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A MEMORY–EFFICIENT NONINTEGER–ORDER DISCRETE–TIME
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A new, state space, discrete-time, and memory-efficient model of a one-dimensional heat transfer process is proposed.
The model is derived directly from a time-continuous, state-space semigroup one. Its discrete version is obtained via a
continuous fraction expansion method applied to the solution of the state equation. Fundamental properties of the proposed
model, such as decomposition, stability, accuracy and convergence, are also discussed. Results of experiments show that
the model yields good accuracy in the sense of the mean square error, and its size is significantly smaller than that of the
model employing the well-known power series expansion approximation.
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1. Introduction

Mathematical models of distributed parameter systems
based on partial differential equations can be described in
infinite dimensional state space, usually in a Hilbert one,
but a Sobolev space can also be applied. This problem
has been analyzed by many authors. Fundamentals were
given, for example, by Pazy (1983) and Mitkowski (1991).
An analysis of a hyperbolic system in a Hilbert space
was presented by Bartecki (2013), while the modeling and
control of heat plants were discussed, e.g., by Rauh et al.
(2016).

The modeling of processes and phenomena which
are hard to describe with the use of other tools is one
of the main areas of applications of noninteger-order
calculus. Noninteger models for physical phenomena
were presented by many authors (e.g., Podlubny, 1999;
Dzieliński et al., 2010; Caponetto et al., 2010; Das,
2010; Obrączka, 2014; Sierociuk et al., 2015; Gal and
Warma, 2016). Analysis of anomalous diffusion problems
with the use of a fractional order approach and semigroup
theory was made, for example, by Popescu (2010). An
observability problem for fractional order systems was
discussed, e.g., by N’Doye et al. (2013) or Kaczorek
(2016), while controllability was investigated, e.g., by
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Balachandran (2012; 2014).
It is well known that heat transfer processes can

also be modeled employing a noninteger-order approach.
This problem was investigated, for example, by Baeumer
et al. (2005), Kochubei (2011), Almeida and Torres
(2011), Mitkowski (2011), Obrączka (2014) or Dlugosz
and Skruch (2015).

This paper presents a proposal for a new, low
order, discrete, state-space model for heat transfer
processes in a one-dimensional plant. The model
considered follows directly from the semigroup model
given by Oprzędkiewicz and Gawin (2016) as well
as Oprzędkiewicz et al. (2016a). It employs a new,
continuous fraction expansion (CFE) based solution
method proposed by Oprzędkiewicz et al. (2017b). The
approach allows us to obtain a model accurate and
significantly smaller than the analogous model using
power series expansion (PSE) approximation, discussed
by Oprzędkiewicz et al. (2017a).

The paper is organized as follows. Elementary ideas
and definitions are mentioned at the beginning. Here
the proposed CFE-based method of solving a discrete
fractional-order (FO) state equation is also presented.
Next, the discussed, experimental, infinite-order plant
and its noninteger-order, semigroup model are recalled.
Furthermore, the CFE based, discrete model of the
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heat system considered is proposed and its elementary
properties are analyzed. Finally, experimental verification
of the proposed model is discussed.

2. Preliminaries

2.1. Elementary ideas. Fundamentals of fractional
calculus can be found in many books (e.g., Das, 2010;
Kaczorek, 2011; Ostalczyk, 2016; Podlubny, 1999). Here
only some definitions necessary to explain of main results
will be given.

At the beginning, the idea of Euler’s gamma function
will be recalled (see, e.g., Kaczorek and Rogowski, 2014).

Definition 1. (Gamma function)

Γ(x) =

∞∫

0

tx−1e−t dt. (1)

Next, the Mittag-Leffler function will be introduced.
It is a noninteger-order generalization of the exponential
function eλt which plays a crucial role in the solution
of fractional order (FO) state equations. It is defined as
follows.

Definition 2. (One parameter Mittag-Leffler function)

Eα(x) =

∞∑
k=0

xk

Γ(kα+ 1)
. (2)

The fractional-order, integro-differential operator is
described by different definitions, given by Grünvald
and Letnikov (GL definition), Riemann and Liouville
(RL definition) and Caputo (C definition). Only the C
definition will be employed in this paper. It is given as
follows (Kaczorek, 2016).

