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We consider the discrete-time G/GI/1 queueing system with multiple exhaustive vacations. By a transform approach, we
obtain an expression for the probability generating function of the waiting time of customers in such a system. We then
show that the results can be used to assess the performance of G/GI/1 queueing systems with server breakdowns as well as
that of the low-priority queue of a preemptive MX+G/GI/1 priority queueing system. By calculating service completion
times of low-priority customers, various preemptive breakdown/priority disciplines can be studied, including preemptive
resume and preemptive repeat, as well as their combinations. We illustrate our approach with some numerical examples.
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1. Introduction

This paper presents the waiting time analysis of three
related discrete-time queueing models. The first model
is the G/GI/1 exhaustive multiple vacation queueing
system. As opposed to ordinary single-server queueing
systems, the server of this system does not simply wait for
the next arrival when the queue is empty upon departure
of a customer. Instead, it leaves for a vacation of random
duration. If there is a customer waiting upon returning
from this vacation, the server starts working again. If not,
the server leaves for another vacation of random duration;
see, e.g., the works of Doshi (1986), Takagi (1991) or
Tian and Zhang (2006) for references to M/G/1-type
vacation models. Some recent advances on queues with
vacations are presented by Woźniak et al. (2014), Dudin
et al. (2016) and Atencia (2016).

The second model is the G/GI/1 queueing system
with server interruptions or breakdowns; see the work
of Krishnamoorthy et al. (2014) for a recent survey
on queues with server interruptions. For this queueing
system, the server is not continuously available. From
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time to time, the server breaks down and a random
repair time is required to restore proper server behaviour.
In particular, it is allowed to break down while a
customer receives service. The breakdown discipline
then determines how the service goes on after the
corresponding repair. The breakdown disciplines studied
include repeating and continuing service after the repair,
as well as more intricate combinations of these disciplines,
which are introduced below.

The third queueing model is a preemptive priority
queueing system. In a preemptive priority queue with two
classes, say a high- and a low-priority class, customers of
the high-priority class are served whenever there are such
customers in the system. In particular, when a low-priority
customer is being served upon arrival of a high-priority
customer, the former immediately leaves the server,
making room for the latter. Hence, for preemptive priority
systems, the presence of low-priority customers does
not affect the performance of high-priority customers.
When all high-priority customers have left the system,
the server either resumes the service of the low-priority
customer (preemptive-resume (see Walraevens et al.,
2004)), or repeats the service of the customer. In
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the latter case, the service time may be resampled
(preemptive-repeat-different (see Lee and Lee, 2003)), or
may remain the same (preemptive-repeat-identical (see
Walraevens et al., 2006)).

These queueing systems can be described as follows.
For all breakdown disciplines, a service-completion-time
approach allows reducing that of the queueing system
with breakdowns to that of the G/GI/1 exhaustive
multiple vacation queueing one. Similarly, by identifying
the busy periods of high-priority customers with the repair
times of the queueing system with breakdowns, the system
with breakdowns can be used to assess performance
of low-priority customers. Breakdown disciplines then
immediately relate to priority disciplines like preemptive
resume and preemptive repeat.

1.1. Related work on priority queues. Queueing
systems with vacations having been well surveyed (Doshi,
1986; Takagi, 1991; Tian and Zhang, 2006). We discuss
related work on preemptive priority queues in this section,
and on queues with interruptions in the next one.

Preemptive priority queueing models
find applications in diverse fields, including
telecommunication networks and production systems.
Jayaswal et al. (2011) use a preemptive-resume
priority queueing system to assess a company’s
service differentiation strategy in price and delivery
times towards two different customer segments in a
capacitated environment. Adan et al. (2009), study
a preemptive-resume queueing model to determine
optimal spare-part inventory levels in a repair shop where
multiple types of parts are repaired. Whenever a part
of a production system is in repair, the system which
is costly is offline, the exact cost depending on the part
type. The preemptive-resume discipline is also applied
to assess performance of cognitive radio networks where
secondary users access the wireless channel when it is not
employed by its primary users. The priority model allows
us to account for channel access by primary users, sensing
errors of secondary users, as well as for heterogeneous
channel capacity (Wang et al., 2011).

