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In this paper we present interconnection and damping assignment passivity-based control (IDA-PBC) applied to a 2 degrees
of freedom (DOFs) underactuated gyroscope. First, the equations of motion of the complete system (3-DOF) are presented
in both Lagrangian and Hamiltonian formalisms. Moreover, the conditions to reduce the system from a 3-DOF to a 2-
DOF gyroscope, by using Routh’s equations of motion, are shown. Next, the solutions of the partial differential equations
involved in getting the proper controller are presented using a reduction method to handle them as ordinary differential
equations. Besides, since the gyroscope has no potential energy, it presents the inconvenience that neither the desired
potential energy function nor the desired Hamiltonian function has an isolated minimum, both being only positive semidef-
inite functions; however, by focusing on an open-loop nonholonomic constraint, it is possible to get the Hamiltonian of the
closed-loop system as a positive definite function. Then, the Lyapunov direct method is used, in order to assure stability.
Finally, by invoking LaSalle’s theorem, we arrive at the asymptotic stability of the desired equilibrium point. Experiments
with an underactuated gyroscopic mechanical system show the effectiveness of the proposed scheme.
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1. Introduction

Interconnection and damping assignment passivity-based
control (IDA-PBC) is a control design methodology based
on a total energy shaping approach. A desired dynamic in
the closed-loop system is proposed as a control objective,
where, usually, a set of partial differential equations
(PDEs) needs to be solved. Since the introduction of
IDA-PBC by Ortega et al. (2002), several theoretical
extensions and practical applications have been reported
in the literature. Acosta et al. (2005) presented a strategy
for PDEs to become ordinary differential equations
(ODEs) under certain conditions, while Kotyczka and
Lohmann (2009) present a parametrization of IDA-PBC
by assignment of local linear dynamics. Gómez-Estern
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and van der Schaft (2004) as well as Sandoval et al. (2011)
presented some extensions of the IDA-PBC to handle
physical damping. Chang (2014) proposes a manner
to introduce quadratic gyroscopic forces instead of the
skew-symmetric interconnection submatrix allowing a
reduction of PDEs. Meanwhile, Donaire et al. (2016)
present robust IDA-PBC for underactuated mechanical
systems subject to matched disturbances adding an
outer-loop controller (e.g., a nonlinear PID).

On the other hand, the IDA-PBC method, employed
for position regulation for some underactuated mechanical
systems, has been reported in the literature; some
examples include an inertia wheel pendulum and a ball
and beam (Ortega et al., 2002), a pendulum on a cart
and a vertical takeoff and landing aircraft (VTOL), an
acrobot robot (Mahindrakar et al., 2006), or following a
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pendubot robot (Sandoval et al., 2008), among others. It is
worth remarking that, in recent years, some authors have
invented a way to shape the energy of mechanical systems
without solving PDEs (Donaire et al., 2015), and even
they were able to propose PID passivity-based control
to reach global stabilization of underactuated mechanical
systems (Romero et al., 2017).

Underactuated mechanical systems have fewer
independent control inputs than degrees of freedom
to be controlled, which means that the external
generalized forces are not able to command instantaneous
accelerations in all directions in the configuration
space (Fantoni and Lozano, 2002). Spacecraft (e.g.,
Aguilar-Ibanez, 2016), underwater vehicles, mobile
robots, surface vessels, and many other systems have
this characteristic. A detailed survey of underactuated
mechanical systems, classification, and some control
methods can be found in the work of Liu and Yu
(2013). Several controller design methodologies for
the stabilization of underactuated mechanical systems
usually validate their results with 2-DOF mechanisms
because of their simplicity, as remarked by She et al.
(2012), and they have been focused on the regulation
problem (Moreno-Valenzuela and Aguilar-Avelar, 2018),
especially in the so-called benchmark systems: the
cart pole, TORA system, rotary inverted pendulum,
Furuta pendulum and pendubot (e.g., Antonio-Cruz
et al., 2018), acrobot, ball and beam, etc. Recently,
attention has been paid to greater degrees of freedom
underactuated mechanical systems; some examples are
modern light-weight flexible robots and articulated
manipulators with passive joints. Besides, other important
types are flexible multibody systems, since their body
elasticity generates additional underactuated degrees of
freedom (Seifried, 2014). The effect of friction in
underactuated multibody systems is also addressed, e.g.,
by Liu (2018), who deals with discontinuous friction.

The gyroscope is a very special and singular
mechanism to be controlled by IDA-PBC, because it has
no potential energy function and total energy shaping
is challenging. It has symmetries which essentially
imply an invariance of the system, often with respect
to inertial positioning, yielding cyclic coordinates, and,
in the absence of external constraints, this invariance
implies the existence of inertial nonholonomic constraints,
which adopt the form of momentum conservation laws
(Ostrowski and Burdick, 1997). Besides, a nonholonomic
system could not be asymptotically stabilized at an
equilibrium point using a smooth static state feedback
law (Bloch et al., 1992; Wichlund et al., 1995; Jiang,
2010). Furthermore, in general, the absence of potential
energy adds an interesting challenge for any controller
design methodology to get asymptotical stabilization of
any underactuated mechanism (its gravitational field has
zero elements corresponding to underactuated dynamics)

(Chin et al., 2006).

According to the IDA-PBC method, the desired
energy function qualifies as a Lyapunov function for the
desired equilibrium (Mahindrakar et al., 2006); however,
this occurs when the mechanical system has potential
energy. Nevertheless, when the mechanical system has no
potential energy, the IDA-PBC method leads to a desired
potential energy function that is not positive definite and,
in consequence, does not have an isolated minimum.
Therefore, we analyze the desired total energy function
to find out if some features of the open-loop system help
to build a positive definite function. This is the main
motivation of our work since the gyroscope does not
present potential energy.

Our contributions in this paper are as follows: (i)
reduction of equations of motion from a 3-DOF to a
2-DOF gyroscope by using Routh’s process for ignoring
coordinates, (ii) detection and interpretation of gyroscopic
terms as a generalized potential energy function that
also leads to the reinterpretation of generalized momenta,
(iii) the application of the IDA-PBC method to a
system having no potential energy, (iv) evidence
that a nonholonomic constraint, and not the desired
potential energy function, helps to assign the desired
equilibrium point, (v) the stability proof of the desired
equilibrium point of the desired closed-loop system using
LaSalle’s theorem, and (vi) experimental validation of
the effectiveness of the IDA-PBC method applied to an
underactuated gyroscopic mechanical system.

Notation. In this paper we use n for the number of
degrees of freedom, In×n is the identity matrix and 0n×n

is the n × n matrix of zeros, and m is the number of
actuated joints. Position and generalized momenta are
time-dependent, that is, q = q(t) and p = p(t). We
define the differential operator ∇xH := ∂H/∂x, where
H : Rn → R is a continuous function and x : R+ → R

n

is the state vector. Besides, (·)� denotes a transpose, (·)−1

denotes an inverse, (·)⊥ denotes a full rank left annihilator
of (·), (·)∗ refers to a value of (·) at the equilibrium point,
(̃·) denotes an error, (̄·) refers to an auxiliary generalized
momentum vector. Si and Ci with i ∈ {1, 2, 3} are
equivalent to sin(qi) and cos(qi), respectively. Finally,
(�)(·)d is the desired position of (�)(·), while (�)(·)(0) is
the initial condition of (�)(·).

