
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 4, 705–717
DOI: 10.2478/amcs-2018-0054

EFFICIENT DECISION TREES FOR MULTI–CLASS SUPPORT VECTOR
MACHINES USING ENTROPY AND GENERALIZATION

ERROR ESTIMATION

PITTIPOL KANTAVAT a, BOONSERM KIJSIRIKUL a,∗, PATOOMSIRI SONGSIRI a ,
KEN-ICHI FUKUI b , MASAYUKI NUMAO b

aDepartment of Computer Engineering
Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand

e-mail: {pittipol.k,boonserm.k,patoomsiri.s}@chula.ac.th

bInstitute of Scientific and Industrial Research
Osaka University, Osaka 567-0047, Japan

e-mail: {fukui,numao}@ai.sanken.osaka-u.ac.jp

We propose new methods for support vector machines using a tree architecture for multi-class classification. In each
node of the tree, we select an appropriate binary classifier, using entropy and generalization error estimation, then group
the examples into positive and negative classes based on the selected classifier, and train a new classifier for use in the
classification phase. The proposed methods can work in time complexity between O(log2 N) and O(N), where N is the
number of classes. We compare the performance of our methods with traditional techniques on the UCI machine learning
repository using 10-fold cross-validation. The experimental results show that the methods are very useful for problems that
need fast classification time or those with a large number of classes, since the proposed methods run much faster than the
traditional techniques but still provide comparable accuracy.

Keywords: support vector machine, multi-class classification, generalization error, entropy, decision tree.

1. Introduction

Support vector machines (SVMs) (Vapnik, 1998; 1999)
were originally designed to solve binary classification
problems by constructing a hyperplane to separate
two-class data with maximum margin. For dealing with
multi-class classification problems, there have been two
main approaches. One is to solve a single optimization
problem (Vapnik, 1998; Bredensteiner and Bennett, 1999;
Crammer and Singer, 2002), and the other is to combine
several binary classifiers. Hsu and Lin (2002) suggested
that the latter approach may be more suitable for practical
use.

The general techniques of combining several
classifiers are the one-versus-one (OVO) method (Knerr
et al., 1990) and the one-versus-all (OVA) method. The
former requires N × (N − 1)/2 binary classifiers for an
N -class problem. Usually, OVO determines the target

∗Corresponding author

class using the strategy called max-wins (Friedman, 1996)
that selects the class with the highest vote of binary
classifiers. OVA requires N classifiers for an N -class
problem. In the OVA training process, the i-th classifier
employs the i-th class data as positive examples and the
remaining classes as negative ones. The output classes
are determined by selecting the class with the highest
classification score. Both techniques are widely used for
classification problems.

There are several techniques that enhance the
traditional OVO and OVA. Hastie and Tibshirani (1998)
improve the accuracy of OVO by using joint probability
estimation for pairwise classes. Kumar and Gopal
(2011) have proposed reduced one-against-all, a method
that decreases the training time of the original OVA.
Chmielnicki and Stąpor (2016) employ the OVA strategy
with samples balancing to improve pairwise coupling
classification. In this paper, we shall base our techniques
on the OVO method.

{pittipol.k,boonserm.k,patoomsiri.s}@chula.ac.th
{fukui,numao}@ai.sanken.osaka-u.ac.jp

706 P. Kantavat et al.

Although OVO generally yields high accuracy
results, it takes O(N2) classification time and thus is not
suitable for a problem with a large number of classes.
To reduce the running time, the decision directed acyclic
graph (DDAG) (Platt et al., 2000) and the adaptive
directed acyclic graph (ADAG) (Kijsirikul et al., 2002)
techniques have been proposed. Both methods build
N × (N − 1)/2 binary classifiers but employ only N − 1
classifiers to determine the output class. Though both
methods reduce the running time to O(N), their accuracy
is usually lower than that of OVO.

Some techniques apply the decision-tree structure
to eliminate more than one candidate class at each
node (classifier) of the tree using OVO classifiers. Fei
and Liu (2006) proposed the binary tree of SVMs that
select tree node classifiers randomly or through the
training data centroids. Songsiri et al. (2008) proposed
the information-based dichotomization tree, which uses
entropy for classifier selection. Chen et al. (2009) employ
the adaptive binary tree, which applies the minimization
of the average number of support vectors for tree
construction. Bala and Agrawal (2011) proposed optimal
decision-tree-based multi-class SVMs that calculate
statistical measurements for decision-tree construction.
These techniques share a common disadvantage that a
selected classifier may not perfectly separate examples of
a class to only the positive or negative side, and hence
some techniques allow data of a class to be duplicated to
more than one node of the tree.