For a distributed database system with
file-replication, updates of the database files have
preemptive-repeat-different priority over database
requests in the work of Sumita and Sheng (1988). A
preemptive-repeat-identical priority discipline is applied
to assess performance of 1- and pi-persistent CSMA-CD
protocols for an unslotted fiber-optic bus network with a
finite number of stations (Yoon and Un, 1994). Because
of the unidirectional transmission, an upstream station
has priority over downstream stations in accessing the
channel. In particular, for the 1-persistent CSMA-CD
protocol, retransmission of deferred packets starts
when the channel is sensed idle, which yields a pure
repeat-identical priority discipline. A similar model is

studied to assess performance of an optical metropolitan
area network by Castel and Hebuterne (2004).

1.2. Related work on queues with interruptions.
Interest in queueing models with interruptions dates back
to White and Christie (1958), who studied an M/M/1
queueing system with exponential repair times. The
generalisation to generally distributed service times and
repair times was later performed by Gaver Jr. (1962),
Avi-Itzhak and Naor (1963), and Thiruvengadam (1963).
Further extensions include phase-type distributions for
the available periods (Federgruen and Green, 1986),
arrival correlation (Takine and Sengupta, 1997),
processor-sharing service (Núñez Queija, 2000), retrials
(Dragieva, 2014; Zhang and Zhu, 2013; Gao et al., 2016),
priorities (Sahba et al., 2013) and multi-server systems
(Kim et al., 2017). Tang (1997) considers Poisson
breakdowns when the server is working and renewal
type breakdowns when it is idle, whereas Li et al. (1997)
investigate the transient behaviour of the M/G/1 queue
subject to Poisson breakdowns. Except for Gaver Jr.
(1962), all these authors consider preemptive resume
interruptions; service continues after the interruption (we
borrow the parlance from priority queueing systems).
Gaver Jr. (1962) also considers preemptive repeat and
preemptive repeat different service interruptions; in this
case the service time is repeated after the interruption
with the same service time or with a new resampled
service time.

Preemptive repeat and resume are not the only
possible interruption strategies. For example, a service
can can have multiple phases and only the ongoing phase
is repeated after the interruption (with or without identical
service time) (Fiems et al., 2002; 2004). Furthermore,
the breakdown rate can also depend on the on-going
phase (Wang, 2004; Choudhury and Tadj, 2009), or
breakdowns can either trigger a preemptive resume or
preemptive repeat interruption (Fiems et al., 2008). Some
breakdown models include additional features such as
multiple vacations when the server is idle (Tang et al.,
2008), setup and closedown times (Ke, 2007), reneging
(Martin and Mitrani, 2008), customer expulsions on
arrivals (Atencia, 2014; 2015), delayed detection of
breakdowns (Krishnamoorthy et al., 2015), multiple types
of interruptions (Wu et al., 2011), or working breakdowns
(Jiang and Liu, 2017).

Some authors also consider queues with interruptions
and generally distributed interarrival times. Balciog̃lu
et al. (2007) approximate a GI/D/1 queue with
correlated server breakdowns by the corresponding
system with an interruption process with (independent)
hyper-exponential on-times and general off-times. Lu
et al. (2016) study the G/GI/N multiserver queue with
interruptions in the Halfin–Whitt regime, that is, when the
arrival rate and the number of servers are sent to infinity,
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while Pang and Zhou (2016) consider a G/G/∞ queueing
model with server interruptions. Finally, sufficient
conditions for the stability of a multiserver breakdown
model are the subject of the work of Morozov et al.
(2011).

1.3. Organisation of the paper. The remainder
of this contribution is organised as follows. In the
following section, we describe the G/GI/1 queueing
system with exhaustive vacations and derive an expression
for the probability generating function of the waiting
times. Section 3 is then concerned with the interruption
model. The model details are introduced and expressions
for the probability generating function of the service
completion times are obtained. The probability generating
function of the waiting times of the interruption model
is then obtained by combining the expression of the
service completion times with the waiting time analysis
of the exhaustive vacation queue. The third model at
hand, the preemptive priority queue, is the subject of
Section 4. A high-priority busy period analysis transforms
the low-priority queue into a queue with interruptions;
the results of Section 3 can thus be applied to study
waiting times of low-priority customers. Finally, we draw
conclusions in Section 6.