Definition 3. (Caputo definition of the FO operator)

C
0 D

α
t f(t) =

1

Γ(N − α)

∞∫

0

f (N)(τ)

(t− τ)α+1−N
dτ, (3)

where N − 1 < α < N denotes the noninteger order
of operation and Γ(·) is the complete Gamma function
expressed by (1).

The noninteger-order spatial derivative was given by
Riesz and has the following form (see, e.g., Yang et al.,
2010).

Definition 4. (Riesz definition of the FO spatial deriva-
tive)

∂γΘ(x, t)

∂xγ
= −rγ (0D

γ
x +x Dγ

1 )Θ(x, t), (4)

where

rγ =
1

2 cos(πγ2 )
. (5)

In (4), 0D
γ
x and xDγ

1 denote left- and right-side
Riemann–Liouville derivatives, defined as

0D
γ
x =

1

Γ(2− α)

∂

∂x

∫ x

0

Θ(ξ, t) dξ

(x − ξ)γ−1
, (6)

xD
γ
1 =

1

Γ(2− α)

∂

∂x

∫ 1

x

Θ(ξ, t) dξ

(ξ − x)γ−1
. (7)

For the Caputo operator, the Laplace transform can
be defined (see, e.g., Kaczorek, 2011).

Definition 5. (Laplace transform for the Caputo opera-
tor)

L(C0 Dα
t f(t)) = sαF (s), α < 0,

L(C0 Dα
t f(t)) = sαF (s)−

n−1∑
k=0

sα−k−1
0D

k
t f(0),

α > 0, n− 1 < α ≤ n ∈ N.

(8)

A fractional-order linear multiple-input
multiple-output (MIMO) state-space system, employing
the C definition, is described as follows:

C
0 D

α
t x(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(9)

where α ∈ (0, 1) denotes the fractional order of the state
equation, x(t) ∈ R

N , u(t) ∈ R
L, y(t) ∈ R

P are the state,
control and output vectors, respectively, A,B,C are the
state, control and output matrices, respectively. In this
paper, the single-input, multiple-output (SIMO) system
will be discussed. It is determined by the construction of
the experimental system considered.

2.2. CFE approximation. In practice, an
implementation of the operator sα on each digital
platform (PLC, microcontroller) requires the employment
of its integer-order, finite-length, discrete-time
approximator. Typical approximators are based on
PSE and CFE approximations. They allow us to express
a noninteger-order element in the form of digital FIR or
IIR filters. The PSE approximator is based directly on a
discrete-time version of the GL definition and takes the
form of an FIR filter containing zeros only. However, its
digital, high quality implementation requires application
of a long memory buffer (a high order of the filter).

The CFE approximator has the form of an IIR filter
containing both poles and zeros. It converges faster and
is easier to implement because its order is relatively low,
typically not higher than 5. It is obtained via discretization
of the elementary fractional order element sα. This can be
done using the so-called generating function s ≈ ω(z−1).
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The new operator raised to the power α has the following
form (see, e.g., Chen and Moore, 2002; Petras, 2009a):

(
ω(z−1)

)α

= ghCFE
{( 1− z−1

1 + az−1

)α }
M,M

=
PαM (z−1)

QαM (z−1)
= gh

CFEN (z−1, α)

CFED(z−1, α)

= gh

M∑
m=0

wmz−m

M∑
m=0

vmz−m

,

(10)

where M is the approximation order, gh is the
coefficient depending on the sample time and the type of
approximation,

gh =

(
1 + a

h

)α

. (11)

