). By analogy, the
second equation in (14) yields (h × ϕ(c−1), ϕ(c)) ∈ Δ,
c = 2, . . . , k. The property of the operator m (Lemma 1)
and the inequality α(j) ≤ ϕ(c) yield ϕ(c) ≥ α(j) ⊕
m(h × ϕ(c−1)), c = 2, . . . , k, and ϕ(1) ≥ α(j) ⊕ m(h),
respectively. The last inequality implies (17).

Consider for simplicity k = 3. Then

ϕ(2) ≥ α(j) ⊕ m(h× ϕ(1))

≥ α(j) ⊕ m(h× (α(j) ⊕ m(h))),

ϕ(3) ≥ α(i) ⊕ m(h× ϕ(2))

≥ α(j) ⊕ m(h× (α(j) ⊕ m(h× (α(j) ⊕ m(h))))).

(19)
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Since y∗ = h∗(x∗k) and y∗ = φ(y), we have (φ(h))(x) =
(h∗(ϕ(k)))(x). This means that h⊕ ϕ(k) = 1, and taking
into account (19), we obtain (18).

(Sufficiency). From (18) it follows that there exist
functions γ1, γ2, and ϕ(k) such that

γ1(m(h× (α(j) ⊕ m(h× · · · × (α(j) ⊕ m(h)) . . . )))

= γ2(α
(j) ⊕ h) = ϕ(k).

The relation above yields ϕ(k) ≥ α(j), ϕ(k) ≥ h, and

m(h× (α(j) ⊕m(h× · · · × (α(j) ⊕m(h)) . . . ))) ≤ ϕ(k).

From the last inequality and the properties of operators m
and M it follows that

h× (α(j) ⊕ m(h× · · · × (α(j) ⊕ m(h)) . . . ))

≤ M(ϕ(k)).

Choose ϕ(k−1) as a maximal function satisfying the
conditions h× ϕ(k−1) ≤ M(ϕ(k)) and

α(j) ⊕ m(h× · · · × (α(j) ⊕ m(h)) . . . ) ≤ ϕ(k−1)

(the operator m is used k − 1 times); then the inclusion
(h × ϕ(k−1), ϕ(k)) ∈ Δ and the inequalities ϕ(k−1) ≥
m(h × · · · × (α(i) ⊕ m(h)) . . . ) and ϕ(k−1) ≥ α(j)

are true. By analogy, functions ϕ(k−2), . . . , ϕ(2) can be
chosen such that the inclusion (h × ϕ(c−1), ϕ(c)) ∈ Δ
and the inequality ϕ(c) ≥ α(j) are true, c = k − 2, . . . , 2.
Using the operator M k−1 times, from (18) we obtain the
nontrivial (due to (17)) functionϕ(1) = α(j)⊕m(h). Then
ϕ(1) ≥ m(h) and ϕ(1) ≥ α(j) hold, i.e., the inclusion
(h, ϕ(1)) ∈ Δ is true. Since ϕ = ϕ(1) × · · · × ϕ(k) and
ϕ(c) ≥ α(i) for all c, we get ϕ ≥ α(j), i.e., the condition
(11) is valid. From the above and the definition of relation
Δ it follows that (14) are true for some functions f

(1)
∗ ,

. . . , f (k)
∗ . The inequality ϕ(k) ≥ h means that a function

φ exists such that ϕ(k) = φ(h); then y∗ = φ(h(x)) =
ϕ(k)(x) = x∗1. �

Theorem 2 gives an exhaustive solution of the
problem considered. Its main difficulty is the use of a
complex mathematical tool (the algebra of functions) to
construct the RG. To overcome this shortcoming, one may
use the so-called logic-dynamic approach (Zhirabok et
al., 2017) which allows solving the problem for nonlinear
systems with methods of linear algebra.

Example 3. Consider the system described by

x+ = fo(x, u)

=

⎛
⎜⎜⎝

a1x2 − a2x1

x1|x1|
a1x2 − a2x3

x3 − x4

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1 0
0 1
0 0
0 0

⎞
⎟⎟⎠u,

y1 = x1, y2 = x4.

Here, the notation x+ means x(t+ 1).
Check the possibility to obtain the relation of the

form (14) free of the coefficient a1. From the definition
of the function α(j) it follows that α(1)(x) = (x1 −
x3, x2, x4)

T . To compute m(h), use the rule from
Section 3: since (α × u) ⊕ f = (fo2, fo1 − fo3 −
a2fo4)

T , where foi is the i-th component of the function
fo, we have m(h)(x) = (x2, x1 − x3 − a2x4)

T . Since
α(1) ≤ m(h), the condition (17) is valid. Next, (α(1) ⊕
m(h))(x) = m(h)(x) = (x2, x1 − x3 − a2x4)

T and
h× (α(1) ⊕ m(h))(x) = m(h)(x) = (x1, x2, x3, x4)

T =
0. Since m(0) = 0, the condition (18) is true with k = 2,
i.e., (14) can be constructed without the coefficient a1.