There are also many techniques that construct
a hierarchical structure SVM using OVA classifiers
or clustering techniques. Takahashi and Abe (2002)
proposed a decision-tree-based SVM that calculates the
Euclidean and the Mahalanobis distance as a separability
measure for class grouping. Madzarov et al. (2009)
presented an SVM binary decision tree using class
centroids in the kernel space. Cheong et al. (2004)
introduced support vector machines with a binary tree
architecture that apply kernel-based self-organizing map
in the tree construction. Lei and Govindaraju (2005)
proposed a half-against-half multi-class SVM that divides
data classes into two groups randomly and constructs a
hierarchy structure for the classification. Liu et al. (2008)
proposed the multi-state-mapping SVM that applies
kernel functions to the k-means algorithm for grouping
data classes and constructing a hierarchical SVM. Kumar
and Gopal (2010) proposed decision-tree-based OVA, a
method inspired by BTS that applies the probabilistic
output of the SVM to determine the tree structure. Yang
et al. (2013) presented the single-space-mapped binary
tree SVM and the multi-space-mapped binary tree SVM,
hierarchical OVA-based techniques that use the Euclidean
distance to determine the set of hyper-parameters. Dong
et al. (2015) introduced a method that uses similarity
clustering to group classes for an OVA-based tree

structure.
In this paper, we propose two novel techniques

for the problem with a large number of classes. One
technique is the information-based decision tree SVM,
which employs entropy to evaluate the quality of OVO
classifiers in the node construction process. The other
technique is the information-based and generalization-
error estimation decision tree SVM, which enhances
the first technique by integrating generalization error
estimation. The key mechanism of both the techniques
is the method called class-grouping-by-majority: when a
classifier of a tree node cannot perfectly classify examples
of any class into either only a positive or a negative side of
the classifier, the method will group the whole examples
of that class into only one side that contains the majority
of the examples, and then train a new classifier for the
node.

We ran experiments comparing our proposed
techniques with traditional techniques using twenty
datasets from the UCI machine learning repository, and
conducted a significant test using the Friedman aligned
rank test (Friedman, 1996) and the Hommel procedure
(García et al., 2010) as a post-hoc procedure. The
results indicate that our methods are useful, especially for
problems that need fast classification or those with a large
number of classes.

This paper is organized as follows. Section 2
discusses tree-structure multi-class SVM techniques.
Section 3 proposes our techniques. Section 4 reports
experimental details. Section 5 summarizes our work.

2. OVO-based decision tree SVM

2.1. Binary tree of the SVM. The binary tree
SVM (BTS) (Fei and Liu, 2006) randomly selects binary
classifiers to be used as decision nodes of the tree. As
mentioned previously, the BTS allows duplicated classes
to be scattered in the tree. Basically, data of a class
will be duplicated into the left and right child nodes of a
decision node when a classifier of the decision node does
not completely classify the whole data of the class into
only one side (either positive or negative). An alternative
version of the BTS, c-BTS, excludes the randomness by
using data centroids. In the first step, the centroid of all
data is calculated. Then, the centroid of each data class
and its Euclidean distance to the centroid of all-data are
calculated. Finally, the (i vs j) classifier is selected such
that the centroid of class i and the centroid of class j have
the nearest distances to the all-data centroid.

Illustrations of the BTS and c-BTS are shown in
Fig. 1. At the root node, classifier 1 vs 2 is selected.
Classes 1, 4 and classes 2, 3 are separated to positive
and negative sides, respectively. However, classes 5 and
6 cannot be separated into only one side. They are
reassigned to both positive and negative child nodes. The

Efficient decision trees for multi-class support vector machines . . . 707

Fig. 1. Illustration of the binary tree of the SVM (BTS). Some
data classes may be scattered to several leaf nodes (Fei
and Lui, 2006).

recursive process continues until finished. Eventually, the
duplicated leaf-nodes of classes 5 and 6 appear more than
once in the tree.

The classification accuracy and time complexity
of the BTS and c-BTS may vary according to the
configuration of a hyper-parameter value. A higher value
may produce higher accuracy but will also increase the
running time. The time complexity can be O(log2 N) in
the best situation. However, the average time complexity
was proven to be log4/3((N + 3)/4) (Fei and Liu, 2006).

2.2. Information-based dichotomization. Informa-
tion-based dichotomization (IBD) (Songsiri et al., 2008)
employs information theory to create a multi-class
classification tree. To construct each node of the tree,
IBD prefers to select the OVO candidates with minimum
entropy. Therefore, a data class with a high probability of
occurrence will be separated first, and this kind of class
node tends to be found in very few levels from the root
node.

Similarly to the BTS, IBD also faces the problem that
a selected OVO classifier may not perfectly classify the
examples with the same class label into only a positive
or negative side. This leads us to obtain a tree of
greater depth. To alleviate this situation, IBD employs
a pruning process to remove some minority examples
on the side whose percentage of the minority is less
than a threshold. IBD then determines the optimal value
for the threshold which is referred to as the optimal
pruning percentage P . However, it is not always easy
to find the parameter P without a risk of losing useful

information. Additionally, in IBD the other parameter
is also introduced to avoid selecting an OVO classifier
with low generalization performance. This parameter is
called the optimal range of the generalization performance
of classifiers (referred to as parameter R). These two
parameters are obtained by using k-fold cross validation.

3. Proposed methods

We propose two novel techniques that are aimed at
achieving high classification speed and may sacrifice
classification accuracy to some extent. We expect them
to work in the time complexity of O(log2 N) in the best
case, and thus the proposed techniques are suitable for
the problem with a large number of classes that cannot be
solved efficiently in practice by the methods with O(N2)
classification time.

3.1. Information-based decision tree. The informa-
tion-based decision tree (IB-DTree) is an OVO-based
multi-class classification technique. It builds a tree by
adding decision nodes one by one; it selects the binary
classifier with minimum entropy as the initial classifier of
the decision node. Minimum entropy classifiers will lead
to a fast classification time for the decision tree because
data classes with high probabilities of occurrence will be
found within a few steps from the root node. The initial
classifier will be adjusted further to be the final classifier
for the decision node as described later.