2. Preliminaries

2.1. Brief review of the IDA-PBC method for a
class of mechanical systems. The IDA-PBC method
begins with the total energy function of the underactuated
mechanical system in terms of the generalized momenta
p ∈ R

n and position q ∈ R
n using the so-called
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Hamiltonian function1

H(q, p) =
1

2
p�M−1(q)p+ V (q), (1)

where M = M� > 0 ∈ R
n×n is the inertia matrix and

V is the potential energy function. If we do not consider
the system’s natural damping (e.g., friction), then the
equations of motion in Hamiltonian form can be written
as [

q̇
ṗ

]
=

[
0n×n In×n

−In×n 0n×n

] [ ∇qH
∇pH

]

+

[
0

G(q)

]
u,

(2)

where G ∈ R
n×m indicates how the control input u ∈

R
m enters the system (the actuator’s distribution matrix)

and is invertible when the system is fully actuated (G is
a square matrix); otherwise, if we have an underactuated
mechanism, then G has no inverse and rank(G) = m < n.

Ortega et al. (2002) proposed the following desired
closed-loop energy function:

Hd(q, p) =
1

2
p�M−1

d (q)p+ Vd(q), (3)

where Md = M�
d > 0 ∈ R

n×n and Vd are the
desired inertia matrix and potential energy function of the
closed-loop system, respectively. Moreover, the desired
dynamic in the closed-loop system is proposed with the
following structure:

[
q̇
ṗ

]
=

[
0 M−1Md

−MdM
−1 J(q, p)−GKvG

�

]

×
[ ∇qHd

∇pHd

]
,

(4)

where J = −J� ∈ R
n×n is a free-parameter matrix and

Kv = K�
v > 0. Besides, we require that Vd have an

isolated minimum in q∗, that is,

q∗ = arg minVd, (5)

in order to get an asymptotically stable equilibrium
point (q∗, 0) of (4), with Lyapunov function Hd, taking
into account that Md is positive definite at least in a
neighborhood of q∗.

By matching [q̇� ṗ�] from the models (2) and (4)
and splitting the terms, we arrive at the following PDEs:

G⊥{∇q

(
p�M−1p

)−MdM
−1∇q

(
p�M−1

d p
)

+2JM−1
d p} = 0n−m,

(6)

G⊥{∇qV −MdM
−1∇qVd} = 0n−m,

(7)

1To simplify the notation, hereafter for all expressions which are
functions of q and p we will write explicitly their dependence only the
first time they are defined.

whereG⊥(q) ∈ R
(n−m)×n is a full rank left annihilator of

G, i.e., G⊥G = 0(n−m)×m and rank(G⊥) = n−m. If it
is possible to get a solution for Md and Vd from Eqns. (6)
and (7), then IDA-PBC of the system (2) is

u = (G�G)−1G�(∇qH −MdM
−1∇qHd

+ JM−1
d p)−KvG

�∇pHd. (8)

2.2. Reduction from a PDE to an ODE. By following
the procedure used by Acosta et al. (2005), we proceed to
the reduction of the PDE (6), which is possible since the
gyroscope has underactuation degree one, i.e., m = n−1,
and the matrix M does not depend on the underactuated
coordinate. Equation (6) is reduced to the form

e�k M
−1Md(G

⊥)�
dMd

dqk
= −2JA�, (9)

where ek ∈ R
n is a basis vector, k signifies the actuated

coordinate,

J � [α1

...α2

... · · · ...αno] ∈ R
n×no , (10)

where αi ∈ R
n, i = 1, . . . ,no, with no � (n/2)(n − 1)

as a free parameter vector, and

A � −[W1(G
⊥)�, . . . , Wno(G

⊥)�] ∈ R
n×no (11)

is a free matrix, Wi ∈ R
n×n, with i = 1, . . . ,no, defined

as follows: first, we construct n2 matrices of dimension
n × n that we denote by F kl = {fkl

ij }, with k,l ∈
{1,2, . . . ,n}, according to the rule

fkl
ij =

{
1 if j > i, i = k and j = l,
0 otherwise,

}
(12)

then, we define Wi = W kl � F kl − (F kl)�. Besides, we
are using the fact that

∇q

(
p�M−1

d p
)
= p�

d

dqk

(
M−1

d (qk)
)
pek. (13)

Note that Eqn. (9) corresponds to Eqn. (18) in the work of
Acosta et al. (2005).

2.3. Routh’s process for ignoring coordinates.
Consider a dynamical system with n degrees of freedom
specified by n generalized coordinates q1, q2, . . . , qn, with
kinetic energy function K(q, q̇) = 1

2 q̇
�Mq̇, potential

energy function V (q) and input control τ , expressed with
Euler–Lagrange’s equation as

d

dt

[
∂L(q, q̇)

∂q̇

]
− ∂L(q, q̇)

∂q
= τ (14)
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with
L = K − V, (15)

or expressed in Hamilton’s equations (2), where the
generalized momentum is given by

p =
∂L
∂q̇

= Mq̇. (16)

For the system (14), we have the following definitions and
theorems.

Definition 1. (Cyclic coordinates) The coordinate
qj , with j ∈ {1, . . . , n}, which does not appear explicitly
in the expression for the Lagrangian or the Hamiltonian
function, is by definition called cyclic or ignorable. A
change in these coordinates cannot affect the Lagrangian
or the Hamiltonian (Rana and Joag, 1991).

Theorem 1. (Rana and Joag, 1991, Ch. 2, Sect. 12) In the
absence of applied external torque τ , the generalized mo-
mentum corresponding to any cyclic coordinate is a con-
served quantity (it is a constant of motion).

Proof. Let qj be a cyclic coordinate. Then, by
Definition 1,

∂L
∂qj

= 0.

Hence, Euler–Lagrange’s equation (14) for coordinate qj
reduces to

d

dt

[
∂L
∂q̇j

]
= τj ≡ 0.

Therefore,

pj =
∂L
∂q̇j

= Pj = constant of motion. (17)

�

If such a conserved quantity (17) is not integrable,
then a class of nonholonomic systems is obtained
(Reyhanoglu and van de Loo, 2006a).

Definition 2. (Nonholonomic constraints) If a system
has nonintegrable constraints on their velocities, then it
has nonholonomic constraints. Meanwhile, holonomic
systems are mechanical systems that are subject to
constraints that limit their possible configurations;
systems with nonholonomic constraints restrict the type
of motion but not position (Bloch, 2003). An angular
momentum may be viewed as a nonholonomic constraint
when it is an invariant of the motion (Bloch et al., 1992).