In (11), h is the sample time and a is the coefficient
depending on the approximation type. For a = 0 and
a = 1, we obtain the Euler and Tustin approximations,
respectively. For a ∈ (0, 1), we arrive at the Al-Alaoui
based approximation, which is a linear combination of
the Euler and Tustin formulas. Note that in this case the
parameter a in Eqn. (10) is equal to

a =
1− γ

1 + γ
,

with γ being the Al-Alaoui weighting coefficient
(Al-Alaoui, 1993; Stanisławski et al., 2015). Numerical
values of coefficients wm and vm and various values
of the parameter a can be calculated with the use of
the MATLAB function written by Petras (2009b). If
the Tustin approximation is considered (a = 1), then
CFED(z−1, α) = CFEN (z−1,−α) and the polynomial
CFED(z−1, α) can be given in the direct form (see
Chen and Moore, 2002). Examples of the polynomial
CFED(z−1, α) for M = 1, 3, 5 are given in Table 1. A
detailed analysis of various forms of CFE approximators
is presented by Stanisławski et al. (2015).

2.3. CFE based method of solving an FO state
equation. A method for a memory-effective solution
of a state equation was proposed and analyzed by
Oprzędkiewicz et al. (2017b). Its idea consists in
replacing the continuous operator sα in the Laplace
transform of the FO state equation (9) by its discrete CFE
approximant expressed by (10), with coefficients given in
Table 1. The CFE approximant is a function of discrete
complex variable z−1. This allows us to directly pass on
to the discrete time domain. Then the solution of the state

Table 1. Coefficients of CFE polynomials CFEN,D(z−1, α)
for Tustin approximation.

Order M wm vm

M = 1 w1 = −α v1 = α
w0 = 1 v0 = 1

M = 3 w3 = −α
3 v3 = α

3

w2 = α2

3 v2 = α2

3
w1 = −α v1 = α
w0 = 1 v0 = 1

M = 5 w5 = −α
5 v5 = α

5

w4 = α2

5 v4 = α2

5

w3 = −
(

α
5 + 2α3

35

)
v3 = −

(
−α
5 + −2α3

35

)

w2 = 2α2

5 v2 = 2α2

5
w1 = −α v1 = α
w0 = 1 v0 = 1

equation takes the following form:

M∑
m=0

Emx+(k −m)

=

M∑
m=0

Fmu+(k −m) +

0∑
m=−M

x0(m), (12)

where matrices Em and Fm are defined as follows:⎧⎪⎨
⎪⎩
Em = ghwmIN×N − vmA,

Fm = vmB,

m = 0, 1, . . . ,M.

(13)

In (13) gh is described by (11), and wm and vm
denote coefficients of the CFE approximant given in
Table 1. From (12), the state vector x+ can be directly
calculated as follows:

x+(k) = −E−1
0

M∑
m=1

Emx+(k −m)

+ E−1
0

M∑
m=0

Fmu+(k −m)

+ E−1
0

0∑
m=−M

x0(m).

(14)

Equation (14) allows us to solve the discrete-time FO state
equation using the CFE approximant. It has the form of
an M -th order difference equation. Its solution requires
the knowledge of M previous steps of state and control
signals.

The state equation (12) can also be written in the
extended form{

x+
q (k + 1) = A+

q x
+
q (k) +B+

q u
+
q (k),

y+q (k) = C+
q x+

q (k),
(15)
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where

x+
q (k) =

⎡
⎢⎢⎢⎢⎢⎣

x+
1 (k)

x+
2 (k)

...

x+
M (k)

⎤
⎥⎥⎥⎥⎥⎦
MN×1

, (16)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x+
1 (k) = x(k),

x+
2 (k) = x(k − 1),

...

x+
M (k) = x(k + 1−M).

(17)

u+
q (k) =

⎡
⎢⎢⎢⎣

u+
1 (k)

u+
2 (k)

...
u+
M+1(k)

⎤
⎥⎥⎥⎦
M+1×1

, (18)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u+
1 (k) = u(k),

u+
2 (k) = u(k − 1),

...

u+
M+1(k) = u(k −M),

(19)

A+
q =

⎡
⎢⎢⎢⎢⎢⎣

−E−1
0 E1, . . . ,−E−1

0 EM

IN×N , 0, 0, . . . , 0
0, IN×N , 0, . . . , 0

...
0, . . . , IN×N , 0

⎤
⎥⎥⎥⎥⎥⎦
MN×MN

, (20)

B+
q =

⎡
⎢⎢⎢⎣

E−1
0 F0, . . . , E

−1
0 FM

0, 0, 0, . . . , 0
...