The entropy of a binary classifier h can be calculated
as

Entropy(h) = p+ ×
(N∑

i=1

−p+i log2 p
+
i

)

+ p− ×
(N∑

i=1

−p−i log2 p
−
i

)
,

(1)

where p+ and p− are the ratios of positive and negative
examples (corresponding to the classifier) to all training
examples, respectively. Similarly, p+i is the proportion of
positive examples of the class i to all positive examples.
By the same token, p−i is the proportion of negative
examples of the class i to all negative examples. If there
is no positive (or negative) example of classifier h for
any class, the term (p+i log2 p

+
i) or (p−i log2 p

−
i) of that

class will be defined as 0. From N × (N − 1)/2 OVO
classifiers, the classifier with minimum entropy is selected
using Eqn. (1) as the initial classifier h.

Examples of a specific class may scatter on both
positive and negative sides of the initial classifier. The key
mechanism of IB-DTree is the class-grouping-by-majority
method, presented in Algorithm 1, which groups
examples of each class having scattering examples so
that they are on the same side containing the majority

708 P. Kantavat et al.

Fig. 2. Example of the class-grouping-by-majority strategy: be-
fore grouping (a), after grouping (b), the decision tree
after grouping (c).

of examples. Using the groups of examples labeled
by class-grouping-by-majority, IB-DTree then trains the
final classifier h′ of the decision node. A traditional
OVO-based algorithm might face the problem when
encountering data of another class k using classifier h =
(i vs j) and having to scatter examples of class k to both
left and right child nodes. Our method will never face this
situation, because data of class k will always be grouped
in either a positive or negative class of classifier h′ =
(P vs N). Hence, there is no need to duplicate class k data
to the left or right child node, and the tree depth will not
be increased unnecessarily. The tree without unnecessary
extra-depth reduces not only decision times to derive the
answer, but also the cumulative error of the classification.
This is because every classifier along the path to the
answer may produce a wrong prediction. Therefore, the
deeper the tree, the more cumulative error it produces.
However, this is a trade-off with the quality/accuracy of
the classifier that is more difficult to reach with a large
number of data classes to be separated.

An example of class-grouping-by-majority for a
3-class problem is shown in Fig. 2. Suppose that we
select the initial classifier 1 vs 2 as h for the root node.
In Fig. 2(a), most of class-3 data are on the negative
side of the hyperplane. Therefore, we assign all training
data of class-3 as negative examples and train classifier
1 vs (2, 3) as a new classifier h′ for use in the decision
tree as in Fig. 2(b). As a result, we obtain a decision tree
constructed by IB-DTree as shown in Fig. 2(c).

To illustrate IB-DTree, we show in Fig. 3 a decision
tree constructed by IB-DTree using the same example as
in Fig. 1 of the BTS method. At the root node, classifier
1 vs 2 is selected as h. Most of the training examples

Fig. 3. Illustration of the information-based decision tree (IB-
DTree). No duplicated class at the leaf nodes.

of classes 3 and 5 are on the positive side of h, while a
majority of training examples of classes 4 and 6 are on the
negative side of h. Consequently, (2, 3, 5) vs (1, 4, 6) is
trained as classifier h′. For the remaining steps of the tree,
the process continues recursively until finished, and there
is no duplicated class leaf-node in the tree.

As described in Algorithm 2, IB-DTree constructs
a tree using a recursive procedure starting from the root
node from lines 1–7 with all candidate classes. The
node-adding procedure will be processed from lines 8–19.
First, the initial classifier h with the lowest entropy will
be selected. Second, data of each class will be grouped to
either the positive group (P) or the negative group (N).
Then, the final classifier h′ will be trained using P and
N and will be designed as a decision node. Finally, the
algorithm processes the child nodes recursively and stops
the process at the leaf nodes when the stopping condition
holds.

There are several benefits of using IB-DTree. First,
there is no duplicated class leaf-node and thus the depth of
the tree is small. Second, no parameter tuning is required
as there is no parameter in the class-grouping-by-majority
process. Third, as entropy is used in pairwise class
selection, the data class with a high probability of
occurrence has a higher chance to be selected as the initial
classifier and to be found in few levels from the root node,
and thus the average decision time is low. Finally, there
is no information loss in IB-DTree, as no data pruning is
used.

3.2. Information-based and generalization-error
estimation decision tree. The information-based
and generalization-error estimation decision tree

Efficient decision trees for multi-class support vector machines . . . 709

Algorithm 1. Class-grouping-by-majority.
1: procedure Class-grouping-by-majority (selected classifier h, candidate classes K)
2: Initialize set of positive classes P = ∅ and set of negative classes N = ∅
3: for each class i ∈K:-
4: Label all data of class i to (+) and (–) separated by initial classifier h
5: p← count(+), n← count(–)
6: if (p > n) then P ← P ∪ {i}
7: else N ← N ∪ {i}
8: end for
9: Train final classifier h′ = (P vs N)

10: return h′, P , N
11: end procedure

Algorithm 2. Information-based decision tree SVM (IB-DTree).
1: procedure IB-DTree
2: Initialize the tree T with root node Root
3: Initialize the set of candidate output classes S = {1, 2, 3, ..., N}
4: Create all binary classifiers (i vs j); i, j ∈ S
5: Construct Tree (Root, S)
6: return T
7: end procedure
8: procedure Construct Tree (node D, candidate classes K)
9: for each binary classifier (i vs j); i, j ∈K; i < j:-