Definition 3. (Routh’s equations of motion) Let the
system have k-cyclic coordinates q1, q2, . . . , qk (k <
n). Then, the dynamical system has (n − k) degrees
of freedom. Clearly, the generalized momentum

corresponding to the cyclic coordinate would be (17).
Define a new function R as

R(q, q̇) = L −
k∑

j=1

Pj q̇j , (18)

which is called the Routhian function and L is the
Lagrangian function defined in (15). The new equations
of motion ignoring the cyclic coordinates can be obtained
as

d

dt

[
∂R(q, q̇)

∂q̇i

]
− ∂R(q, q̇)

∂qi
= τi (19)

for i = k + 1, k + 2. . . . , n (Layek, 2015). This shows
that R behaves as a Lagrangian L of the new dynamical
system (19) having (n− k) degrees of freedom.

Property 1. Note that if the original system (14)
has symmetries, then, after lowering the number of
degrees of freedom, gyroscopic forces appear in the new
dynamical system (19). They also occur as a result
of a transformation towards a rotating reference frame
(Kozlov, 1996).

2.4. Gyroscopic forces. Gyroscopic forces occur if
the system contains a rotating body and the configuration
is expressed relative to this body or if the system has
cyclic coordinates (Greenwood, 1977). An important
characteristic of gyroscopic terms is that a coupling of the
motions, in two or more coordinates, is always involved
(Kang et al., 2003).

Definition 4. (Gyroscopic forces)

(a) They are often used to designate terms in the
kinetic energy ϕ�(q)q̇ that are linear in the velocity
components, where ϕ : R

k → R
k (Ferraz-Mello,

2007).

(b) The gyroscopic forces Γ(q)q̇, where Γ : R
n →

R
n×n, are forces that conserve energy since they

are perpendicular to the velocity of the mechanism,
implying that they do not realize any work (Sabattini
et al., 2017). Formally, a force

fgyro(q, q̇) = Γ(q)q̇, (20)

where Γ = {γij(q)} is a skew-symmetric matrix (that
is, Γ� = −Γ) is called gyroscopic if f�

gyroq̇ = 0 (Kang
et al., 2003).

An easy way to identify gyroscopic forces, in the
equations of motion, is to observe the terms of the form
γij q̇j , where the gyroscopic coefficients γij are skew
symmetric, i.e., γij = −γji. This means, as stated before,
that those gyroscopic forces do not work in the equations
of motion (Nagata and Namachchivaya, 2006). Note that
gyroscopic energy terms ϕ�(q)q̇ yield gyroscopic forces
Γ(q)q̇.
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Property 2. The gyroscopic force is always perpen-
dicular to the velocity of the mechanism, doing no work;
this property guarantees that they do not modify the
convergence characteristics of the desired control laws
(Sabattini et al., 2017).

Property 3. Gyroscopic forces can never destabilize a
stable conservative system, but they can possibly stabilize
an unstable conservative one (Seyranian et al., 1995).

Definition 5. (Generalized potential energy) The
generalized potential energy function W (q, q̇) can, in
most cases, be conveniently represented by the sum of
an ordinary potential energy function and a term coming
from the kinetic energy function that is linear in q̇ (Rana
and Joag, 1991) (which in turn yield gyroscopic forces
(20) of antisymmetric nature in the equations of motion);
that is,

W (q, q̇) = V (q) + ϕ�(q)q̇. (21)

This class of potential energy function is velocity
dependent. In this way, L = K − W , and thus the
momentum yields

p =
∂L
∂q̇

=
∂(K −W )

∂q̇
= Mq̇ − ∂W

∂q̇
(22)

while the corresponding Hamiltonian is given by
(Ferraz-Mello, 2007)

H =
1

2
p�M−1(q)p+ Y (q, p), (23)

where

Y (q, p) = W (q, p)

− 1

2

(
∂W (q, q̇)

∂q̇

)�
M−1 ∂W (q, q̇)

∂q̇
.

(24)

3. Gyroscope and a dynamic model

3.1. Gyroscope. The gyroscope is a device with a
spinning disc where, based on the conservation of angular
momentum, while it rotates, the orientation of its axis is
unaffected by rotation of the mounting. Due to this fact,
it is used for keeping and/or measuring the orientation
of a body in space. Usually, the disc is mounted on a
Cardan suspension, which is often a set of three gimbals,
one mounted on the other with orthogonal pivot axes.
The testbed used in this work is the Gyroscope platform
system from Quanser� , and it is shown in Fig. 1 (for
more information about this gyroscope we recommend the
lecture of Quanser (2009)). It consists of a 3-DOF rotor
D assembled on the innermost gimbal C which is in turn
placed inside an outer gimbal B which in turn is put on
a rectangular frame A. The plant is equipped with four
DC motors to provide spin torque and four encoders to

provide position feedback; signals (torque and position)
are transmitted to the structure’s base due to a slip ring
design. Any of these gimbals can be fixed in order to
have different configurations and to reduce the degrees of
freedom. The mass center of all bodies and gimbals axes
are at the center of the disc.

3.2. Dynamic model. In Appendix A we develop
in detail the kinetic and potential energy functions of
a 3-DOF gyroscope. In order to obtain Lagrange’s
equations of motion, we calculate first the Lagrangian,
taking into account that the gyroscope potential energy
function V (q) = 0. Then the Lagrangian is also the
kinetic energy function, i.e.,

L(q, q̇) = K − V = K
=

1

2
IDxxq̇

2
1 +

1

2
J3q̇

2
2

− IDxxS2q̇1q̇3 +
1

2
(J2 + J1S

2
2)q̇

2
3 ,

(25)

where q1 is the motion of the disk D, q2 the motion of
the body C and q3 the motion of body B, while IDxx, J1,
J2, and J3 are inertia parameters (see Table 1) and S2 :=
sin(q2). By applying Lagrange’s equations of motion
(14), we get the 3-DOF gyroscope dynamic model:

IDxx[q̈1 − C2q̇2q̇3 − S2q̈3] = τ1, (26)

J3q̈2 + IDxxC2q̇1q̇3 − J1S2C2q̇
2
3 = τ2, (27)

(J2 + J1S
2
2)q̈3 + 2J1S2C2q̇2q̇3

−IDxx[S2q̈1 + C2q̇1q̇2] = τ3, (28)

where τ1, τ2 and τ3 are the external torques applied
(similar results for the dynamic model (26)–(28) are

AD

B C

Fig. 1. Gyroscope by Quanser and the body nomenclature.
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presented by Reyhanoglu and van de Loo (2006a;
2006b)). From Eqns. (26)–(28) we can easily extract the
inertia matrix of the 3-DOF gyroscope,

M =

⎡
⎣ IDxx 0 −IDxxS2

0 J3 0
−IDxxS2 0 J2 + J1S

2
2

⎤
⎦ , (29)

and knowing that the conjugate momentum pj of the
system (also known as a canonical momentum or
generalized momentum), with j ∈ {1, 2, 3}, is p =
∂L/∂q̇ = Mq̇, we get

p1 = IDxxq̇1 − IDxxS2q̇3, (30)

p2 = J3q̇2, (31)

p3 = −IDxxS2q̇1 + (J2 + J1S
2
2)q̇3. (32)

Having the inertia matrix M and assuming that no
potential energy is present, we can use Eqn. (1) to obtain
the Hamiltonian function

H(q, p) =
1

2

[
p21

IDxx
+

(p3 + p1S2)
2

J2 + JaS2
2

+
p22
J3

]
, (33)

where Ja = J1−IDxx, and thus, by using (2), Hamilton’s
equations of motion of the 3-DOF gyroscope are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇1

q̇2

q̇3

ṗ1

ṗ2

ṗ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(J2+J1S
2
2)

p1
IDxx

+p3S2

J2+JaS2
2

p2

J3

p3+p1S2

J2+JaS2
2

τ1

JaS2C2(p3+p1S2)
2

(J2+JaS2
2)

2

− p1C2(p3+p1S2)
(J2+JaS2

2)
+ τ2

τ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

considering that the open loop system is fully actuated.