Set ϕ(2)(x) := (α(1)⊕h)(x) = x4, ϕ(1)(x) := x1−
x3 − a2x4 ≥ (α(1) ⊕ m(h))(x), x∗1 := x1 − x3 − a2x4,
x∗2 := x4; then (14) takes the form

x∗1(t+ 1) = −a2y1(t) + a2y2(t) + u1(t),

x∗2(t+ 1) = −x∗1(t) + y1(t)− (a2 + 1)y2(t),

y∗(t) = y2(t) = x∗2(t).

Make temporal shifts and substitutions and obtain the
input-output description:

y2(t+ 2) = y1(t+ 1)− (a2 + 1)y2(t+ 1)

+ a2y1(t)− a2y2(t)− u1(t).
(20)

Based on (20), we obtain

y2(t) = y1(t− 1)− (a2 + 1)y2(t− 1)

+ a2y1(t− 2)− a2y2(t− 2)− u1(t− 2)

= (1 a2 + 1 a2 − a2 − 1)

⎛
⎜⎜⎜⎜⎝

y1(t− 1)
y2(t− 1)
y1(t− 2)
y2(t− 2)
u1(t− 2)

⎞
⎟⎟⎟⎟⎠ .

Clearly, T = 6. As a result, Y6(t), Γ(a), and P6(t) in (16)
are as follows:

Y6(t) = (y2(t) . . . y2(t− 5)),

Γ(a) = (1 a2 + 1 a2 − a2 − 1),

P6(t) =

⎛
⎜⎜⎜⎜⎝

y1(t− 1) . . . y1(t− 6)
y2(t− 1) . . . y2(t− 6)
y1(t− 2) . . . y1(t− 7)
y2(t− 2) . . . y2(t− 7)
u1(t− 2) . . . u1(t− 7)

⎞
⎟⎟⎟⎟⎠ .

�
By construction, the parity relation based RG is

founded on the feedback free model (14). This condition
is rather restrictive. Therefore the observer based RG is
preferable to attain the purpose of fault diagnosis.
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5. MAD and FAD design

Solvability of the FDI problem for each mode, in general,
is not enough to solve the problem for the HS, except
in the rare occasions when Eqns. (10) or (14) do not
depend on parameters at all (are same for each mode), and
therefore A∗ and MAD are missing. If this is not the case,
then one has to coordinate the work of the FA and the FAD
as well as that of the MA and the MAD. This is possible
only under certain conditions, specified in Theorems 3 and
4 below.

In general, the function ϕ depends on the system
mode and therefore, in the following, we use the notation
ϕo instead.

5.1. Main relations. The FA, described by (1) and the
FAD, described by (4), are well-coordinated functions θ :
S → S∗, ρ : I → I∗, and η : O → O∗ exist such that

δ∗(θ(s), ρ(i)) = θ(δ(s, i)), (21)

λ∗(θ(s)) = η(λ(s)). (22)

Theorem 3. The relations (21) and (22) hold if the fol-
lowing conditions are satisfied:

(i) θ is a δ-invariant function satisfying the condition
θ ≤ η(λ);

(ii) mI(ρ) ≤ θ.

Proof. Since θ ≤ λ′ = η(λ), a function λ∗ exists such
that (22) holds. From (ii), the definition of relation ≤, and
(7) it follows that

ρ(i) = ρ(i′) ⇒ θ(δ(s, i)) = θ(δ(s, i′))

for all i, i′ ∈ I and s ∈ S. Since θ is δ-invariant, we have

θ(s) = θ(s′) ⇒ θ(δ(s, i)) = θ(δ(s′, i))

for all i ∈ I and s, s′ ∈ S. Clearly, the last relation is true
for i′ ∈ I such that ρ(i) = ρ(i′). Therefore

[ρ(i) = ρ(i′) ∧ θ(s) = θ(s′)]
⇒ θ(δ(s, i)) = θ(δ(s′, i′)).