10: Calculate the entropy using training data of all classes in K
11: end for
12: initial classifier h← classifier (i vs j) with the lowest entropy
13: final classifier h′, positive classes P , negative classes N ← class-grouping-by-majority(h,K)
14: D.classifier← h′

15: Initialize new node L; D.left-child-node← L
16: Initialize new node R; D.right-child-node← R
17: if |P | > 1 then Construct Tree (L, P) else L is the leaf node with answer class P
18: if |N | > 1 then Construct Tree (R, N) else R is the leaf node with answer class N
19: end procedure

(IBGE-DTree) is an enhanced version of IB-DTree.
In the node-building process, IBGE-DTree selects
classifiers using both entropy and generalization error
estimation.

The details of IBGE-DTree are described in
Algorithm 3. The IBGE-DTree algorithm is different
from IB-DTree in lines 12–17. Instead of selecting
classifiers based only on the lowest entropy, it also
considers the generalization error of the classifiers. First,
IBGE-DTree ranks the classifiers in ascending order
by the entropy. Then, it trains some classifiers using
the class-grouping-by-majority technique and selects the
classifier with the lowest generalization error. The
positive group (P) and negative group (N) for building the
child nodes in lines 22–23 are obtained from the classifier
with the lowest generalization error in lines 18–19.

Generalization error estimation is the evaluation of
a learning model’s actual performance on unseen data.
For SVMs, a model is trained using the concept of

the structure risk minimization principle (Vapnik V.N.,
1974). The performance of an SVM is based on the VC
dimension of the model and the quality of fitting training
data (or the empirical error). The expected risk R (α)
is bounded in accordance with the following equation
(Burges, 1998; Bartlett and Shawe-Taylor, 1999):

R(α) ≤ l

m
+

√
c

m

(R2

Δ2
log2 m+ log

1

δ

)
, (2)

where l, R, Δ and m are respectively the number of
labeled examples with margin less than Δ, the radius
of the smallest sphere that contains all data points, the
distance between the hyperplane and the closest points of
the training set (margin size), and the number of training
data. The first and second terms of (2) define the empirical
error and the VC dimension, respectively.

The generalization error can be estimated directly
using k-fold cross-validation and used to compare the
performance of binary classifiers, but it consumes a

710 P. Kantavat et al.

Algorithm 3. Information-based and generalization-error estimation decision tree SVM (IBGE-DTree).
1: procedure IBGE-DTree
2: Initialize the tree T with root node Root
3: Initialize the set of candidate output classes S = {1, 2, 3, . . . , N}
4: Create the all binary classifiers (i vs j); i, j ∈ S
5: Construct Tree (Root, S)
6: return T
7: end procedure
8: procedure Construct Tree (node D, candidate classes K)
9: for each binary classifiers (i vs j); i, j ∈K; i < j:-

10: Calculate the entropy using training data of all classes in K
11: end for
12: Sort the list of the initial classifiers (i vs j) in ascending order by the entropy as h1, . . . , hall

13: for each initial classifiers hs; s = {1, 2, 3, . . . , n}, n = number of considering classifiers
14: final classifier h′

s, positive classes Ps, negative classes Ns← class-grouping-by-majority(hs, K)
15: calculate generalization error estimation of final classifier h′

s

16: end for
17: D.classifier← final classifiers with the lowest generalization error among h′

1, . . . , h
′
n

18: P ′← Ps used for training the final classifier with the lowest generalization error estimation
19: N ′← Ns used for training the final classifier with the lowest generalization error estimation
20: Initialize new node L; D.left-child-node← L
21: Initialize new node R; D.right-child-node← R
22: if |P ′| > 1 then Construct Tree (L, P ′) else L is the leaf node with answer class P ′

23: if |N ′| > 1 then Construct Tree (R, N ′) else R is the leaf node with answer class N ′

24: end procedure

high computational cost. Another method to estimate
the generalization error is by using the inequality (2)
with appropriate parameter substitution (Songsiri et al.,
2015). Using the latter method, we can compare the
relative generalization error on the same datasets and
environments. In Section 4, we set the values of c = 0.1
and δ = 0.01 in the experiments.

As IBGE-DTree is an enhanced version of IB-DTree,
its benefits are very similar to those of IB-DTree.
However, as it combines generalization error estimation
with entropy, the selected classifiers are more accurate
than those of IB-DTree.

The use of the generalization error to enhance the
accuracy of OVO-based methods can also be found in the
work of Songsiri et al. (2015). The focus of the work is to
increase the accuracy of the base methods, i.e., DDAG,
ADAG, Max-Wins, with the use of more classifiers in
some cases. The number of classifiers used by Songsiri
et al. (2015) is between N − 1 and N × (N − 1)/2.
On the other hand, here our main objective is to reduce
the number of classifiers to the rouge between log2 N and
N − 1, which provides more practical use in the case of
datasets with a large number of classes.