3.3. Reducing equations of motion. If we analyze
Eqns. (25) and (33), we can observe that there exist two
cyclic coordinates, q1 and q3 (see Definition 1). Besides,
by considering τ1 = 0, since we are assuming that we
have reached a constant speed of the disk and no torque
is needed to keep this speed (because the friction of the
disk is neglected), the conjugate momentum p1 of (30) is
a constant (let p1 = P1 be this constant). This allows us
to reduce one degree of freedom since we can express q̇1
in terms of a constant P1 in the equations of motion (27)
and (28). Also, this assumption implies, from (30), that
the disk speed remains constant when no movement of q2
is detected.

In addition, since we want to work with an
underactuated gyroscope, by turning the motor off, τ3 =
0; this causes that the conjugate momentum p3 of (32)

is constant (P3), i.e., it can be reduced another degree of
freedom since q̇3 can be expressed in terms of a constant
P3 in the equation of motion (27). However, we will not
reduce this degree of freedom in order to be able to assign
the closed-loop equilibrium point.

An alternative way to get a reduction in the degree
of freedom related to the cyclic coordinate q1 is to apply
Routh’s process for ignoring cyclic coordinates (Layek,
2015) as declared in Definition 3. That is,

R = L − P1q̇1, (35)

q̇1 =
P1 + IDxxS2q̇3

IDxx
. (36)

If we substitute (25) and (36) in (35), we obtain the
Routhian of the new system as

R = −1

2

P1
2

IDxx

+
1

2
J3q̇

2
2 +

1

2
(J2 + JaS

2
2)q̇

2
3 − P1S2q̇3, (37)

and by substituting (37) in (19) we get the new
Lagrange-equivalent equations of motion of the
dynamical system corresponding to a 2-DOF gyroscope,

J3q̈2 + P1C2q̇3 − JaS2C2q̇
2
3 = τ2,

(38)

(J2 + JaS
2
2)q̈3 + 2JaS2C2q̇2q̇3 − P1C2q̇2 = 0.

(39)

The set of equations (38) and (39) correspond to those
developed by Cannon (1967). Another simple way to
obtain (38) and (39) could be by substituting (36) in (32)
to get

p3 = −S2P1 + (J2 + JaS
2
2)q̇3. (40)

Then, by substituting (36) in (27), we get (38), and
differentiating (40) with respect to time, we get (39), i.e.,
the same reduced equations of motion.

Now, after reducing the equation of motion, and by
virtue of Property 1, it is expected to have gyroscopic
terms. From (37) it can be observed, by using Definition
4(a), that it has an energy gyroscopic term ϕ3q̇3 =
P1S2q̇3 because it is linear in the velocity component
(Ferraz-Mello, 2007). From Definition 5, this term can be
introduced in the generalized potential energy W (q, q̇) =
V (q) + ϕ�(q)q̇ as

W (q, q̇) = V + ϕ3q̇3 = P1S2q̇3. (41)

In addition, if we analyze (38) and (39), by using
Definition 4(b) we realize that they have gyroscopic forces
of the form fgyro(q, q̇) = Γ(q)q̇ as

Γ(q)q̇ =

[
0 P1C2

−P1C2 0

] [
q̇2
q̇3

]
. (42)
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Now, using (38) and (39), we can get the new inertia
matrix for the 2-DOF gyroscope,

M =

[
J3 0
0 J2 + JaS

2
2

]
. (43)

Note that for the reduced system (38)–(39) with
generalized potential energyW (gyroscopic energy terms)
this produces gyroscopic forces in the equations of
motion. The definition of the conjugate momentum (16) is
no longer valid. Instead, we have the new definition of the
the conjugate momentum (22) and thus, by substituting
(41) and (43) into (22), we obtain

p2 = J3q̇2, (44)

p3 = −P1S2 + (J2 + JaS
2
2)q̇3. (45)

If we take (45), by solving it for q̇3 and substituting
the result in (41), we have W in dependence on (q, p) as

W (q, p) =
P1S2(p3 + P1S2)

J2 + JaS2
2

. (46)

Finally, we can get the Hamiltonian function for the
reduced system, using p = [p2 p3]

�, (41), (46), M−1

from (43) and applying (23) with (24), so we have

H(q, p) =
1

2

[
p22
J3

+
(p3 + P1S2)

2

J2 + JaS2
2

]
. (47)

Another way to get (47) is using an auxiliary vector

p̄ =

[
p+

∂W

∂q̇

]
(48)

and the following identity with the same structure of (1):

H =
1

2

[
p+

∂W

∂q̇

]�
M−1

[
p+

∂W

∂q̇

]
+ V (49)

which, after substituting p = [p2 p3]
�, (41) and M−1

from (43), produces

H =
1

2

[
p2

p3 + P1S2

]� [
1
J3

0

0 1
J2+JaS2

2

]

·
[

p2
p3 + P1S2

]
,

(50)

which in turn yields (47). This identity between (23)
and (49) is demonstrated in Appendix B. In this way, the
open-loop system, in the Hamiltonian formalism, can be
rewritten as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇2

q̇3

ṗ2

ṗ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2

J3

p3+P1S2

J2+JaS2
2

JaS2C2(p3+P1S2)
2

(J2+JaS2
2)

2

−P1C2(p3+P1S2)
(J2+JaS2

2)
+ τ2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (51)

and it can be noticed that the equations in (51) correspond
to those proposed in (34), with q̇1 and ṗ1 removed and p1
substituted by P1, validating thereby our model (51).