0, 0, 0, . . . , 0

⎤
⎥⎥⎥⎦
MN×M+1

. (21)

The output matrix is

C+
q =

[
C+, 0, . . . , 0

]
N×MN

. (22)

The initial condition for the state equation (15) also takes
the extended form

x+
q0 =

⎡
⎢⎢⎢⎣

x+(M − 1)
x+(M − 2)

...
x+(0)

⎤
⎥⎥⎥⎦
MN×1

. (23)

Notice that the summarized size of the proposed discrete,
FO model is NM . This size is significantly lower than
that of the model using PSE approximation, analysed by
Oprzędkiewicz et al. (2017a).

2.4. Stability. Stability of the discrete system
considered will be analyzed with the use of the approach
presented by Stanislawski and Latawiec (2013a; 2013b),
Ostalczyk (2016, pp. 202–223) and Oprzędkiewicz et al.
(2017b). Its idea consists in testing the location
of the spectrum of the continuous system (before its
discretization) in the complex plane with respect to
a restricted area, limited by the form of the CFE
approximant (10). Let us assume that the approximation
ω(z−1) of (10) is stable and the term ω(e−jϕ), ϕ ∈
[−π, π], draws a simply closed curve in the complex
plane. Then the stability/instability areas with respect to
the spectrum of the continuous system are separated from
each other by the contour defined as follows (Stanisławski
and Latawiec, 2013a; Ostalczyk, 2016, Theorem 7.4, p.
205):

S =
{
ω(e−jϕ), ϕ ∈ [−π, π]

}
, (24)

where

ω(e−jϕ) = gh

M∑
m=0

wm(e−jϕ)m

M∑
m=0

vm(e−jϕ)m
. (25)

An example of stability/instability areas for the
discrete-time approximator (10) and different ranges of
order α is given in Fig. 1. In each case, the “restricted”
area is located inside the contour S.

Fig. 1. Stability/unstability areas for α = 0.9, α = 1.5, a =
1/7, h = 1 [s], M = 5.

It is important to note that

• for 0.0 < α < 1.0, the restricted area is located in
the right half-plane only,

• for 1.0 < α < 2.0 the restricted area is located
in both the half-planes, but it does not cover the
negative part of the real axis.
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The above remarks will be fundamental during
stability analysis for the discussed model of the heat plant.
This is caused by the fact that the spectrum of the heat
system considered has a unique location in the complex
plane.

3. Noninteger-order state-space model of
the heat plant

A simplified scheme of the heat plant considered is shown
in Fig. 2. It has the form of a thin copper rod heated by an
electric heater of length Δxu located at one end of the rod.
An output temperature is measured with the use of Pt-100
RTD sensors Δx long attached at points with coordinates
0.29, 0.50 and 0.73 of the rod length. The construction
of the whole experimental system is described in detail in
Section 5.

Fig. 2. Simplified scheme of the experimental system.

A fundamental mathematical model describing heat
conduction in a plant is the partial differential equation of
the parabolic type with homogeneous Neumann boundary
conditions at the ends, the homogeneous initial condition,
a heat exchange along the rod as well as distributed control
and observation. This equation with integer orders of
both differentiation operators has been discussed by many
authors (e.g., Oprzedkiewicz, 2003; 2004; 2005). The
presented, noninteger-order model is expected to describe
the processes running in the plant more accurately than
the integer-order model. Assume that the noninteger-order
difference with respect to time is described by the Caputo
definition (3) and the noninteger-order difference with
respect to the length is described by the Riesz definition
(4). Then the noninteger-order heat transfer equation takes
the following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
t Q(x, t) = aw

∂βQ(x, t)

∂xβ

−RaQ(x, t) + b(x)u(t),

∂Q(0, t)

dx
= 0, t ≥ 0,

∂Q(1, t)

∂x
= 0, t ≥ 0,

Q(x, 0) = 0, 0 ≤ x ≤ 1,

y(t) = y0
∫ 1
0
Q(x, t)c(x) dx,

(26)

where α, β > 0 denote noninteger orders of the system,

and aw, and Ra denote the coefficients of heat conduction
and heat exchange, respectively.