2. G/GI/1 queue with exhaustive vacations

2.1. Queueing model and assumptions. We consider
a discrete-time queueing system, i.e., we assume that
time is divided into fixed length intervals or slots. At
the consecutive slot boundaries, customers arrive at the
system, are stored in an infinite capacity queue, and are
served on a first-come-first-served basis. No more than
one customer can be served at the same time, and service
times are integer multiples of the slot length such that all
departures occur at slot boundaries as well.

There is at most one customer arrival at a slot
boundary. The inter-arrival times between consecutive
customers (expressed in numbers of slots) constitute a
sequence of independent and identically distributed (i.i.d.)
positive random variables with a common probability
generating function A(z) which is assumed to be a
rational function. As A(z) is rational, there exists a
real-valued a∗ > 1 such that A(z) is analytic in |z| < a∗.
For further use, let a be a constant such that 1 < a < a∗.
In addition, the service times of the consecutive customers
constitute a sequence of i.i.d. positive random variables as
well; let S(z) denote the common probability generating
function of the service times.

As long as there are other customers in the queue,
the server serves one customer after another. However,
if the queue is empty upon departure of a customer,
the server leaves for a vacation of random duration. If
there are customers in the queue when the server returns

from its vacation, the server immediately resumes serving
customers. If this is not the case, it immediately leaves
for another vacation. That is, the server takes consecutive
vacations and service is only resumed when the server
finds waiting customers upon returning from a vacation.
The consecutive vacation times constitute a sequence of
i.i.d. positive random variables. Let V (z) denote their
common probability generating function.

Finally, let Ā = A′(1), S̄ = S′(1) and V̄ = V ′(1)
denote the mean interarrival time, the mean service time
and the mean vacation time, respectively.

2.2. Customer waiting time analysis. Let customer
waiting time be defined as the number of slots between
customer arrival and the slot boundary where the customer
enters the server, and let Wk denote the waiting time of the
k-th customer. In accordance with the exhaustive multiple
vacation system, consecutive customer waiting times are
described as

Wk+1 =

{
Wk +Xk if Wk +Xk ≥ 0,

V
[R]
k (−Wk −Xk) if Wk +Xk < 0,

(1)

with Xk
.
= Sk − Ak. Here Ak denotes the inter-arrival

time between customer k and customer k + 1, and
Sk denotes the service time of customer k. Further,
V

[R]
k (i) is a random variable that denotes the remaining

vacation time upon arrival of a customer that arrives at the
i-th slot boundary since the queue became empty. The
first equation also holds for the GI/G/1 queue without
vacations and corresponds to the case where customer
k + 1 arrives in a non-empty queue. The second equation
holds if the queue is empty upon departure of customer k.
The waiting time of customer k + 1 then consists of the
remaining vacation time upon arrival of this customer.

Let Wk(z) denote the probability generating function
of the waiting time of customer k. Moreover, we introduce
the annulus N = {z ∈ C; a−1 < |z| < 1}. In
view of (1) and by means of some standard z-transform
manipulations, we find

Wk+1(z) = Wk(z)A(1/z)S(z)

+ E[(zV
[R]
k (Uk)+Uk − 1)z−Uk1{Uk > 0}] ,

(2)

for z ∈ N . Here we introduced the random variable Uk
.
=

Ak −Wk − Sk for ease of notation.
Let θi(n), (n = 1, 2, . . .) and Θi(z) denote the

probability mass function and the probability generating
function of V [R]

k (i), respectively. By conditioning on the
length of the first vacation, we find

θi(n) = v(i+ n) +

i−1∑
j=1

v(j)θi−j(n) , (3)
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with v(n) (n > 0) being the probability mass function
of the vacation times. The corresponding probability
generating function then satisfies

Θi(z)z
i − 1 = V (z)− 1

+
i−1∑
j=1

v(j)
(
Θi−j(z)z

i−j − 1
)
zj , (4)

for z ∈ D = {z ∈ C; |z| < 1}. Noting that V (z)− 1 has
no zeroes inside the unit disk, introduce the functions

Ωi(z) =
Θi(z)z

i − 1

V (z)− 1
,

for z ∈ D. Solving the former expression for Θi(z) and
substituting the result in (4) yield,

Ωi(z) = 1 +

i−1∑
j=1

v(j)Ωi−j(z)z
j ,

for z ∈ D. We have Ω1(z) = 1, Ω2(z) = 1 + v(1)z,
etc. In view of the former expression, one easily verifies
by recursion that Ωi(z) is a polynomial of order i − 1
coefficients in [0, 1] which depend on the probability mass
function of the vacations. Moreover, the coefficients of
the terms in the polynomial are non-negative and bounded
by 1.