IBD (Songsiri et al., 2008) also employs entropy and
the generalization error to construct tree-based SVMs.
IBD shares a similar advantage as our methods, i.e., the
use of entropy and the generalization error to select good
classifiers for nodes of the tree. However, the process of

tree construction in IBD is different from our methods,
and IBD has no class-grouping-by-majority mechanism.
Therefore, IBD has to duplicate data of some classes
which are not perfectly separated into one side, or it may
employ a pruning strategy to remove minority examples
of a class when the percentage of the number of minority
examples is below the threshold (referred to as P in the
paper). The duplication then increases the depth of the
tree as these classes cannot be immediately removed from
the candidate classes. Thus, the depth of the tree and
the number of decisions to derive the answer of IBD is
larger than those of our proposed methods. In addition,
the use of pruning may bring risk of information loss.
Another difference between IBD and our methods is that
the former has more hyper-parameters, i.e., P and R
(the optimal range of generalization performance), than
the latter. Thus, IBD needs a more complicated tuning
process than required by our methods.

3.3. Examples of IB-DTree and IBGE-DTree. To
demonstrate the proposed techniques, we show trees
constructed by IB-DTree and IBGE-DTree using training
data from Mfeat-Factor and Cardiotocography datasets.
Mfeat-Factor is a 10-class dataset with 200 examples in
each class. Since every class contains an equal number of
examples, a tree of IB-DTree is constructed in a balanced
structure, as in Fig. 4.

Efficient decision trees for multi-class support vector machines . . . 711

For IBGE-DTree of the Mfeat-Factor dataset, as it
selects the lowest generalization error among low-entropy
classifiers, the obtained tree structure is not balanced, as
shown in Fig. 5. For the performance, IBGE-DTree yields
better accuracy than IB-DTree, but it consumes more
decision times, as shown in Tables 2 and 6 in Section 4.

Another example, in Fig. 6, is a tree of
IB-DTree constructed using training data from the
Cardiotocography dataset. Cardiotocography is a 10-class
dataset in which the numbers of examples are 384, 579,
53, 81, 72, 332, 252, 107, 69 and 197, respectively. In the
tree construction process, since classes 1, 2, 6, 7 contain
more examples than classes 3, 4, 5, 8, 9 and 10, they have
a higher chance to be selected for an initial classifier.
As shown in Fig. 6, (2 vs 6) is selected at the root node.
At the left and right child nodes, (1 vs 2) and (6 vs 7)
are selected, respectively. Although the tree structure is
imbalanced, it consumes low decision times since data
of classes with high probability of occurrence are placed
near the root node, as shown in Section 4.

4. Experiments and results

We performed some experiments to compare the proposed
methods, IB-DTree and IBGE-DTree, with the traditional
strategies, i.e., OVO, OVA, DDAG, ADAG, BTS-G and
c-BTS-G.

We ran the experiments based on 10-fold
cross-validation on twenty datasets from the UCI
repository (Blake and Merz, 1998), as shown in Table 1.
For the datasets containing both training and test data,
we merged the data into a single set, and then we
used 10-fold cross validation to evaluate classification
accuracy. We normalized the data to the range [−1, 1].
We used the software package SVMlight, version 6.02
(Joachims, 1999). The binary classifiers were trained
using the RBF kernel. A suitable kernel parameter (γ)
and regularization parameter C for each dataset were
selected from {0.001, 0.01, 0.1, 1, 10} and {1, 10, 100,
1000}, respectively.

To compare the performance of IB-DTree and
IBGE-DTree with the other tree-structure techniques, we
also implemented BTS-G and c-BTS-G, which are our
enhanced versions of BTS and c-BTS (Fei and Liu,
2006) by applying class-grouping-by-majority to improve
efficiency of the original BTS and c-BTS. As a result,
BTS-G and c-BTS-G select the pairwise classifiers in
the same way as the original versions, but they employ
classifiers that are trained using positive and negative
groups of classes instead of employing OVO classifiers
that are trained using only two classes. Compared with
the original version, BTS-G and c-BTS-G contain no
duplicated class leaf node. This enhancement is aimed
to reduce the decision times as well as the cumulative
error in obtaining the answer. For BTS-G, we selected the

Fig. 4. IB-DTree constructed using the Mfeat-Factor dataset.
The underlined numbers are classes that are selected for
an initial classifier in each node.

Fig. 5. IBGE-DTree constructed using the Mfeat-Factor dataset.
The underlined numbers are classes that are selected for
an initial classifier in each node.

Fig. 6. IB-DTree constructed using the Cardiotocography
dataset. The underlined numbers are classes that are se-
lected for an initial classifier in each node.

712 P. Kantavat et al.

Table 1. Experimental dataset.
Dataset Name #Classes #Attributes #Examples

Page Block 5 10 5473
Segment 7 18 2310
Shuttle 7 9 58000
Arrhyth 9 255 438
Cardiotocography 10 21 2126
Mfeat-Factor 10 216 2000
Mfeat-Fourier 10 76 2000
Mfeat-Karhunen 10 64 2000
Optdigit 10 62 5620
Pendigit 10 16 10992
Primary Tumor 13 15 315
Libras Movement 15 90 360
Abalone1 16 8 4098
Krkopt 18 6 28056
Spectrometer 21 101 475
Isolet 26 34 7797
Letter 26 16 20052
Plant Margin 100 64 1600
Plant Shape 100 64 1600
Plant Texture 100 64 1599

classifier for each node randomly 10 times and calculated
the average results. For c-BTS-G, we selected the
pairwise classifiers in the same way to the original c-BTS.