Now we need to express (26) as an inifinte
dimensional state equation in the Hilbert space,
analogically as presented by Oprzędkiewicz et al.
(2016a). The proposed state equation is written as
follows:

⎧⎪⎨
⎪⎩

CDα
t Q(t) = AQ(t) + Bu(t),

Q(0) = 0,

y(t) = y0CQ(t),

(27)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AQ(x) = aw
∂βQ(x)

∂xβ
−RaQ(x),

D(A) =
{
Q ∈ H2(0, 1) : Q′(0) = 0, Q′(1) = 0

}
,

aw, Ra > 0,

H2(0, 1) =
{
u ∈ L2(0, 1) : u′, u′′ ∈ L2(0, 1)

}
,

CQ(t) = 〈c,Q(t)〉, Bu(t) = bu(t)

Q(t) = [q1(t), q2(t), . . . ]
T
.

(28)
The following set of the eigenvectors for the state

operator A forms an orthonormal basis of the state space:

hn =

{
1, n = 0,√
2 cos(nπx), n = 1, 2, . . . .

(29)

The eigenvalues of the state operator are expressed as

λβn = −awπ
βnβ −Ra, n = 0, 1, 2, . . . , (30)

and, consequently, the state operator has the form

A = diag{λβ0 , λβ1 , λβ2 , . . . }. (31)

Next, the spectrum σ of the state operator A is expressed
as

σ(A) = {λβ0 , λβ1 , λβ2 , . . . }. (32)

The input operator B has the form

B = [b0, b1, b2, . . . ]
T , (33)

where bn = 〈b, hn〉, and b(x) denotes the shaping
function

b(x) =

{
1, x ∈ [0, x0],

0, x 	∈ [0, x0].
(34)

With respect to (29) and (34), each element bn takes the
following form:

bn =

⎧⎪⎨
⎪⎩
xu, n = 0,
√
2 sin(nπxu)

nπ
, n = 1, 2, . . . .

(35)
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The output operator C is expressed as follows:

C =

⎡
⎣ Cs1

Cs2

Cs3

⎤
⎦ . (36)

The rows of C are

Csj = [csj,0, csj,1, csj,2, . . . ] , j = 1, 2, 3, . . . (37)

where csj,n = 〈c, hn〉, and c(x) denotes the output sensor
function:

c(x) =

{
1, x ∈ [x1, x2],

0, x 	∈ [x1, x2].
(38)

With respect to (29) and (38), each element cjn takes the
form

cjn

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xj2 − xj1, n = 0,

√
2 (sin(nπxj2)− sin(nπxj1))

nπ
, n = 1, 2, . . . ,

j = 1, 2, 3.

(39)

Coordinates x1 and x2 depend on the sensor locations.
Their values for the experimental system considered are
given in the Section 5.

The solution of state equation (27) can be calculated
using the Laplace transform for the Caputo operator on
the assumption that the initial condition is to zero, i.e.,
Q(x, 0) = 0 for 0 ≤ x ≤ 1, and state and control
operators are described by (31)–(35). If we assume that
the control signal has the form of the Heaviside function
u(t) = 1(t), then the solution is as follows:

yj(t) = y0j

∞∑
n=0

(Eα(λβn t
α)− 1(t))

λβn

〈b, hn〉〈c, hn〉,
(40)

j = 1, 2, 3. Consequently, the system output is

y(t) = [y1(t), y2(t), y3(t)]
T
. (41)

Note that for the orders α = 1 and β = 2 the proposed
noninteger-order model described by (26)–(40) turns into
an integer-order model. Next, the noninteger-order model
described by (27)–(40) is an infinite dimensional model.
Its practical usefulness requires application of its finite
dimensional approximation. This can be obtained by
truncating further modes in the state equation (27) and
consequently calculating the solutions (40) and (41) as a
finite sum expressed by (42). Consequently, operators A,
B and C can be interpreted as matrices and the solution
(40) becomes the following finite sum:

yj(t) = y0j

N∑
n=0

(Eα(λβn t
α)− 1(t))

λβn

〈b, hn〉〈c, hn〉,
(42)

j = 1, 2, 3. In (42), N denotes the order of finite
approximation. Its correct estimation is an important
problem while using the presented model. The value
of N can be estimated numerically, as presented by
Oprzędkiewicz et al. (2016b).