The latter means that there exists a function δ∗ such that
(21) holds. �

5.2. MAD design. From (5) it can be shown that i∗ =
(β∗(h× ϕo))(x). Since i∗ = ρ(i) and i = β(x), we have

β∗(h× ϕo) = ρ(β). (23)

Theorem 4. The FDI problem is solvable for the HS if
the following conditions are satisfied:

(i) the FDI problem is solvable for every mode of the
HS;

(ii) (h× ϕo)⊕ β = 1 for all o ∈ O;

(iii) mI(ρ) ≤ θ for some δ-invariant function θ satisfying
the condition θ ≤ λ′ = η(λ).

Proof. When (ii) is true, then there exists nonconstant
functions ρ and β∗ such that ρ(β) = β∗(h × ϕo). The
function ρ defines the inputs i∗ for the FAD as i∗ = ρ(i),
i ∈ I , the function β∗ defines the MAD (5). When (iii)
is true, from Theorem 3 it follows that (21) and (22) are
true, i.e., the FAD can be constructed. �

The functions ρ and β∗ can be found as follows. Let
the functions h, β, and ϕo define partitions πh, πβ , and
πϕo on the set X , respectively, on the analogy of (6). Find
the partition π∗ = πβ ⊕ (πh×πϕo). Note that the number
of its blocks is finite due to the finite number of blocks of
the partition πβ .

Assume that the partition πβ contains several blocks,
and each corresponds to some input i according to (3).
The partition π∗ = πβ⊕(πh×πϕo) contains bigger blocks
and each consist of some blocks of πβ . Let some block
Bπ∗ contain blocks Bπβ ,1, . . . , Bπβ ,d and β(Bπβ ,1) =
i1, . . . , β(Bπβ ,d) = id. Then β∗(Bπ∗) = i∗ = ρ(i1) =
· · · = ρ(id).

Example 4. Consider the system from Example 3 and let
the function β from (3) be as follows:

i = β(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i1 if |x1| ≤ 1 and x2 < 0,

i2 if |x1| ≤ 1 and x2 ≥ 0,

i3 if |x1| > 1 and x2 < 0,

i4 if |x1| > 1 and x2 ≥ 0,

h = (x1 x4)
T .

The partition πβ has four blocks corresponding to the
inputs i1 to i4: the block Bπβ ,1 contains states satisfying
the conditions |x1| ≤ 1 and x2 < 0, the block Bπβ ,2 the
conditions |x1| ≤ 1 and x2 ≥ 0, etc. Since ϕo(x) = (x1−
x3 − a2x4, x4)

T , we have (h × ϕo)(x) = (x1, x3, x4)
T

and ((h×ϕo)⊕β)(x) = x1. Therefore, the condition (ii)
of Theorem 4 is satisfied for all o ∈ O.

The partition π∗ corresponding to the function ((h×
ϕo) ⊕ β)(x) = x1 has two blocks Bπ∗,1 and Bπ∗,2. The
first contains states satisfying the condition |x1| = |y1| ≤
1, while for the second |x1| = |y1| > 1. Accordingly,
block Bπ∗,1 contains blocks Bπβ ,1 and Bπβ ,2, block
Bπ∗,2 contains Bπβ ,3 and Bπβ ,4. Since β(Bπβ ,1) = i1
and β(Bπβ ,2) = i2, we have β∗(Bπ∗,1) = i∗1 = ρ(i1) =
ρ(i2); by analogy, β∗(Bπ∗,2) = i∗2 = ρ(i3) = ρ(i3). As
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a result, we write

i∗ = β∗(y) =

{
i∗1 if |y1| ≤ 1,

i∗2 if |y1| > 1,

ρ(i) =

{
i∗1 if i ∈ {i1, i2},
i∗2 if i ∈ {i3, i4},

πρ = {(i1, i2), (i3, i4)}.

�

Note that systems with the output y of a low
dimension have some limits on the use of the suggested
approach. Assume that the function ϕo for some
parameter aj and mode o ∈ O is such that h⊕ϕo = 1. In
this case, the RG invariant with respect to the parameter
aj and the appropriate MAD do not exist. Hence, the
problem of fault isolation may have only a partial solution.
The problem can be solved by using additional sensors.

5.3. FAD design. Note that if ρ is an identity function,
then the FAD coincides with the FA since it is irreducible
by assumption. We assume that ρ is not an identity
function “compressing” the set of inputs I . Therefore,
the set of states S can be “compressed” as well by the
function θ and the number of the states of automaton A
can be reduced.

Note that when the function ρ is not the identity, we
need to reduce the automaton A (if it is possible) since
θ ≥ mI(ρ) = 0. Such a reduction may lead to a decrease
in the system detectability. Algorithm 1 below constructs
the FAD A∗.

Example 5. The description of the FA is given in Table 1,
and the values of system parameters in Example 3, defined
by modes, are given in Table 2.