As Θi(z) is the probability generating function of
V [R](i), we have, for z ∈ D,

E[zV
[R](i)+i − 1] = Θi(z)z

i − 1

= (V (z)− 1)Ωi(z) .

Combining this expression with (2) then yields

Wk+1(z) (5)

= Wk(z)A(1/z)S(z) (6)

+ (V (z)− 1)z−1E[ΩUk
(z)z−Uk+11{Uk > 0}] ,

(7)

for z ∈ N .
Under the assumption that the queueing system under

consideration reaches a steady state, a standard Loynes
argument shows that this is the case if the arrival load
does not exceed the service capacity, i.e., for Ā > S̄ —
let W (z) denote the steady state probability generating
function of the customer waiting time. We find that

W (z)(1−A(1/z)S(z))z = (V (z)− 1)Υ(1/z) , (8)

for z ∈ N . Here Υ(z) is a z-transform with positive
coefficients υn,

Υ(z) =

∞∑
n=0

υnz
n = E[ΩU (1/z)z

U−11{U > 0}] ,

where U denotes the steady state version of Uk.
Clearly, A(1/z) is rational since A(z) is rational.

Therefore, let PA(z) and QA(z) denote respectively the
numerator and the denominator of A(1/z),

A(1/z) =
PA(z)

QA(z)
. (9)

The numerator and the denominator are uniquely defined
up to a factor. Moreover, we have PA(1) = QA(1) by the
normalisation condition A(1) = 1. In the remainder, we
choose PA(1) = QA(1) = 1 to simplify notation (but any
non-zero constant yields the same results).

Combining (8) and (9) further yields

W (z)
QA(z)− PA(z)S(z)

V (z)− 1
=

QA(z)

z
Υ(1/z) , (10)

for z ∈ N .
We now study the analyticity of both sides in (10).

The left-hand side of the former equation is analytic
within the unit disk D. Indeed, QA(z) and PA(z) are
entire functions, V (z) − 1 has no zeroes in D, while the
probability generating functionsW (z), S(z) and V (z) are
analytic in D.

For the right-hand side, we need to study Υ(z) in
detail. As Ωi(z) is a polynomial of order i − 1 with
coefficients in [0, 1], so is Ωi(1/z)z

i−1. Therefore, we
have |Ωi(1/z)z

i−1| ≤ iai−1 for |z| < a. This in turn
implies

|Υ(z)| ≤ E[|ΩU (1/z)z
U−1|1{U > 0}]

≤ E[UaU−11{U > 0}]
≤ E[AaA−11{A > W + S}]
≤ E[AaA−1] = A′(a) < ∞ .

The first inequality follows from Jensen’s inequality, the
second from the bound on |Ωi(1/z)z

i−1| found above,
and the third from U = A − W − S ≤ A. As
a consequence, we find that the power series

∑
υnz

n

converges for |z| < a, which implies that Υ(z) is analytic
in this region. Summarising, Υ(1/z) is analytic for |z| >
a−1, and so is the right-hand side of (10) as QA(z) is
entire and z−1 is analytic for |z| > 0.

Thus the left and right-hand sides are analytic
functions in |z| < 1 and |z| > a−1, respectively and
equal for a−1 < |z| < 1. As such, the left and right-hand
sides are analytic continuations of each other. That is, the
left and right-hand sides are representations of an entire
function Φ(z) in their respective domains.

The left-hand side of (10) is bounded for |z| ≤ a−1.
Moreover, Υ(1/z) is analytic and bounded for |z| ≥ a−1.
QA(z) being a polynomial of degree qA, we find that
both the left- and the right-hand side of (10) satisfy the
inequality

|Φ(z)| ≤ α+ β|z|qA−1 , (11)
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for some constants α and β and for all z ∈ C.
In accordance with the extended Liouville theorem

(see, e.g., Theorem 5.11 of Bak and Newman (1997)), this
inequality implies that Φ(z) is a polynomial of degree at
most qA − 1. Summarising, we have, for all z inside the
unit disk,

W (z) =
(V (z)− 1)Φ(z)

QA(z)− PA(z)S(z)
, (12)

where Φ(z) is an unknown polynomial of degree at most
qA − 1.