4. Main results

4.1. Time-discrete, noninteger-order, state-space
model of the heat plant. The discrete state equation
(14) for the model (27) takes the form

Q+(k) = −E−1
0

M∑
m=1

EmQ+(k −m)

+ E−1
0

M∑
m=0

Fmu+(k −m)

+ E−1
0

0∑
m=−M

q0(m). (43)

The state vector has the form Q+(k) =[
q+1 (k), q

+
2 (k), . . .

]T
, matrices −E−1

0 Em in (43)
with respect to (31) and (30) take the form

E+
m = E−1

0 Em

= diag{e1m, . . . , eNm}, m = 1, . . . ,M,
(44)

where

enm =
ghwm + vm(awn

βπβ +Ra)

v0(awnβπβ +Ra)
(45)

and, similarly,

F+
m = E−1

0 Fm

= [f1m, . . . , fNm]T , m = 1, . . . ,M,
(46)

where

fnm =
vmbn

v0(awnβπβ +Ra)
. (47)

The discrete system (43)–(47) can be expressed also
in the first-order extended form (15)–(23). The matrices
A+

q , B+
q and C+

q for the expanded system (15) are
obtained using (45) and (47). The extended system is easy
to use during simulations because it can be solved with the
use of standard tools available on the MATLAB platform.

4.2. Decomposition of the system. The form of the
discrete equation (43) with the matrices (44) and (46)
implies the possibility of its decomposition, in much the
same way as this was done for the time-continuous case.
The n-th mode of the solution for the decomposed system
is expressed as follows:

q+n (k) =
M∑

m=1

enmq+n (k −m) +
M∑

m=0

fnmu+(k −m).

(48)
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The discrete transfer function G+
n (z

−1) of the n-th mode
is

G+
n (z

−1) =

cjn
M∑

m=1
fnmz−m

1−
M∑

m=1
enmz−m

, (49)

where enm and fnm are expressed by (45) and (47),
respectively. The characteristic polynomial associated
with the n-th mode of the solution (48) has the following
form:

w+
n (z

−1) = 1−
M∑

m=1

enmz−m. (50)

The steady-state response of the n-th mode yssjn can
be obtained with the use of the final-value theorem (FVT)
for discrete systems. If the control signal is the Heaviside
function u(k) = 1(k) then yssjn is as follows:

yssjn =

cjn
M∑

m=1
fnm

1−
M∑

m=1

enm

=
Fcjnbn

λβn(F − λβn)
, (51)

where F is expressed as

F =

∑M
m=0 wm∑M
m=0 vm

. (52)

In (52), wm and vm denote the coefficients of CFE
approximation, given in Table 1.

With respect to (35), (39) and some elementary
transformations, we obtain the direct dependency between
the steady-state response of the n-th mode and parameters
of the plant:

yssjn =
4

(F − λβn)π
2n2

sin

(
nπ(xj2 − xj1)

2

)

· cos
(
nπ(xj2 + xj1)

2

)
sin
(nπxu

2

)
.

(53)

4.3. Stability. The stability of the proposed discrete
model was analysed using the frequency approach
presented in Section 2.4. It is described by the following
proposition.

Proposition 1. (Asymptotic stability of the discrete CFE
model) Consider the discrete model of a heat transfer
process described by (27)–(37) with a noninteger order
0.0 < α < 2.0 and its discrete CFE based approximation
(43). The discrete approximation (43) is asymptotically
stable for the fractional order 0.0 < α < 2.0, and each
approximation order M , sample time h and weight pa-
rameter a.