Table 1. Description of the FA.

s s+ o
i1 i2 i3 i4

s1 s1 s2 s3 s4 o1
s2 s1 s2 s6 s6 o2
s3 s2 s2 s3 s4 o3
s4 s5 s5 s4 s3 o3
s5 s5 s5 s3 s4 o2
s6 s2 s1 s6 s6 o3

From Table 1 it follows that

πλ = {(s1), (s2, s5), (s3, s4, s6)},

while the function ρ and the partition πρ are found in
Example 4.

Algorithm 1. Construction of the FAD A∗.
Step 1. At first find the functions θ and η. Introduce
the partitions πθ and πη , respectively corresponding to the
functions θ and η on the analogy of (6). Write a recursion

πθj+1 = πθj ⊕ m(πθj ), j = 0, 1, . . . , (24)

where πθ0 = mI(πρ). From (24) it follows that
πθ0 ≤ πθ1 ≤ . . . . It is known (Hartmanis and
Stearns, 1966) that an integer c exists such that
πθc = πθc+1 . Then πθ = πθc is a minimal partition
corresponding to the function θ. If πθ = 1, the FDI
problem cannot be solved; assume that πθ = 1.

Step 2. Denote by S∗ the set of blocks of the partition
πθ . To construct the function δ∗ of the automaton A∗,
replace the states in the table of A by the states from the
set S∗ according to the following rule: if the state s is in
the block of the partition πθ corresponding to s∗, then s
is replaced by s∗. Analogously, replace the inputs of the
automaton A by the inputs from the set I∗.

Step 3. To find the functions λ∗ and η, introduce the
partition πλ corresponding to the function λ and compute
the partition πΛ = πθ ⊕ πλ; assume that πΛ = 1,
otherwise the FDI problem cannot be solved. Consider
the first block of the partition πΛ and the states s1 and s2
from this block. Let λ(s1) = o1 and λ(s2) = o2. Then
set η(o1) = η(o2) := o∗1. Other blocks of the partition
πΛ are considered analogously.

Step 4. The function λ∗ is constructed as follows: if the
state s∗ corresponds to the block Bπθ

of the partition πθ ,
then λ∗(s∗) = η(λ(s)), s ∈ Bπθ

.

Since ρ(i1) = ρ(i2) and ρ(i3) = ρ(i4), the states
s1 = δ(s1, i1) and s2 = δ(s1, i2) form some block
of the partition πθ0 ; the same is true for the states
s3 = δ(s1, i3) and s4 = δ(s1, i4). As a result, πθ0 =
{(s1, s2), (s3, s4), (s5), (s6)}.

From (24) it follows that m(πθ0) = {(s1), (s2, s5),
(s3, s4, s6)} and πθ1 = {(s1, s2, s5), (s3, s4, s6)}. It can
be shown that πθ2 = πθ1 . Then πθ := πθ1 , S∗ :=
{s∗1, s∗2}, and

θ(s) =

{
s∗1 if s ∈ {s1, s2, s5},
s∗2 if s ∈ {s3, s4, s6}.

Compute the partition πΛ = πθ ⊕ πλ= {(s1, s2, s5),
(s3, s4, s6)}⊕{(s1),(s2, s5), (s3, s4, s6)} = {(s1, s2, s5),
(s3, s4, s6)}. Since the outputs o1 and o2 correspond to
the states s1, s2, and s5, the output o3 correspond to the
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states s2, s4, and s6, then

η(o) =

{
o∗1 if o ∈ {o1, o2},
o∗2 if o = o3,

πη = {(o1, o2), (o3)}.

Table 2. Values of system parameters.

Parameter Mode
o1 o2 o3

a1 1 2 3
a2 1 1 2

To construct the function λ∗, consider the state s∗1
corresponding to the block (s1, s2, s5). Since λ(s1) = o1,
λ(s2) = λ(s5) = o2, and η(o1) = η(o2) = o∗1, we have
λ∗(s∗1) = o∗1. The state s∗1 yields λ∗(s∗2) = o∗2 by
analogy. As a result, the automaton A∗ is described by
Table 3.

Table 3. Description of A∗.

s∗ s+∗ o∗
i∗1 i∗2

s∗1 s∗1 s∗2 o∗1
s∗2 s∗1 s∗2 o∗2

In addition to (23), there exists a relation between the
forms (10) or (14) and the FAD. Introduce in O the set of
partitions π1, . . . , πp: o ≡ o′(πj) ⇔ the coefficient aj has
the same values in the modes o and o′, j = 1, . . . , p.