It is important to underscore from Eqn. (51) that
we have a nonholonomic constraint related to q̇3 (see
Definition 2), which is nonintegrable in nature and will
restrict the type of motion of the associated variables. This
nonholonomic constraint is observed at the equilibrium
when q̇3 = 0. To this end, first we explore the open-loop
equilibria of the system by making the left-hand side
of (51) zero and assuming that no external forces are
actuating over the system. Then we find that p3+P1S2 =
0. However, as mentioned before, p3 must be constant
(p3 = P3) since it is related to a cyclic coordinate q3 and
it is underactuated, so the term S2 must be constant for
all t ≥ 0, and its value necessarily comes from an initial
condition q2(0) that produces the constant S2 = S2(0) =
sin(q2(0)). In consequence, at the equilibrium we have

P3 = −P1S2(0), (52)

and since
P3 + P1S2 = 0, ∀ t ≥ 0,

which implies

S2 = −P3

P1
=

P1S2(0)

P1
= S2(0),

we have
q2 = q2(0), ∀ t ≥ 0. (53)

Meanwhile, as q3 is a cyclic coordinate, it can take
any initial value q3(0). Thereby, there exists an infinite
number of equilibriums

[q2, q3, p2, p3]
� = [q2(0), q3(0), 0, P3]

� ∈ R
4. (54)

By Definition 2 and by virtue of (52), we have that, at the
equilibrium, when q̇3 = 0, q2 is restricted to be q2(0).
This is essentially the nonholonomic constraint. This
means that, at the equilibrium, q2 could never be arbitrary
(imposed by the user), i.e., q2 could never be other than
q2(0), neither in the closed-loop system.

4. IDA-PBC of the 2-DOF gyroscope

4.1. Control objective. Given the open-loop Hamil-
tonian system (51), associated with the Hamiltonian
function (47), the control aim is to find a control law u
such that we get a closed-loop Hamiltonian system given
by (4) associated with the desired Hamiltonian function
(3) in such a way that the following position objective is
achieved:

lim
t→∞

[
q2(t)
q3(t)

]
=

[
q2(0)
q3d

]
. (55)
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4.2. Kinetic energy function. In order to get
IDA-PBC for the 2-DOF gyroscope, we follow Eqn. (9),
forming

J �
[

αa(q)
αb(q)

]
, A �

[ −1
0

]
, (56)

using the fact that −2JA� = −[JA� +AJ �], we get

− 2JA� =

[
2αa αb

αb 0

]
. (57)

Finally, using the equivalence presented by (Sandoval
et al., 2008)

Λ(q) = MdM
−1 =

[
λ1(q) λ2(q)
λ3(q) λ4(q)

]
, (58)

Eqn. (9) becomes

e�2 Λ
�(G⊥)�

dMd

dq2
=

[
2αa αb

αb 0

]
. (59)

Now, by using (58) and solving forMd, we get Md =
ΛM . Substituting (58) and (43) in this result, we have

Md =

[
λ1J3 λ2(J2 + JaS

2
2)

λ3J3 λ4(J2 + JaS
2
2)

]
. (60)

For the gyroscope, G = [1 0]� and the base vector is
ek = e2 = [1 0]�. Substituting (58) and (60) into (59),
we obtain the following equations:

λ3
d

dq2
λ1J3 − 2αa = 0, (61)

λ3
d

dq2
λ2(J2 + JaS

2
2)− αb = 0, (62)

λ3
d

dq2
λ3J3 − αb = 0, (63)

λ3
d

dq2
λ4(J2 + JaS

2
2) = 0. (64)

Equations (61)–(64) are no longer PDEs. They
became ODEs. By starting with (64), we get the following
values for λi, i ∈ {1, 2, 3, 4}:

λ4 =
k4

J2 + JaS2
2

, (65)

λ3 = k3, (66)

λ2 =
λ3J3

(J2 + JaS2
2)

, (67)

λ1 = k1. (68)

Substituting (65)–(68) into (60), we obtain the desired
inertia matrix

Md =

[
k1J3 k3J3
k3J3 k4

]
, (69)

taking into account that λ3J3 = λ2(J2 + JaS
2
2) and

k1k4 > k23J3 to ensure that Md = M�
d > 0. Meanwhile

k1, k3 and k4 are arbitrary constants, and αa and αb were
set to zero.
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2
)] tan(q

Fig. 2. Infinite number of critical points of Vd for some arbitrary
β1 and β2.

4.3. Desired potential energy function. In order to
get the desired potential energy function, being aware
that there is no potential energy for the gyroscope in the
open-loop system, i.e., ∇qV = 0, and by substituting in
(7) the left annihilator matrix G⊥, (58), (65) and (66), we
arrive at the following PDE:

k3∇q2Vd +
k4

J2 + JaS2
2

∇q3Vd = 0, (70)

which can be solved analytically or by using a
mathematical program like Maple c© whose solution is
Vd(q2, q3) = F (s(q2, q3)), with s as follows:

s = q3 − q3d − β1atan[β2 tan(q2 − q2(0))], (71)

where

β1 =
k4

k3
√
J2(Ja + J2)

,

β2 =
(Ja + J2)√
J2(Ja + J2)

.

We added the terms q3d and q2(0) to set the desired
equilibrium point. To assure the positivity of Vd, we
propose, for simplicity, the following function:

Vd = F (s) =
1

2
Kps

2. (72)

In order to obtain the critical points of (72), we make
∇qVd = 0, getting

q2 ∈ R, (73a)

q3 = q3d + β1atan[β2 tan(q2 − q2(0))]. (73b)

Notice that there exist an infinite number of critic
points, one for each q2 ∈ R. This behavior can be seen in
Fig. 2. In particular, for q2 = q2(0), we have the critical
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point (q2, q3) = (q2(0), q3d). However, Vd is a positive
semidefinite function with respect to q2 and q3. From
the IDA-PBC method, it is supposed that the function
Vd has an isolated minimum in q∗, in order to make
the closed-loop Hamiltonian function positive definite at
least locally; but, Vd has an infinite number of critical
points due to the lack of a contributive term related to the
open-loop potential energy. This leads us to review other
considerations on the stability analysis.

Once we have obtained Md and Vd, we can compute
the desired Hamiltonian function Hd, by using (3) and the
auxiliary vector of generalized momentums, as proposed
in (48), so we get

Hd =
1

2

[
p2

p3 + P1S2

]� [
k1J3 k3J3
k3J3 k4

]−1

·
[

p2
p3 + P1S2

]
+

1

2
Kps

2,

(74)

which, with some algebraic manipulations, yields

Hd

=
1

2

⎡
⎣k1(p3 + P1S2)

2 − 2k3p2(p3 + P1S2) +
p2
2k4

J3

k1k4 − J3k23

⎤
⎦ .

+
1

2
Kps

2.

(75)

From (74), the minima of Hd are at p2 = 0, p3 +
P1S2 = 0 and s = q3 − q3d − β1atan[β2 tan(q2 −
q2(0))] = 0, then we have p3 = −P1S2. However, by
virtue of (52), we have p3 = P3 = −P1 sin(q2(0)). Thus
−P1 sin(q2(0)) = −P1 sin(q2). This implies q2 = q2(0),
which, when substituted in s = 0, yields q3 = q3d.
In this way, the function (75) has a unique minimum at
[q2 q3 p2 p3]

� = [q2(0) q3d 0 P3]
� and it is a positive

definite function by virtue of the nonholonomic constraint
(45).