Proof. The spectrum σ(A) of the heat plant considered,
cf. (32), contains negative, single, separated, purely real
eigenvalues. All these eigenvalues are located in the left
half-plane, on the real axis.

Stability areas for the discrete, fractional order
system described by the CFE approximation and different
ranges of order α are given in Fig. 1. From this figure it
can be noted immediately that

• the unstability area expressed by (24) for 0.0 < α <
1.0 is located in the right half-plane, and for each M ,
h and a it does not exceed the imaginary axis;

• the unstability area expressed by (24) for 1.0 < α <
2.0 is located in both half-planes, but for each M , h
and a it does not cover the negative part of the real
axis.

The above observations allow us to conclude that, for
0.0 < α < 2.0 and each set of the other approximation
parameters M , h and s, the spectrum σ(A) is located
outside the unstability area. This completes the proof.

�

4.4. Accuracy. The accuracy of the model we deal
with can be estimated using the approach presented
by Oprzędkiewicz et al. (2017b) with the use of the
steady-state error of the model considered. This error can
be estimated using Proposition 1 by Oprzędkiewicz et al.
(2017b):

εss = C
(
F −A

)−1
FA−1Buss = [εss1, εss2, εss3]

T ,
(54)

where uss is the steady-state value of the control signal
and F is defined by (52). The steady-state error given
by (54) has the form of a vector. Each component of
this vector describes an error of a suitable output. If the
control is the Heaviside function u(t) = 1(t), then the
steady-state error at the j-th output (j = 1, 2, 3) takes the
following form:

εssj = F

N∑
n=0

cjnbn
λβn (F − λβn)

, (55)

where λβn , bn and cjn are described by (30), (35) and
(39), respectively.

4.5. Convergence. The convergence analysis can be
performed by estimating order N assuring a predefined
value of the rate of convergence (ROC). In the case
considered the ROC can be defined as the increment in
the steady-state response yssjn as a function of the order N .
This increment can be defined as the absolute value of the
N -th mode of the steady-state response:

ROCN = |yssjN |, (56)
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where yssjn is expressed by (51) and (53). The order N
assuring keeping the predefined value ΔN of ROCN is
characterized by the following proposition:

Proposition 2. (Model order N guaranteeing a predefined
value ΔN by the ROC) Consider the discrete model of
heat transfer process described by (27)–(37) with a non-
integer order 0.0 < α < 2.0 and its discrete, CFE based
approximation (43). Let the ROC of the discrete approxi-
mated model be defined by (56). The order N of the model
guaranteeing a predefined value ΔN of ROCN meets the
following inequality:

N ≥

√√√√−(F +Ra) +
√
(F +Ra)2 +

16aw

ΔN

π2aw
. (57)

Proof. The condition ROCN ≤ ΔN is equivalent to

ΔN ≥
∣∣∣∣ 4

(F − λβN )π2N2

∣∣∣∣ · P, (58)

where

P =

∣∣∣∣sin
(
Nπ(xj2 − xj1)

2

)
cos

(
Nπ(xj2 + xj1)

2

)

· sin
(
Nπxu

2

)∣∣∣∣ .
(59)

Notice that P expressed by (59) is not greater than one,
which allows us to assume that P is equal to one. It will
give us an upper estimate of N , but (58) takes a much
simpler form

∣∣∣∣ 4

(F − λβN )π
2N2

∣∣∣∣ ≤ ΔN . (60)

Using (30), we rewrite (60) as
∣∣∣∣ 4

(F + awπβNβ +Ra)π2N2

∣∣∣∣ ≤ ΔN . (61)

The expression inside the absolute value is always
positive. Consequently, the absolute value can be ignored:

4

(F + awπβNβ +Ra)π2N2
≤ ΔN . (62)

The left-hand side of (62) will be called the
noninteger-order limiter Lnio(N):

Lnio(N) =
4

(F + awπβNβ +Ra)π2N2
. (63)

Next, assume that β = 2 (we consider an integer-order
model with respect to length). Then the noninteger-order
limiter (63) takes its integer-order form Lio(N):

Lio(N) =
4

(F + awπ2N2 +Ra)π2N2
. (64)

Consequently, the inequality (62) turns into

ΔNπ4awN
4 +ΔNπ2(F +Ra)N

2 − 4 ≥ 0. (65)

The solution of the double quadratic inequality (65) gives
directly the condition (57). This ends the proof. �

The condition (57) gives only an upper estimate of
N , but for decreasing values of ΔN the accuracy of the
proposed estimate increases. This will be shown in an
example.