By Klimenok’s theorem (Klimenok, 2001), one
shows that the denominator of (12) has qA − 1 zeros,
say z = y1, . . . , yqA−1, inside the unit disk. Since
probability generating functions are analytic inside the
unit disk, every zero of the denominator is also a zero of
the numerator. This then implies

Φ(z) = K

qA−1∏
j=1

z − yj
1 − yj

, (13)

where K is an unknown constant. Finally, plugging (13)
in (12) and invoking the normalisation condition yield,

W (z) =
Ā− S̄

V̄

V (z)− 1

QA(z)− PA(z)S(z)

qA−1∏
j=1

z − yj
1 − yj

.

(14)
By the moment generating property of the probability
generating function, one easily obtains expressions for
the various moments of the customer waiting time. In
particular, the mean waiting time W̄ = W ′(1) equals

W̄ =

qA−1∑
j=1

1

1− yj
+

A′′(1) + 2Ā(1 − Ā) + S′′(1)
2(Ā− S̄)

+
V ′′(1)
2V̄

− P ′
A(1) . (15)

3. G/GI/1 queue with server interruptions

3.1. Modelling assumptions. We retain the
assumptions of Section 2 on the discrete-time setting as
well as on the arrival process. As opposed to Section 2,
the server now does not leave for vacations when the
queue becomes empty. In addition, the assumptions on
the service process are refined as follows.

Customer service consists of K consecutive stages,
let Sk,i denote the length of the i-th stage of the
service time of customer k such that the vector Sk

.
=

[Sk,i]i=1,...,K characterises the service requirement of the
k-th customer. The consecutive Sk constitute a sequence
of independent and identically distributed non-negative
random vectors with common probability mass function
s(n1, n2, . . . , nK). For further use, let Si(z) denote the
probability generating function of the i-th part,

Si(z) = E[zSk,i ] .

There is a single server which can break down from
time to time. In particular, we assume that the server
breaks down at the end of a slot with a fixed probability
α or remains available with probability ᾱ

.
= 1 − α,

independent of the state of the queue. After a breakdown,
the server needs to be repaired. The consecutive repair
times constitute a sequence of independent and identically
distributed random variables with a common probability
generating function B(z) and a common mean value
B̄

.
= B′(1). There are no additional breakdowns during

repair. In other words, the server alternates between
repair and availability, availability periods being (shifted)
geometrically distributed.

Clearly, the server can break down while a customer
is being served. In this case, service of the stage is
either resumed or repeated after the repair, depending
on the sequence number of the stage. If service is
repeated, the required service time remains the same over
the consecutive trials; this is a preemptive repeat identical
service discipline. Without loss of generality, we assume
that service of the first stage resumes after a breakdown,
while service is repeated after a breakdown during the
other stages. This indeed does not compromise generality:
the order of the consecutive stages does not affect the
performance measures under study. Moreover, having
multiple consecutive stages with preemptive resume is
equivalent to having a single stage where the service time
of the single stage equals the sum of the service times of
the consecutive stages.

Finally, note that the breakdown policy defined above
is a generalisation of both preemptive resume and the
preemptive repeat identical breakdown policies (Fiems
et al., 2004).

3.2. Completion times. To simplify the queueing
analysis, we first consider the completion time of a
customer. It is defined as the time (in slots) that it
actually takes to serve a customer, including repair times
and (possible) lost service time. The completion time of
a customer starts at the beginning of the slot where the
customer receives service for the first time and ends at
the beginning of the slot where the server is available to
serve the next customer (if present). Hence, a customer’s
completion time ends at the departure epoch of this
customer if the server is available during the slot following
the departure, or ends after the repair which starts at the
departure epoch if this is not the case.