Theorem 5. If the model (10) or (14) contains the coeffi-
cient aj , then

πη ≤ πj . (25)

Proof. Let (10) or (14) contain the coefficient aj , and
modes o and o′ be in some block of the partition πη . The
last means that the values of the coefficient aj are the same
in the modes o and o′, i.e., these modes are in some block
of the partition πj . From the definition of the relation ≤ it
follows that πη ≤ πj . �

Based on Table 2, we obtain π1 = {(o1), (o2), (o3)}
and π2 = {(o1, o2), (o3)}. Since πη = {(o1, o2), (o3)},
(25) is satisfied for the parameter a2, and (14) should be
free from the parameter a1. From Example 3 it follows
that (20) does not contain the parameter a1. The values of
parameter a2 in that FAD, defined by modes, are given by

a2 =

{
1 if o∗ = o∗1,
2 if o∗ = o∗2.

�

5.4. Analysis of the solvability of the FDI problem.
Consider the condition (h×ϕo)⊕β = 1 from Theorem 4.
If h⊕β = 1, then we can construct the FAD without using
the function ϕo. But it is strongly recommended to use
this function since it provides a better possibility to solve
the FDI problem. If h ⊕ β = 1, use of the function ϕo is
obligatory. Consider this in detail.

From the property of operations × and ⊕ it follows
that (Zhirabok and Shumsky, 2008)

(h× ϕo)⊕ β ≤ (h⊕ β)× (ϕo ⊕ β).

If h ⊕ β = 1, then the only possibility to solve the FDI
problem is to find a function ϕo such that ϕo ⊕ β = 1 for
all o ∈ O. Algorithm 2 below checks the possibility to
solve the FDI problem under the condition h⊕ β = 1.

Algorithm 2. Checking the possibility of solving the FDI
problem.

Step 1. Set j = 1, find an (h, f)-invariant function ϕo

such that a(j) ≤ ϕo, and construct the RG in the form (10)
or (14) (if possible). Let the model (10) or (14) contain the
parameters ac1 , ac2 , . . . , acd .

Step 2. Check the condition ϕo ⊕ β = 1 for all o ∈ O. If
it does not hold, set j := j + 1 and go to Step 1.

Step 3. Find the functions β∗ and ρ from (23) and the
partition πη. Check the condition (25) for j = c1, j = c2,
. . . , j = cd. If all of them hold, then the FAD for the j-th
RG can be constructed, otherwise it cannot. If j = p, stop;
otherwise set j := j + 1 and go to Step 1.

When the problem is not solved for some j and j′ as
well as appropriate functions ϕo and ϕ′

o, we can construct
an RG in the form (10) or (14) for the function ϕ′′

o = ϕo×
ϕ′
o since it is (h, f)-invariant due to Lemma 2. In this case

we have a better possibility of solving the FDI problem
since π′′

η ≤ πη and π′′
η ≤ π′

η , where π′′
η corresponds to the

function ϕ′′
o , which provides a better chance to satisfy the

condition (25).
If (h× ϕo) ≤ β, then (h× ϕo)⊕ β ∼= β, and based

on (23) we can set ρ := 0. In this case mI(ρ) = 0, and
there is no need to reduce the automaton A, but we can try
to reduce it using (25) as follows.

Let the model (10) or (14) contain the parameters
aj1 , . . . , ajc ; then, by Theorem 5, πη ≤ πj1 , . . . , πη ≤
πjc hold, which implies that πη ≤ πj1 × · · · × πjc . If
πj1 × · · ·×πjc = 0, we can set πη := πj1 × · · ·×πjc and
find the functions η and λ′ = η(λ).

The procedure of reducing the automaton A with the
output function λ′, i.e., finding the functions δ∗ and λ∗, is
as follows. Find the sequence of functions

ξ0 := λ′, ξj = λ′ × M(λ′)× · · · × Mj(λ′),
j = 0, 1, . . . ,
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where M0(λ′) = λ′. When ξc ∼= ξc+1 for some c, set θ :=
ξc; the function θ is maximal δ-invariant by construction
(Zhirabok and Shumsky, 2008).

Since the functions ξ0 = λ′ and Mj(λ′) are specified
by tables, for computations we use the partitions that
correspond to these functions. Let πλ′ be the partition
on the set S induced by λ′ according to (6). Find the
sequence of partitions, corresponding to the functions ξj :

π0
θ := πλ′ , πj

θ = πλ′ × M(πλ′ )× · · · × Mj(πλ′ ),

j = 0, 1, . . . (26)

When πc
θ = πc+1

θ for some c, then the partition πθ = πc
θ

has a substitution property (Hartmanis and Stearns, 1966)
that corresponds to δ-invariance; if πθ = 0, i.e., if at least
one block of the partition contains more than a single state,
the automaton A with the output function λ′ is reducible.