Fig. 3. Construction of the experimental system.

Fig. 4. Spatiotemporal temperature distribution in the plant.

5. Experimental results

Experiments have been executed using the experimental
system shown in Fig. 3. The length of the rod is equal to
260 [mm]. The control signal in the system is the standard
current in the range from 0 to 20 [mA] provided by the
analogue output of the PLC. Next, it is amplified to the
range from 0 to 1.5 [A] and sent to the electric heater of
length Δx0 = 0.14 attached at the end of the rod. The
output temperature is measured by RTD sensors Pt100
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Table 2. Model parameters.
α β aw Ra a M N MSE (66)

0.9402 2.2054 0.0007 0.0336 0.7215 5 8 0.1366

Table 3. Steady state error εss for different N and all outputs.
N 8 15 25

εss1 −0.0404 −0.0405 −0.0406
εss2 −0.0173 −0.0172 −0.0172
εss3 −0.0045 −0.0043 −0.0043

long Δx = 0.06 located at points with coordinates 0.29,
0.50 and 0.73 of the rod length.

Signals from the sensors are directly read by
analogue inputs of the PLC in degrees Celsius. Data
from PLC are read and archivized by SCADA. The whole
system is connected via PROFINET. The temperature
distribution with respect to time and length is shown in
Fig. 4. The step response of the model was tested in the
time range from 0 to Tf = 300 [s] with sampling time
h = 1 [s], and the physical range of the step control signal
was between 8.0 and 12.0 [mA].

Model parameters were calculated via minimization
of the mean square error (MSE) cost function (66) using
the function fminsearch from MATLAB,

MSE =
1

3Ks

3∑
j=1

Ks∑
k=1

e+j (k). (66)

The results are given in Table 2. In (66), Ks denotes the
number of collected samples for one sensor, e+j (k) is the
difference between the responses of the model and the
plant at the k-th time moment and at the j-th output:

e+j (k) = y+pj
(k)− y+j (k). (67)

The step response of the model compared with the step
response of the plant is given in the Fig. 5.

Next, the accuracy of the proposed model was
estimated using the steady state errors (54) and (55). The
results are given in Table 3.

It can be noted that the steady state accuracy of the
proposed model practically does not depend on the order
N .

Finally, convergence has been tested using
Proposition 2. The predefined value of the ROC
was ΔN = 0.001. Using condition (56), we obtain
N = 15. A comparison of the limiters (63) and (64) with
steady-state values of the modes (53) is drawn in Fig. 6. It
can be noted that use of the noninteger-order limiter gives
the exact estimate N = 13, which is slightly better than
the integer-order estimate introduced by Proposition 2.

6. Conclusions

The proposed fractional order, discrete, finite dimensional
model of a heat process assures good accuracy in the
sense of the MSE cost function. Simultaneously, the
summarized order of the model is relatively low in
contrast to the model employing PSE approximation
which has previously been discussed by the same authors.
Some fundamental properties of the model (spectrum
decomposition, stability, accuracy and convergence) were
also discussed. The presented results can be generalized
to other fractional-order systems possible provided that
they are characterized by a diagonal state operator (for
example, in Jordan canonical form).
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Fig. 5. Comparison of the experiment with the model parame-
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Obrączka, A. (2014). Control of Heat Processes with the Use of
Non-integer Models, PhD thesis, AGH UST, Kraków.
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Oprzędkiewicz, K., Mitkowski, W. and Gawin, E. (2017a). An
accuracy estimation for a noninteger order, discrete, state
space model of heat transfer process, Automation 2017: In-
novations in Automation, Robotics and Measurement Tech-
niques, Warsaw, Poland, pp. 86–98.
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