Let C1(z;n) denote the probability generating
function of the completion time of a customer whose
service time equals n slots, assuming a preemptive resume
breakdown policy. Clearly, in preemptive resume, every
slot of service is followed by a repair time with probability
α or by the next service slot with probability ᾱ. Assuming
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n slots of service, we immediately find that

C1(z;n) = zn(ᾱ+ αB(z))n

and
C′

1(1;n) = n(1 + αB̄) .

Let C2(z;n) denote the probability generating
function of the completion time of a customer whose
service time equals n slots, assuming a preemptive repeat
(identical) breakdown policy. By conditioning on the
number of slots till the first breakdown, we find

C2(z;n) =

n−1∑
k=1

ᾱk−1αzkB(z)C2(z;n)

+ ᾱn−1zn(ᾱ+ αB(z)) .

Here we used the fact that, by the lack of memory of
the geometric time till the next breakdown, consecutive
trials are independent. Moreover, as service has to start all
over, the remaining completion time after the breakdown
is distributed as the service completion time. Solving for
C2(z;n) further yields

C2(z;n) =
ᾱn−1zn(1− ᾱz)(ᾱ+ αB(z))

1− ᾱz − αz B(z)(1− ᾱn−1zn−1)

and

C′
2(1;n) =

(1− ᾱn) (αB′ (1) + 1)

α ᾱn−1
.

Given n1, . . . , nK , the completion times of the
different parts are independent. Hence, the probability
generating function of the completion time equals

C(z)

=
∑

n1,...,nK

s(n1, n2, . . . , nK)C1(z;n1)

K∏
k=2

C2(z;nk) .

(16)

By the moment generating property of probability
generating functions, the mean service completion time
C̄

.
= C′(1) is given by

C̄ = (1 + αB̄)

(
S′
1(1) +

ᾱ

α

K∑
k=2

(Sk(ᾱ
−1)− 1)

)
.

3.3. Waiting time analysis. Having established the
expressions of the generating function and moments of
the completion times, we now describe the model with
server breakdowns to the exhaustive vacation queue. As
before, let Wk andAk denote the waiting time of customer
k and the interarrival time between customer k and k+ 1,
respectively. Denote by Ck the completion time of the
k-th customer. Then

Wk+1 =

{
Wk + Yk if Wk + Yk ≥ 0,

Ṽ
[R]
k (−Wk − Yk) if Wk + Yk < 0,

(17)

with Yk
.
= Ck−Ak, where Ṽ [R]

k (x) denotes the remaining
repair time at the x-th slot boundary after the departure
of the k-th customer. From Section 2, recall that the
server does not resume service for a random number of
slots when it leaves for a server vacation. Breakdowns
while the server is idle affect the server in a similar way.
Whenever there is a breakdown in a slot, the server only
returns after the corresponding repair or returns the next
slot when this is not the case. Hence, we can account for
the breakdown and repair process by assuming vacations
of length 1 with probability 1−α and of length B+1 with
probability α. Here, B denotes a generic repair time. The
probability generating function of these vacations then
equals

Ṽ (z) = (1− α)z + αzB(z) .

Summarising, replacing the service times by the
completion times and assuming vacations as defined
above, we immediately find that the probability generating
function of the waiting times and the the mean waiting
time in the queueing system with breakdowns are given
by

W (z)

=
Ā− C̄

1 + αB̄

z − 1 + αz(B(z)− 1)

QA(z)− PA(z)C(z)

qA−1∏
j=1

z − yj
1 − yj

(18)

and

W̄ =

qA−1∑
j=1

1

1− yj
+

A′′(1) + 2Ā(1− Ā) + C′′(1)
2(Ā− C′(1))

+
2αB̄ + αB′′(1)

2 + 2αB̄
− P ′

A(1) . (19)

Here, the unknowns yj are the solutions of QA(z) −
PA(z)C(z) = 0 within the unit disk.

4. Preemptive priority queue

The breakdown model can be used to study waiting
times of low-priority customers in a preemptive priority
queueing system. By preemption, the server is unavailable
whenever there are high-priority customers in the system
and available otherwise. In other words, the busy periods
of the high-priority queue correspond to the repair periods,
and the idle periods of the high-priority queue correspond
to the available periods seen by low-priority customers.
In view of the preceding sections, we have the following
assumptions on low priority customers:

• the sequence of interarrival times between
consecutive low-priority customers constitutes
a sequence of iid random variables with common
probability generating function A(z);
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• the refined model for the multi-stage service times of
the preceding section holds, and s(n1, n2, . . . , nK)
is the common probability mass function of the
stages of the low-priority service times;

• service of the stage is either resumed or repeated
after preemption by high priority customers, as in the
preceding section.