In addition to reducing the set of states of the
automaton A, we may reduce the set of its inputs using
the operator MI as follows. Calculate the partition πρ =
MI(πθ). Observe that Theorem 3 requires mI(ρ) ≤ θ,
or ρ ≤ MI(θ) to be satisfied. Note that the choice
ρ = MI(θ) guarantees the minimal number of inputs in
A∗. If ρ = 0, denote by I∗ the set of blocks of the partition
πρ, corresponding to the function ρ, and construct the
automaton A∗ by Algorithm 1.

6. Example

Consider the control system

x+
1 = a1

u1

ϑ1
− a4sign(x1 − x2)

√
|x1 − x2|+ x1,

x+
2 = a3

u2

ϑ2
+ a4sign(x1 − x2)

√
|x1 − x2|

− a2a5sign(x2 − x3)
√
|x2 − x3|+ x2,

x+
3 = a2a5sign(x2 − x3)

√
|x2 − x3|

− a6
√
x3 − ϑ7 + x3,

y1 = x1, y2 = x2,

(27)

where a4 = ϑ4

√
2ϑ8/ϑ1, a5 = ϑ5

√
2ϑ8/ϑ2, and a6 =

ϑ6

√
2ϑ8/ϑ3.
Equations (27) constitute a modified sampled-data

model of the well-known example of a three tank system

� �

�

u1 u2

Fig. 3. Three-tank system.

(Patton, 1994), see Fig. 3. The system consists of three
consecutively linked tanks with the areas of cross-section
ϑ1, ϑ2, and ϑ3. The tanks are linked by pipes with the
areas of cross-section ϑ4 and ϑ5. The liquid flows into the
first and the second tanks and flows out of the third one
through the pipe with the area of cross-section ϑ6 located
at height ϑ7; ϑ8 is the gravitational constant. The levels
of liquid in the tanks are x1, x2, and x3, respectively.

The FA is given by Table 4 and the MA by the
function

i = β(x) =

⎧⎪⎨
⎪⎩
i1 if x2 − x3 ≥ a,

i2 if − 1 ≤ x2 − x3 < a,

i3 if x2 − x3 < −1

(28)

for some constant a > 0. The parameters a1, a2, and a3
depend on the output of the FA as described in Table 5.
The parameters a4, a5, and a6 do not depend on the
output; they reflect faults in the system which appear as
leakages in the first, second, and third tank, respectively.

Table 4. Description of the FA.

s s+ o
i1 i2 i3

s1 s1 s2 s4 o1
s2 s1 s2 s3 o2
s3 s1 s2 s3 o3
s4 s1 s2 s4 o4

Table 5. Values of system parameters.

Parameter Mode
o1 o2 o3 o4

a1 0.1 0.1 0.1 0.2
a2 0.1 0.07 0.05 0.03
a3 0.1 0.2 0.2 0.2

Clearly, h ⊕ β = 1; therefore, we use Algorithm 2.
Evaluate the function α(4)(x) = (x1 + x2, x3)

T . Check
the possibility of constructing an RG. Set γ0 := (x1 +
x2, x3)

T ; since γ0 × h = 0 and m(0) = 0, from (12)
it follows that ϕ(x) = γ0(x) = (x1 + x2, x3)

T . Since
ϕ × h = 0 ≤ β and (ϕ ⊕ h)(x) = x1 + x2, we can
construct an observer based RG and set ρ := 0.

Set x∗1 := ϕ1(x) = x1 + x2, x∗2 := ϕ2(x) = x3.
The observer is described by

x+
∗1 = a1

u1

ϑ1
+ a3

u2

ϑ2

− a2a5sign(y2 − x∗2)
√
|y2 − x∗2|+ y1 + y2,

x+
∗2 = a2a5sign(y2 − x∗2)

√
|y2 − x∗2|
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− a6
√
x∗2 − ϑ7 + x∗2,

y∗ = x∗1, r1 = y1 + y2 − y∗.
(29)

and the gain K is omitted for simplicity. Since the
observer contains all parameters a1 to a3, the FAD
coincides with the FA. The function β∗ is defined as
follows:

β∗(x∗, y) =

⎧⎪⎨
⎪⎩
i1 if y2 − x∗2 ≥ a,

i2 if − 1 ≤ y2 − x∗2 < a,

i3 if y2 − x∗2 < −1.

Since m(h) = x1 and α1(x) ⊕ m(h) = 1, the condition
(17) does not hold. Therefore no RG based on parity
relations exists.