For DDAG and ADAG where the initial order
of classes affected the final classification accuracy, we
examined all datasets by randomly selecting 50,000 initial
orders and calculated the average classification accuracy.
For IBGE-DTree, we set n (the number of considering
classifiers in line 13 of Algorithm 3) to 20 percent of all
possible classifiers. For example, if there are 10 classes to
be determined, the number of all possible classifiers will
be 45. Thus, the value of n will be 9.

The experimental results are shown in Tables 2–6.
Table 2 presents the classification accuracies and Table 3
shows the win-lose-draw between the techniques under
comparison. Table 4 shows the Friedman aligned
ranks test (Friedman, 1996) and the Hommel procedure
(García et al., 2010) to assess the accuracy of our
methods compared with the other tree-structure methods.
Table 5 shows the Friedman aligned ranks test and the
Hommel procedure to assess the error rate of our methods
compared with the other non-tree-structure methods.
Table 6 shows the average decision times that are used
to determine the output class of a test example.

In Table 2, the bold number indicates the highest
accuracy in each dataset. The number in the parentheses
shows the ranking of each technique. The highest

1For the dataset Abalone, the information gathering process is com-
plex and time consuming, thus it contains a lot of noise and affects clas-
sification accuracy.

accuracy is obtained by OVO, followed by ADAG,
OVA and DDAG. Among the tree structure techniques,
IBGE-DTree yields the highest accuracy, followed by
IB-DTree, BTS-G and c-BTS-G.

Table 3 shows the pairwise win-lose-draw between
the techniques under comparison. The results indicate that
OVO outperforms all other techniques. Among the tree
structure techniques, IBGE-DTree provides the highest
accuracy results. BTS-G and c-BTS-G underperform the
other techniques.

Table 4 shows rankings and adjusted p-values of the
classification accuracies from Table 2 using the Friedman
aligned ranks test and the Hommel procedure for the
proposed methods (IB-DTree and IBGE-DTree) as control
algorithms and the tree-structure methods (BTS-G and
c-BTS-G) as traditional algorithms. The empirical results
show that the rankings of IB-DTree and IBGE-DTree are
better than those of BTS-G and c-BTS-G. The adjusted
p-values also indicate that our proposed techniques
significantly outperform the comparison techniques, with
a significance level less than 0.05.

Table 5 shows rankings and adjusted p-values of
error rates using the Friedman aligned ranks test and the
Hommel procedure to test a significant difference between
error rates of our techniques and those of the traditional
non-tree-based techniques, i.e., OVO, OVA, DDAG and
ADAG. The results show that IB-DTree significantly
underperforms the non-tree-based techniques, in terms
of accuracy or the error rate, while IBGE-DTree is
insignificantly different from OVA, DDAG and ADAG,
with a significance level less than 0.05.

Table 6 shows the average number of decisions
required to determine the output class of a test example.
The lower the average number of decisions, the faster the
classification speed. IB-DTree and IBGE-DTree are the
fastest among the techniques compared, while OVO is the
slowest one.

The experiments show that IBGE-DTree is the most
efficient technique among the tree-structure methods.
It outputs the answer very fast and provides accuracy
comparable to that of OVA, DDAG and ADAG.
IBGE-DTree also performs significantly better than
BTS-G and c-BTS-G. OVO yields the highest accuracy
among the techniques compared. However, it consumes a
very high running time for classification, especially when
applied to problems with a large number of classes. For
example, for the datasets Plant Margin, Plant Shape, and
Plant Texture, OVO needs the decision times of 4,950,
while IBGE-DTree requires the decision times of only 7.4
to 8.3.

IB-DTree is also a time-efficient technique that
yields the lowest average decision times but gives lower
classification accuracy than IBGE-Tree. The classification
accuracy of IB-DTree is significantly better than that of
BTS-G and c-BTS-G, but it significantly underperforms

Efficient decision trees for multi-class support vector machines . . . 713

Table 2. Average classification accuracy results and their standard deviation. The bold number indicates the highest accuracy in each
dataset. The numbers in the parentheses show the accuracy ranking.