Recall from the preceding section that the repair
periods and available periods constitute sequences of
independent generally distributed and geometrically
distributed random variables, respectively. Hence, the
breakdown model can assess waiting times of low-priority
customers if its busy and idle periods fit the modelling
assumptions of the breakdown process. This is the case
if the high-priority arrival process regenerates whenever
there are no arrivals in a slot. Obviously, this is the
case when the number of arrivals in consecutive slots
and their service times constitute sequences of i.i.d.
random variables. Let A1(z) be the common probability
generating function of the number of high-priority arrivals
in a slot, and let S1(z) be the common probability
generating function of the service times. The probability
generating function B(z) of the busy periods satisfies the
following functional equation (Fiems et al., 2004):

B(z) =
A1(Bs(z))−A1(0)

1−A1(0)
, (20)

Bs(z) = S1(zA1(Bs(z)) , (21)

whereas the high-priority queue does not remain empty
with probability

α = 1−A1(0) . (22)

Remark 1. (Independence of the arrival process) The
independence assumption of the high-priority arrival
process is not required. Regeneration when there
are no arrivals is the essential property needed. For
example, M/G/∞-input and discrete autoregressive
arrival processes of order 1 also regenerate when there are
no arrivals.

Summarising, to model the MX+G/G/1 priority
queue, (20), (21) and (22) determine the parameters of the
interruption process in Section 3. In other words, plugging
(21) and (22) in (18) yields the probability generating
function of the waiting times of low-priority customers in
the MX+G/G/1 priority queue with the above mentioned
preemptive priority policy.

Remark 2. (Numerical evaluation) For the evaluation
of the moments of the low-priority waiting times, the
main numerical difficulty is related to finding the roots
yj in (18). The moments can be expressed in terms of
the parameters of the model and these unknown roots;

see, e.g., (19) for the mean waiting time, noting that the
derivatives of C(z) for z = 1 can be obtained in terms
of the model parameters. These roots are the zeros of
QA(z) − PA(z)C(z) = 0, where C(z) is expressed as
an infinite sum; see (16). Hence, as we need to evaluate
C(z) for z �= 1 for finding the roots, we need to truncate
the sum. Moreover, to evaluate the terms in C(z), we
need to evaluate B(z) as well, which is implicitly defined
in (20) and (21). To find B(z) for |z| < 1, we find the root
x (= Bs(z)) with |x| < 1 that solves x = S1(zA1(x)).

5. Numerical example

To illustrate our results, we now study the influence
of the interarrival time distribution of the low-priority
traffic on the low-priority waiting time. We assume that
the low-priority service time has two stages, and apply
preemptive resume and preemptive repeat in the first
and second stages, respectively. The length of the first
and the second stage are independent and geometrically
distributed with parameters β1 and β2, respectively, such
that the generating function of the completion times
simplifies to

C(z) =
(1 − β1)(1− β2)

1− β1z(ᾱ+ αB(z))

×
∞∑
n=1

βn−1
2

ᾱn−1zn+1(1− ᾱz)(ᾱ+ αB(z))2

1− ᾱz − αz B(z)(1− ᾱn−1zn−1)
.

The batch size of the high-priority (class 1) customers is
assumed to be Poisson with rate λ1, and the high-priority
service times are geometrically distributed with mean S̄1,

A1(z) = exp(λ1(z − 1))

S1(z) =
z

S̄1(1− z) + z
.

Hence we have α = 1 − exp(−λ1) and the following
functional equation for Bs(z):

Bs(z)(S̄1 exp(λ1(1−Bs(z)))

− (S̄1 − 1)z)− z = 0 .