From (29) it follows that, since a2 = 0, the
sensitivity of the residual r1 to deviation in a5 may change
but does not equal zero; simulation confirms this fact.
Besides, the sensitivity to a6 does not depend on the mode.

Compute the function α(5)(x) = (x1, x2 + x3)
T .

It can be shown that ϕ(x) = (x1, x2 + x3)
T , and the

observer is described by the equations with x∗1 := x1,
x∗2 := x2 + x3 :

x+
∗1 = a1

u1

ϑ1
− a4sign(y1 − y2)

√
|y1 − y2|+ y1,

x+
∗2 = a3

u2

ϑ2
+ a4sign(y1 − y2)

√
|y1 − y2|

− a6
√
x∗2 − y2 − ϑ7 + x∗2,

y∗ = x∗1, r2 = y1 − y∗. (30)

Clearly, the sensitivity of the residual r2 to a deviation in
a4 does not depend on the mode.

These equations contain the parameters a1 and a3,
therefore we can set πη := π1 × π3 = {(o1, o2, o3),
(o4)} × {(o1), (o2, o3, o4)} = {(o1), (o2, o3), (o4)},
therefore πλ′ = {(s1), (s2, s3), (s4)}. The formula (26)
yields πθ = {(s1), (s2, s3), (s4)}. The FAD is given in
Table 6.

Table 6. Description of the FAD.

s∗ s+∗ o∗
i1 i2 i3

s1∗ s1∗ s2∗ s3∗ o1∗
s2∗ s1∗ s2∗ s2∗ o2∗
s3∗ s1∗ s2∗ s3∗ o3∗

The function β∗ is defined by

β∗(x∗, y) =

⎧⎪⎨
⎪⎩
i1 if 2y2 − x∗2 ≥ a,

i2 if − 1 ≤ 2y2 − x∗2 < a,

i3 if 2y2 − x∗2 < −1.

Table 7. Values of the parameters a1 and a3.

Parameter Mode
o1∗ o2∗ o3∗

a1 0.1 0.1 0.2
a3 0.1 0.2 0.2

The parameters a1 and a3 in the observer depend on
the output of the FAD as given in Table 7.

One may check that the conditions of Theorem 2 hold
and hence ϕ(x) = x1. But (ϕ × h) ⊕ β = 1 and no RG
based on parity relations exists.

Compute the function α(6)(x) = (x1, x2)
T . In this

case, Theorems 1 and 2 produce the same result ϕ(x) =
x1. Since (ϕ × h) ⊕ β = 1, neither observer based nor
parity relations based RG exists.

Clearly, the matrix of syndromes SD is given by

SD =

(
0 1 1
1 0 1

)
,

where the rows correspond to the residuals r1 and r2,
while the columns to the parameters a4, a5, and a6.

For simulation, set a40 := 0.2, a50 := 1, a60 :=
0.1, ϑ70 := 0.1, a := 0.3, u1 = u2 := 0.1. Figures 4
and 5 show the behavior of the difference x2(t) − x3(t)
and the state s, respectively, where s = i corresponds
to the state si, i = 1, . . . , 4. Multiple switchings in the
interval t = 50 ÷ 100 can be explained by the proximity
of x2(t) − x3(t) to a = 0.3 here; two switchings after
t = 120 are due to changing the parameter a6.

Figure 6 shows the behaviour of the residual r1 for
the observer (29) when the parameter a6 abruptly changes
at t = 120 from a60 = 0.1 to a6 = 0.2 while a4 abruptly
changes at t = 30 from a40 = 0.2 to a4 = 0.1 onward.
Figure 7 shows the behavior of the residual r2 for the
observer (30) when the parameter a4 abruptly changes
at t = 65 from a40 = 0.2 to a4 = 0.05 onward. The
behavior of r1 shows its sensitivity to the parameter a6
and insensitivity to a4, which corresponds to the model
(29). Simulation shows that the change in a4 to a4 = 0.01
yields another picture of multiple switchings.

7. Conclusion

The paper addressed the fault diagnosis problem in hybrid
systems. A solution to this problem was proposed in
the form of a bank of hybrid residual generators. Such
generators are based on both closed-loop (diagnostic
observers) and open-loop techniques (parity relations).
The latter was is used for applying a nonparametric
method of diagnosis. It was shown that the fault diagnosis
problem can be solved under some (sufficient) solvability
conditions.
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Fig. 4. Evolution of the difference x2 − x3.
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Fig. 5. Evolution of the state s.
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Fig. 6. Evolution of the residual r1 for the observer (29).
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Fig. 7. Evolution of the residual r2 for the observer (30).