Datasets OVA OVO DDAG ADAG

Page Block 96.857± 0.478 (1) 96.735± 0.760 (3) 96.729± 0.764 (4) 96.740± 0.757 (2)
Segment 97.359± 1.180 (5) 97.431± 0.860 (3) 97.442± 0.848 (1) 97.436± 0.854 (2)
Shuttle 99.914± 0.053 (5) 99.920± 0.054 (1) 99.920± 0.054 (1) 99.920± 0.054 (1)
Arrhyth 72.603± 7.041 (2) 73.146± 6.222 (1) 67.375± 7.225 (8) 67.484± 7.318 (7)
Cardiotocography 83.208± 1.661 (5) 84.431± 1.539 (1) 84.241± 1.609 (3) 84.351± 1.607 (2)
Mfeat-Factor 98.200± 1.033 (1) 98.033± 0.908 (3) 98.011± 0.941 (5) 98.019± 0.919 (4)
Mfeat-fourier 84.850± 1.528 (6) 85.717± 1.603 (1) 85.702± 1.589 (3) 85.708± 1.585 (2)
Mfeat-Karhunen 98.000± 0.943 (1) 97.913± 0.750 (3) 97.894± 0.726 (5) 97.900± 0.722 (4)
Optdigit 99.324± 0.373 (2) 99.964± 0.113 (1) 99.288± 0.346 (3) 99.288± 0.346 (3)
Pendigit 99.554± 0.225 (4) 99.591± 0.203 (1) 99.569± 0.213 (3) 99.574± 0.211 (2)
Primary Tumor 46.667± 7.011 (3) 50.212± 7.376 (1) 39.278± 6.419 (8) 39.486± 6.483 (7)
Libras Movement 90.000± 2.986 (1) 89.074± 3.800 (2) 89.034± 3.729 (3) 89.017± 3.687 (4)
Abalone1 16.959± 2.388 (8) 28.321± 1.516 (1) 24.093± 3.044 (7) 24.258± 3.154 (6)
Krkopt 85.750± 0.769 (1) 82.444± 0.628 (2) 81.952± 0.643 (4) 82.235± 0.634 (3)
Spectrometer 51.579± 6.256 (8) 68.421± 5.007 (1) 68.052± 4.706 (4) 68.392± 4.796 (2)
Isolet 94.947± 0.479 (1) 94.898± 0.648 (2) 94.872± 0.631 (4) 94.885± 0.643 (3)
Letter 97.467± 0.305 (4) 97.813± 0.382 (1) 97.746± 0.357 (3) 97.787± 0.360 (2)
Plant Margin 82.875± 2.655 (4) 84.401± 2.426 (1) 84.238± 2.516 (3) 84.341± 2.607 (2)
Plant Shape 70.938± 2.783 (3) 71.182± 3.295 (1) 70.922± 3.393 (4) 71.090± 3.313 (2)
Plant Texture 87.179± 2.808 (1) 86.387± 2.374 (2) 86.173± 2.519 (4) 86.259± 2.510 (3)
Avg. Rank 3.35 1.70 4.00 3.15

Datasets BTS-G c-BTS-G IB-DTree IBGE-DTree

Page Block 96.622± 0.812 (5) 96.565± 0.884 (8) 96.565± 0.779 (7) 96.620± 0.852 (6)
Segment 97.273± 1.076 (7) 97.100± 0.957 (8) 97.316± 0.838 (6) 97.403± 1.100 (4)
Shuttle 99.914± 0.050 (5) 99.914± 0.053 (5) 99.916± 0.050 (4) 99.910± 0.053 (8)
Arrhyth 71.918± 5.688 (4) 71.918± 5.189 (4) 71.005± 5.836 (6) 72.146± 4.043 (3)
Cardiotocography 83.048± 2.147 (7) 82.926± 2.106 (8) 83.819± 1.710 (4) 83.161± 2.490 (6)
Mfeat-Factor 97.810± 0.882 (8) 98.000± 0.888 (6) 98.000± 0.768 (6) 98.200± 0.816 (1)
Mfeat-fourier 84.235± 1.636 (8) 84.350± 1.700 (7) 85.200± 1.605 (4) 85.150± 1.717 (5)
Mfeat-Karhunen 97.450± 0.832 (6) 97.050± 0.725 (8) 97.450± 0.879 (6) 97.950± 1.141 (2)
Optdigit 99.002± 0.266 (8) 99.039± 0.308 (7) 99.164± 0.288 (5) 99.093± 0.395 (6)
Pendigit 99.442± 0.184 (7) 99.427± 0.201 (8) 99.445± 0.198 (6) 99.454± 0.318 (5)
Primary Tumor 43.016± 3.824 (5) 40.635± 4.813 (6) 47.937± 4.567 (2) 44.762± 5.478 (4)
Libras Movement 87.861± 4.151 (8) 88.611± 3.715 (5) 88.056± 3.479 (6) 88.056± 3.057 (6)
Abalone1 26.635± 1.236 (3) 26.013± 1.218 (4) 25.281± 0.904 (5) 26.745± 0.809 (2)
Krkopt 77.137± 0.880 (8) 78.190± 0.783 (7) 79.006± 0.792 (6) 80.610± 1.039 (5)
Spectrometer 59.432± 5.563 (6) 52.421± 5.192 (7) 68.211± 3.397 (3) 67.789± 6.296 (5)
Isolet 92.850± 0.799 (7) 92.677± 0.702 (8) 93.639± 0.261 (6) 94.011± 0.640 (5)
Letter 96.174± 0.321 (7) 96.369± 0.423 (6) 96.135± 0.312 (8) 96.409± 0.344 (5)
Plant Margin 77.994± 1.946 (8) 78.188± 2.739 (7) 80.563± 3.638 (5) 79.313± 2.863 (6)
Plant Shape 63.219± 1.808 (7) 61.750± 3.594 (8) 67.000± 2.853 (5) 66.750± 2.408 (6)
Plant Texture 78.893± 2.547 (7) 78.174± 3.997 (8) 80.425± 3.602 (6) 80.863± 2.828 (5)
Avg. Rank 6.55 6.85 5.35 4.75

714 P. Kantavat et al.

Table 3. Win-lose-draw between the techniques under comparison.
OVO DDAG ADAG BTS-G c-BTS-G IB-DTree IBGE-DTree

OVA 7-13-0 11-9-0 10-10-0 17-2-1 17-2-1 14-6-0 15-4-1
OVO – 11-8-1 17-2-1 20-0-0 20-0-0 20-0-0 18-2-0
DDAG – – 2-16-2 17-3-0 17-3-0 16-4-0 15-5-0
ADAG – – – 17-3-0 17-3-0 17-3-0 15-5-0
BTS-G – – – – 12-7-1 4-15-1 2-18-0
c-BTS-G – – – – – 4-15-1 2-18-0
IB-DTree – – – – – – 8-11-1

Table 4. Rankings and adjusted p-values of classification accuracies using the Friedman aligned ranks test and the Hommel procedure
for the proposed methods (IB-DTree and IBGE-DTree) as control algorithms and the tree-structure methods (BTS-G and
c-BTS-G) as traditional algorithms. The bold number means that the result is a significant difference.