For the low-priority interarrival times, we rely on
the moment characterisation of acyclic Coxian phase-type
distributions by Horváth et al. (2015). That is, we
consider the class of distributions with generating function

A(z) = p
φ1z

1− (1− φ1)z

φ2z

1− (1− φ2)z

+ (1− p)
φ2z

1− (1 − φ2)z
,

where p, φ1 and φ2 are determined by the first three
moments of the interarrival time distribution. Given
the mean interarrival time E[A] and the variance of the
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interarrival time var[A] ≥ E[A]2/2, we find a unique set
of parameters (p, φ1, φ2) of the distribution by choosing
the distribution with minimal skewness. Hence, the
interarrival times are completely characterised by the
low-priority (class 2) arrival rate λ2 = 1/E[A] and
the standard deviation σ2 =

√
var[A] of the class 2

interarrival times.

Figure 1 investigates the effect of the class 1 arrival
rate on the mean class 2 waiting time. The mean class 1
service time equals S̄1 = 5 slots, while both phases of
the class 2 service time take 4 slots on the average (β1 =
β2 = 0.75). The mean class 2 arrival rate is λ2 = 0.05,
and different values for the standard deviation of the class
2 interarrival times are assumed as depicted. As expected,
an increase in the class 1 arrival rate results in an increase
in the mean class 2 waiting time. Indeed if the class 1
arrival rate increases, the server needs to attend the class 1
customers more regularly, and the class 2 customers have
to wait longer. In addition, the figure readily shows that
more variance in the arrival process (increasing values of
σ2) affects the performance negatively.

The latter observation is also confirmed by Fig. 2,
which depicts the mean class 2 waiting time W̄ vs. the
standard deviation σ2 of the class 2 interarrival times. As
above, both phases of the class 2 service time take 4 slots
on average (β1 = β2 = 0.75). We consider various values
of S̄1 as indicated, and set λ1 = 0.25/S̄1 such that the
class 1 load is equal for all plots. As expected, the mean
class 2 waiting time increases when the standard deviation
of the class 2 interarrival times increases.

The effect of the class 1 service times on the class 2
performance is, however, not straightforward. An increase
in the mean class 1 service time may either lead to an
increase or to a decrease of the mean class 2 waiting time.
This observation is clarified in Fig. 3 which depicts the
mean class 2 waiting time vs. the mean class 1 service
time S̄1, for different values of σ2 as depicted. The class
1 load is again constant, we set λ1 = 0.25/S̄1 and further
retain the parameters of Fig. 3. The figure shows that the
mean waiting time first decreases and then increases again
for increasing S̄1. This can be explained by noting that,
for small S̄1, class 2 service is often interrupted, the server
being available only for short times. Indeed, small S̄1

implies large λ1 and large α, which means that the server
often alternates between being available and unavailable
for serving class 2 customers. As service interruptions
lead to service repetitions, the mean waiting time is large.
Performance then improves if one increases S̄1. For high
S̄1, we have long periods when the server is available
followed by long periods that the server is not available.
While there are fewer service interruptions and therefore
also fewer service repetitions, the time when the server is
not available increases. During this time the class 2 queue
builds up, which results in longer class 2 waiting times.

Fig. 1. Mean class 2 waiting time W̄ vs. the class 1 arrival rate
λ1 for various values of the standard deviation of the
class 2 interarrival times.

Fig. 2. Mean class 2 waiting time W̄ vs. the standard deviation
σ2 of the class 2 interarrival times for different values of
the mean class 1 service time S̄1.

Fig. 3. Mean class 2 waiting time W̄ vs. the mean class 1 ser-
vice time S̄1 for different values of the standard devia-
tion σ2 of the class 2 interarrival times.

6. Conclusions

This paper considered three related queueing models.
Starting off with the G/GI/1 queue with exhaustive
vacations, it was shown that a queueing system with
server interruptions reduces to such a vacation queue,
by combining a service completion time approach with
particular assumptions on the vacation times. In turn,
the queue with service interruptions can be used to
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study the performance of low-priority customers in
a preemptive priority queueing system. While the
relation between interruption queues and priority queues
has been established before (Fiems et al., 2004), that
between vacation queues and interruption queues is new.
Moreover, while vacation queues have been studied
intensively, we are not aware of a study of the multiple
vacation queue in a G/GI/1 setting. In fact, as
the analysis shows, it is not trivial that arguments for
G/GI/1 queueing systems extend to equivalent queues
with multiple vacations. A slight modification like a
first exceptional vacation time already voids the current
argument.
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