Remark 1. Since the function Vd in (72) is only positive
semidefinite, so is (75). But due to the conservation
of the generalized momentum p3 = P3 that imposes a
nonholonomic constraint on q2 of the form p3 = P3 =
−P1S2(0), for all t ≥ 0, this implies that Hd has a unique
minimum occurring if and only if q2 = q2(0), such that
Hd in (75) is a positive definite function by virtue of (52)
and, as a result, it qualifies as a Lyapunov function for the
stability analysis.

Substituting (47) and (75), with J = 0, M and Md

as in (43) and (69), respectively, in Eqn. (8), we find the
following IDA-PBC for the 2-DOF gyroscope:

u = τ2 = u1 + u2 + u3 − u4, (76)

where

u1(q, p) = −JaS2C2(p3 + P1S2)
2

(J2 + JaS2
2)

2
, (77)

u2(q, p) =
P1C2(p3 + P1S2)

J2 + JaS2
2

, (78)

u3(q) =
Kps(k1k4 − k23J3)

k3(J2 + JaS2
2)

, (79)

u4(q, p) = Kv

[
k4p2

J3
− k3(p3 + P1S2)

k1k4 − k23J3

]
. (80)

Notice that u1 and u2 are terms to cancel the open-loop
dynamics (51). A block diagram of the IDA-PBC (76)
applied to the 2-DOF gyroscope dynamics (51) is shown
in Fig. 3. Finally, we are able to get the closed-loop
dynamics, by substituting M , Md, and Hd into (4), to
produce ⎡

⎢⎢⎢⎢⎢⎣

q̇2

q̇3

ṗ2

ṗ3

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

p2

J3

p3+P1S2

(J2+JaS2
2)

u3 − u4

0

⎤
⎥⎥⎥⎥⎥⎦
. (81)

We can explore the equilibrium point of the closed-loop
system by making the left-hand side of (81) zero. By
observing that the first two equations, q̇2 = 0 and q̇3 = 0
lead to p2 = 0 and p3 + P1S2 = 0, which in turn, by
using (52), yields q2 = q2(0). Now, by exploring the third
equation related to ṗ2 = 0, with u4 = 0 (since p2 = 0
and p3 + P1S2 = 0), we arrive at s = 0. By substituting
this result into (71), and knowing that q2 = q2(0), we get
q3 = q3d, concluding that the unique equilibrium point of
(81) is

[q2, q3, p2, p3]
� = [q2(0), q3d, 0, P3]

� ∈ R
4. (82)

5. Stability analysis

Previously, we have proven that Hd in (75) is a
positive definite function and, consequently, we can apply

 GTMd M -1 �q Hd  q2

 q2

 q2  p2

 p2

 u1
 u2

 u4

 u3

 τ2

 p3

 p3

 p3

 q3 q3

q3d

 M
 qT

 Kv G
T �p Hd

 GT �q H

Energy shaping

Damping injection
Gyroscope

Open-loop canceling terms

 x = f ( x ,τ )

Fig. 3. Block diagram of the IDA-PBC (76) applied to a 2-DOF
gyroscope.
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Lyapunov’s direct method to prove the stability of the
equilibrium point (82). Now, we have

Ḣd = (∇qHd)
�q̇ + (∇pHd)

�ṗ

= −(∇pHd)
�GKvG

�∇pHd,

which yields

Ḣd = −Kv

[
k4p2

J3
− k3(p3 + P1S2)

k1k4 − k23J3

]2

≤ 0, (83)

which is a negative semidefinite function. This means
that the desired equilibrium point (82) is stable. Now,
we invoke LaSalle’s Theorem from (Kelly et al., 2005,
Theorem 2.7, pp. 49) in order to analyze the asymptotic
stability of the equilibrium point (82). By examining Eqn.
(83), in accordance to Kelly et al. (2005), the set Ω is

Ω = {x ∈ R
4 : Ḣd(x) = 0}

= {x = [q� p�]� ∈ R
4 : Ḣd(x) = 0}

= {x = [q� p�]� ∈ R
4 :

k4p2
J3

− k3(p3 + P1S2) = 0}. (84)

Then Ḣd ≡ 0 when

k4p2
J3

− k3(p3 + P1S2) ≡ 0. (85)

If we substitute the value of p2 in terms of q̇2 from (81),
and the value of p3 from (52) into (85), we get

k4
dq2(t)

dt
≡ k3P1[sin(q2(t)) − sin(q2(0))]. (86)

Equation (86) is a nonlinear ODE with initial
conditions q2(0), whose unique solution (cf. Appendix C)
is

q2(t) ≡ q2(0). (87)

Also, it implies that q̇2 ≡ 0 and thus

p2 ≡ 0, (88)

which, in turn, yields ṗ2 ≡ 0. If we substitute ṗ2 ≡ 0
into the third equation of (81), knowing that u4 = 0 by
Eqn. (85), we have that s ≡ 0, which, in turn, using (71)
and (87), yields

q3 ≡ q3d. (89)

In this way, we prove that the equilibrium point (82) is
the maximum invariant set in Ω. Then, according to
LaSalle’s theorem (Kelly et al., 2005, Theorem 2.7), it is
sufficient to guarantee the local asymptotic stability of the
equilibrium point.

6. Experimental results

We implemented the controller (76) in the Quanser�

gyroscope (Fig. 1). The experimental results were
validated using Simulink�, utilizing Quarc accelerate de-
sign, version 2.2.1 as real-time control software which
uses 1 [ms] for the sample time. Time derivatives were
estimated by using a second order filter (filter dynamics
are neglected in this paper). We propose the desired
position q3d = 30◦. The gyroscope parameters have been
directly obtained from the manufacturer (Quanser, 2009).
They are shown in Table 1. Experimental gains are shown
in Table 2 (simulation results are omitted due to space
limitations). Furthermore, we built a simple proportional
controller of the form τ1 = 0.6(q̇1d − q̇1), to fix the speed
of the disc at q̇1d = 750 [rpm].

We calculate P1 = IDxxq̇1 = 2π
60 (750)(0.0027) =

0.212057 [kg · m2/s]. In the physical gyroscope, the
unused joint (q4) is manually blocked and its attached
motor is switched off. The IDA-PBC is enabled once the
desired disc velocity is reached. For comparison purposes,
we analyze IDA-PBC versus PD-PD controllers, where
the PD-PD controller is a cascade proportional-derivative
controller shown in the block diagram in Fig. 4, which is
defined as follows:

τ2 = kp1kp2q̃3 − kp2kv1q̇3 − kp2q2 − kv2q̇2, (90)

where q̃3 = q3d − q3 is the position error, kp1, kp2 are
strictly positive and named proportional gains, and kv1
and kv2 are also strictly positive and named derivative
gains shown in Table 2.

To quantify the control performance, we use, for the
transient period, the settling time ts and the percentage
of overshoot Mp, and for the steady-state period, the
root-mean square average of the tracking error (based on
the L2 norm of the tracking errors q̃) given by

L2[q̃] =

√
1

T − t0

∫ T

t0

q̃�q̃ dt (91)

where T represents the total experimentation time and
t0 is the initial time of the experiment. The better
performance is attained for smaller ts, Mp and L2 norm
(Santibanez et al., 2004).