The future plan regarding research covers studying
the asynchronous problem and improving the detection
efficiency based on weighted residual signals (Li et al.,
2016).
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Pröll, S., Jarmolowitz, F., and Lunze, J. (2015). Structural
diagnosability analysis of switched systems, IFAC Sympo-
sium SAFEPROCESS 2015, Paris, France, pp. 156–163.

Schreier, G., Ragot, J., Patton, R., and Frank, F. (1997). Observer
design for a class of nonlinear systems, IFAC Symposium
SAFEPROCESS 1997, Hull, UK, pp. 498–503.

Shumsky, A. and Zhirabok, A. (2006). Nonlinear diagnostic
filter design: Algebraic and geometric points of view, In-
ternational Journal of Applied Mathematics and Computer
Science 16(1): 115–127.

Shumsky, A. and Zhirabok, A. (2010). Unified approach to the
problem of full decoupling via output feedback, European
Journal of Control 16(4): 313–325.

Shumsky, A., Zhirabok, A., Jiang, B., and Yang, H. (2012).
Transformation of hybrid systems: Application to reduced
order observer design, IASTED International Conference
on Control and Applications, Crete, Greece, pp. 98–103.

Shumsky, A. and Zhirabok, A. (2012). Redundancy relations for
fault diagnosis in hybrid systems, IFAC Symposium SAFE-
PROCESS 2012, Mexico, Mexico, pp. 1226–1231.

Tabatabaeipour, S., Ravn, A., Izadi-Zamanabadi, R., and Bak,
T. (2009). Active fault diagnosis of linear hybrid systems,
IFAC Symposium SAFEPROCESS 2009, Barcelona, Spain,
pp. 211–216.

Yang, H., Jiang, B., and Cocquempot, V. (2010). Fault
Tolerant Control Design for Hybrid Systems, Springer,
Berlin/Heidelberg.

Witczak, M. (2014). Fault Diagnosis and Fault Toler-
ant Control Strategies for Nonlinear Systems, Springer,
Berlin/Heidelberg.

Zattoni, E. (2018). A geometric approach to structural
model matching by output feedback in linear impulsive
systems, International Journal of Applied Mathe-
matics and Computer Science 28(1): 25–38, DOI:
10.2478/amcs-2018-0002.

Zhao, S., Huang, B., Luan, X., Yin, Y., and Liu, F. (2015).
Robust fault detection and diagnosis for multiple-model
systems with uncertainties, IFAC Symposium SAFEPRO-
CESS 2015, Paris, France, pp. 137–142.

Zhirabok, A. and Shumsky, A. (2008). The Algebraic Meth-
ods for Analysis of Nonlinear Dynamic Systems, Dalnauka,
Vladivostok, (in Russian).

Zhirabok, A., Shumsky, A., and Pavlov, S. (2017). Diagnosis
of linear dynamic systems by the nonparametric method,
Automation and Remote Control 78(7): 1173–1188.

Zhirabok, A., Shumsky, A., Solyanik, S., and Suvorov,
A. (2017). Fault detection in nonlinear systems via
linear methods, International Journal of Applied Math-
ematics and Computer Science 27(2): 261–272, DOI:
10.1515/amcs-2017-0019.

Alexey Zhirabok is a professor at Far East-
ern Federal University (Vladivostok). He re-
ceived his Candidate of Science (PhD) de-
gree in radiolocation and radionavigation from
Leningrad Electrotechnical Institute in 1978 and
the Doctor of Science degree in automatic con-
trol from the Institute of Automation and Control
Processes, Russian Academy of Sciences (Vladi-
vostok), in 1996. His research interests include
nonlinear control theory with applications to fault

diagnosis and fault tolerant control.

Alexey Shumsky is a professor at Far Eastern
Federal University (Vladivostok). He received
his Candidate of Science (PhD) degree in radi-
olocation and radionavigation at Leningrad Elec-
trotechnical Institute in 1985 and the Doctor of
Science degree in automatic control from the In-
stitute of Control Problems, Russian Academy of
Sciences (Moscow), in 1996. His research inter-
ests are in nonlinear control theory with applica-
tions to fault diagnosis and fault tolerant control.

Received: 7 May 2018
Revised: 28 July 2018
Accepted: 10 September 2018


	Introduction
	Basic models and problem statement
	Algebra of partitions/functions
	General definitions and properties
	Computation of the operators m, M, mI, and MI

	Residual generator design
	Observer based RG design
	RG design based on parity relations
	Residual generation
	Condition of parity relation design

	MAD and FAD design
	Main relations
	MAD design
	FAD design
	Analysis of the solvability of the FDI problem

	Example
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