Figure 5 shows the time evolution of q2 and q3
positions, where each vanishes to the desired value with

Table 1. Gyroscopic parameters.
J1 = 0.0075 [kg · m2]
J2 = 0.0225 [kg · m2]
J3 = 0.0036 [kg · m2]
Ja = 0.0048 [kg · m2]

IDxx = 0.0027 [kg · m2]
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Table 2. Experimental gains.
IDA-PBC PD-PD

k1 = 0.30 kp1 = 50.000
k3 = 0.30 kv1 = 1.000
k4 = 0.01 kp2 = 0.025
Kp = 1.00 kv2 = 0.500
Kv = 0.05

Table 3. Performance indexes.
Controller ts (2%) L2[q̃]

IDA-PBC 1.2 [s] 0.1797[◦]
PD-PD 1.63 [s] 0.2072[◦]

both controllers (76) and (90), respectively. Notice that
the proposed IDA-PBC (76) produces a faster response
than the PD-PD controller (90) without overshoot (Mp).
The L2 norm criterion, taken for the steady-state period
(in our case, we take it from ts to 2 [s]) gives a good
comparative performance index for the errors which are
shown in Fig. 7, where the errors vanish, concluding
that IDA-PBC exhibits better performance. Table 3
summarizes settling times ts and norms L2 for each
tested control algorithm, also showing better performance
for IDA-PBC. The torque needed to reach the control
objective is shown in Fig. 6, where it is clear that
IDA-PBC needs a smaller amount of torque to accomplish
the control objective (55).

We performed some extra tests to show how Kp from
IDA-PBC influences the error convergence rate and how
it can be increased. In Fig. 8, it can be noticed that,
reducing Kp, the error convergence rate decreases since it
takes longer time to reach the setpoint. With Kp > 1.2
the convergence rate is increased, but an overshoot is
obtained. Furthermore, in order to know the behavior of
the system facing disturbances, we carried out a second
test adding to the system a physical disturbance applied
to q2 with a duration of 0.89 seconds and 9◦ of intensity.
In Fig. 9, it can be noticed that Kv plays an important
role in the recovery time to reach the target again when
rejecting disturbances; the higher Kv, the shorter time for
the system to recover itself.

7. Conclusions

We have presented the IDA-PBC for a 2-DOF gyroscope
system, illustrating a way to reduce equations of motion
involving cyclic coordinates and gyroscopic forces. We
have shown how to detect gyroscopic terms and interpret
them as a generalized potential energy. Besides, we have
demonstrated how a nonholonomic constraint behaves as
a real potential energy setting the equilibrium point of
the system, and how we can achieve asymptotic stability
with this behavior. Furthermore, we have experimentally
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∑ Gyroscope
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 τ2

 q2
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 q3
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+  q3

 q2

 q3

 x=f(x,τ)

Fig. 4. Block diagram of the cascade PD-PD controller (90)
applied to the gyroscope to compare it with the IDA-
PBC (76).
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evaluated the performance of IDA-PBC versus a cascade
PD-PD controller, showing the advantages of the
proposed controller illustrated by faster responses and
smaller errors.

7.1. Final remarks.

Remark 2. (Original achievements) In this paper
we propose, as an original achievement, the design
and practical implementation of IDA-PBC in a system
having no potential energy. Furthermore, we propose an
unconventional way to prove asymptotic stability, since
without the help of a nonholonomic constraint neither the
desired potential function, nor the desired Hamiltonian
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Fig. 8. Time evolution of q3 and q2 utilizing the IDA-PBC (76)
for different values of Kp.

is positive definite. We prove that the nonholonomic
constraint isolates one critical point of the desired
Hamiltonian function, among many others, taking this
function to be positive definite. Next, the direct Lyapunov
method can be used, and then, LaSalle’s theorem can lead
us to asymptotic stability of the equilibrium point.

Remark 3. (Potential practical implementation of results)
The knowledge resulting from this paper can be extended
to others systems having no potential energy function and
nonholonomic constraints.
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Vı́ctor Santibáñez received the BE and MSc
degrees in electronic engineering from the La-
guna Institute of Technology, Torreón, Coahuila,
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Appendix A

This appendix is devoted to obtaining the kinetic and
potential energies of Quanser’s gyroscope in order to
obtain the dynamic model of Section 3. Figure A1 is a
schematic representation of Quanser’s 4-DOF gyroscope
(it can be viewed as a rotating disc which has 3 DOFs).
The selected configuration to work in the present paper
has a rectangular frame A blocked, and the DC motor
associated with it is no longer actuated implying a
reduction by 1-DOF, converting our device into a 3-DOF
gyroscope. The global X0Y0Z0 axes are fixed to the
ground, XIYIZI with I ∈ {B,C,D} are fixed to the
rotating bodies, and all of them have the same origin. The
q3 position is associated with the rotation of the body B
around the Z0 = ZB axis and can be measured by the
angle formed between the Y0 and YB axes, as shown in
Fig. A2(a). The q2 position is associated with the rotation
of the body C around the YB = YC axis and can be
measured by the angle formed between the ZB and ZC

axes, as shown in Fig. A2(b). Finally, the position of the
disc D is represented by the angle q1 associated with the
rotation around the XC = XD axis and can be measured
by the angle formed between the YC and YD axes, as
shown in Fig. A2(c). As mentioned before, the frame
A is fixed such that the associated angle q4 measured with
respect to the X0 axis and its derivatives are set to zero,
i.e, q4 = q̇4 = q̈4 = 0 (for this reason it is not shown in
Fig. A1).

We use rotation matrices in Z0 = ZB, YB = YC and
XC = XD axes to help us obtain the angular velocity of
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each body. Thus

R 0
B =

⎡
⎣ C3 −S3 0

S3 C3 0
0 0 1

⎤
⎦ , (A1)

RB
C =

⎡
⎣ C2 0 S2

0 1 0
−S2 0 C2

⎤
⎦ , (A2)

RC
D =

⎡
⎣ 1 0 0

0 C1 −S1

0 S1 C1

⎤
⎦ , (A3)

where Ci = cos(qi) and Si = sin(qi) with i ∈ {1, 2, 3}.
Assume that, in general, the angular velocity of the

body I with respect to the frame of the body J (I, J ∈
{B,C,D}) is represented by the vector ωJ

I . We have

ω 0
B =

⎡
⎣ 0

0
ω3

⎤
⎦ , (A4)

ωB
C =

⎡
⎣ 0

ω2

0

⎤
⎦ , (A5)

ωC
D =

⎡
⎣ ω1

0
0

⎤
⎦ , (A6)

where ωi = q̇i with i = 1, 2, 3. Then, the angular velocity
of the bodiesB, C and D, with respect to their own frame,
is obtained as follows:

ωB
B = RB

0 ω
0
B = (R 0

B)
Tω 0

B , (A7)

ωC
C = (RB

C )
T (ωB

B + ωB
C), (A8)

ωD
D = (RC

D)T (ωC
C + ωC

D). (A9)

By substituting the rotation matrices R 0
B , RB

C , RC
D,

given in (A1)–(A3), and the angular velocity vectors ω 0
B ,

ω B
C and ω C

D , given in (A4)–(A6) into Eqns. (A7)–(A9)

Z0
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YD

YC

YB

X0

XD
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XB

Fig. A1. Schematic representation of the gyroscope in an
arbitrary configuration.
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Fig. A2. Relative movement of each frame of the gyroscope.

and, making some basic operations, we get the following
angular velocities:

ωB
B =

⎡
⎣ 0

0
q̇3

⎤
⎦ , (A10)

ωC
C =

⎡
⎣ −S2q̇3

q̇2
C2q̇3

⎤
⎦ , (A11)

ωD
D =

⎡
⎣ q̇1 − S2q̇3

q̇2
C2q̇3

⎤
⎦ , (A12)

taking into account that the expression of the angular
velocity ωD

D has been simplified in terms of q1 due to the
axial symmetry of body D and by recognizing that only
angular velocity of the disc ω1, and not its position q1, is
needed in the dynamics and control study of the system,
as stated by Parks (1999).

The kinetic energy of each body of the gyroscope
is obtained from the equation K(q(t), q̇(t)) =
1
2

∑D
I=AωIT

I IIω
I
I , where II is the moment of inertia

matrix of the body I referred to the frame of the same
body. Only moments of inertia are considered while
products of inertia are set to zero due to the geometry
of the bodies. (Note that there is no translation motion,
and, in consequence, the term 1

2mIv
T
I vI is suppressed

from the kinetic energy equation, where vI denotes the
translational velocity.)

The kinetic energy of body D can be expressed as
follows:

KD =
1

2
IDxxq̇

2
1 +

1

2
IDyy q̇

2
2 +

1

2
IDzz q̇

2
3

− IDxxS2q̇1q̇3 +
1

2
(IDxx − IDzz)S

2
2 q̇

2
3 . (A13)

Furthermore, the kinetic energy of body C is

KC =
1

2
(ICxx − ICzz)S

2
2 q̇

2
3

+
1

2
ICyy q̇

2
2 +

1

2
ICzz q̇

2
3 . (A14)
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In addition, the kinetic energy of body B takes the form

KB =
1

2
IBzz q̇

2
3 . (A15)

Finally, the total kinetic energy (K = KB + KC +
KD) with some factorizations is

K =
1

2
IDxxq̇

2
1 +

1

2
J3q̇

2
2

− IDxxS2q̇1q̇3 +
1

2
(J2 + J1S

2
2)q̇

2
3 , (A16)

where J1 = ICxx − ICzz − IDzz + IDxx, J2 = IBzz +
ICzz + IDzz and J3 = ICyy + IDyy , with IBzz being
the moment of inertia of the body B around the ZB axis,
ICxx, ICyy and ICzz the moments of inertia of the body
C around the XC , YC and ZC axes, respectively, and
IDxx, IDyy and IDzz the moments of inertia of the body
D around the XD, YD and ZD axes, respectively.

Since the center of mass is fixed and it is the same
center for all associated frames, and due to the symmetric
property of the bodies, the potential energy function yields

V (q) = 0. (A17)

Appendix B

In this appendix, we prove the identity between Eqns. (23)
and (49). First, consider the generalized potential energy
function introduced in Definition 5, i.e., the sum of the
ordinary potential energy function and a gyroscopic term
that is linear in q̇,

W (q, q̇) = V (q) + ϕ�(q)q̇. (B1)

Now, we write Eqn. (B1) in terms of (q, p), by calling (22)
and solving for q̇, we have

q̇ = M−1p+M−1 ∂W (q, q̇)

∂q̇
; (B2)

then, by substituting (B2) into (B1), we have

W (q, p) = V + ϕ�M−1p+ ϕ�M−1 ∂W (q, q̇)

∂q̇
. (B3)

Besides, if we get the derivative of (B1) with respect to q̇,
we obtain

∂W

∂q̇
=

∂

∂q̇
[V (q) + ϕ�(q)q̇] =

∂[ϕq̇]

∂q̇
= ϕ. (B4)

By substituting (B4) into (B3), we get

W (q, p) = V +

(
∂W (q, q̇)

∂q̇

)�
M−1p

+

(
∂W (q, q̇)

∂q̇

)�
M−1∂W (q, q̇)

∂q̇
. (B5)

Now, we are ready to begin the demonstration. By
substituting (24) into (23), we obtain

H =
1

2
p�M−1p+W (q, p)

− 1

2

(
∂W (q, q̇)

∂q̇

)�
M−1 ∂W (q, q̇)

∂q̇
; (B6)

if we substitute (B5) in (B6), we arrive at

H =
1

2
p�M−1p+

(
∂W

∂q̇

)�
M−1p

+
1

2

(
∂W

∂q̇

)�
M−1 ∂W

∂q̇
+ V. (B7)

Without the function V , the other terms in (B7) form a
perfect-square trinomial, and consequently Eqn. (B7) can
be reduced to

H =
1

2

[
p+

∂W

∂q̇

]�
M−1

[
p+

∂W

∂q̇

]
+ V. (B8)

Therefore, the identity between Eqns. (23) and (49) is
demonstrated.

Appendix C

The first order autonomous nonlinear differential equation

k4
dq2(t)

dt
≡ k3P1[sin(q2(t))− sin(q2(0))], (C1)

previously presented in (86), has the form

dx

dt
= f(x), (C2)

which is separable as

t+ IC =

∫
dx

f(x)
, (C3)

where x = q2, f(x) = (k3/k4)P1[sin(q2(t))−sin(q2(0))]
and IC as an integration constant. Stationary solutions2

of (C2) are found when dx(t)/dt = 0, i.e., f(x) = 0
(Fulford et al., 1997). For (C1),

f(x) = f(q2)

=
k3
k4

P1[sin(q2(t))− sin(q2(0))] = 0,
(C4)

which yields
q2(t) = q2(0), (C5)

2Stationary solutions or steady state solutions are time-independent
constant solutions (Fulford et al., 1997).
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as stated in (87). For nonstationary solutions of (C2), we
solve the differential equation (C1) as proposed in (C3),
obtaining

t+ IC =
k4

k3P1

∫
dq2(t)

(sin(q2(t))− sin(q2(0)))
. (C6)

By calculating the integral of (C6), we have

t+ IC =
2k4

k3P1α
arctan

[
1− sin(q2(0)) tan(

q2(t)
2 )

α

]
,

(C7)
where

α =

√
sin2(q2(0))− 1 = cos(q2(0))i, (C8)

i being an imaginary number. The above expression
(C7) does not have a real solution for q2(t), because
α is not a real number for all q2(0) 	= nπ/2, where
n = {. . . ,−3,−1, 1, 3, 5, . . .}; moreover, when q2(0) =
nπ/2, the right-hand-side term of (C7) is not defined due
to α = 0. Then, we conclude that (C5) is the unique real
solution for (C1).
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