Ranking Adjusted p-values

Traditional methods BTS-G 36.250 0.0013939
c-BTS-G 36.650 0.0010818

Control method IB-DTree 18.600 –
Traditional methods BTS-G 54.1 1.5320E-5

c-BTS-G 55.3 7.2122E-6
IB-DTree 30.275 0.2793156

Control method IBGE-DTree 22.325 –

OVO, OVA, DDAG and ADAG. Although in the general
case IBGE-DTree is more considerable than IB-DTree
because it yields better classification accuracy, IB-DTree
is an interesting option when the training time is limited.

5. Conclusions

In this paper, we proposed IB-DTree and IBGE-DTree,
techniques that combine entropy and generalization error
estimation for classifier selection in tree construction.
Using entropy, the class with high a probability of
occurrence will be placed near the root node, resulting in
reduction of decision times for that class. The lower the
number of decision times, the smaller the cumulative error
of the prediction because every classifier along the path
may produce a wrong prediction. Generalization error
estimation is a method for evaluating the effectiveness
of the binary classifier. It enables our algorithm to
select accurate classifiers for decision tree construction.
Class-grouping-by-majority is also a key mechanism to
the success of our methods, which is used to construct the
tree without duplicated class scattering in the tree. Both
IB-DTree and IBGE-DTree classify the answer in the time
complexity of O(log2 N) in the best case, and no more
than O(N) in the worst one.

We performed experiments comparing our methods
with some traditional techniques on twenty datasets from
the UCI repository. We can conclude that IBGE-DTree
is the most efficient technique that gives the answer
very fast, provides accuracy comparable to OVA, DDAG,
and ADAG, and yields better accuracy than the other

tree-structured techniques. IB-DTree also works fast and
provides accuracy comparable to that IBGE-DTree, and
could be considered when training time is a crucial factor.

Acknowledgment

This research was supported by the Royal Golden Jubilee
PhD Program, the Thailand Research Fund and the
Rachadapisek Sompote Fund for Postdoctoral Fellowship,
Chulalongkorn University.

References
Bala, M. and Agrawal, R.K. (2011). Optimal decision tree

based multi-class support vector machine, Informatica
35(2): 197–209.

Bartlett, P.L. and Shawe-Taylor, J. (1999). Generalization
performance of support vector machines and other pattern
classifiers, in B. Schölkopf et al. (Eds.), Advances in Ker-
nel Methods, MIT Press, Cambridge, MA, pp. 43–54.

Blake, C.L. and Merz, C.J. (1998). UCI Repository of Machine
Learning Databases, University of California, Irvine, CA,
http://archive.ics.uci.edu/ml/.

Bredensteiner, E.J. and Bennett, K.P. (1999). Multicategory
classification by support vector machines, Computational
Optimization 12(1–3): 53–79.

Burges, C.J.C. (1998). A tutorial on support vector machines for
pattern recognition, Data Mining and Knowledge Discov-
ery 2(2): 121–167.

Chen, J., Wang, C. and Wang, R. (2009). Adaptive binary
tree for fast SVM multiclass classification, Neurocomput-
ing 72(13–15): 3370–3375.

http://archive.ics.uci.edu/ml/

Efficient decision trees for multi-class support vector machines . . . 715

Table 5. Rankings and adjusted p-values of error rates using the Friedman aligned ranks test and the Hommel procedure for the
proposed methods (IB-DTree and IBGE-DTree) as control algorithms and the non-tree-structure methods (OVO, OVA, DDAG
and ADAG) as traditional algorithms. The bold number means that the result is a significant difference.

Ranking Adjusted p-values
Traditional methods OVO 68.300 6.4727E-5

OVA 50.150 0.0437461
DDAG 50.025 0.0451890
ADAG 52.375 0.0238807

Control method IB-DTree 31.650 –
Traditional methods OVO 66.150 6.6516E-4

OVA 50.975 0.0802108
DDAG 49.275 0.1177794
ADAG 51.175 0.0765168

Control method IBGE-DTree 34.925 –

Table 6. Average number of decision times. The bold number indicates the lowest decision times in each dataset.
Datasets OVA OVO DDAG ADAG BTS-G c-BTS-G IB-DTree IBGE-DTree

Page Block 5 10 4 4 3.628 3.801 3.790 3.831
Segment 7 21 6 6 3.630 3.882 2.858 3.009
Shuttle 7 21 6 6 4.703 5.370 5.000 5.019
Arrhyth 9 36 8 8 6.434 5.473 5.258 5.418
Cardiotocography 10 45 9 9 4.993 3.698 3.490 3.807
Mfeat-factor 10 45 9 9 4.224 3.643 3.473 3.754
Mfeat-fourier 10 45 9 9 4.512 3.796 3.522 3.786
Mfeat-karhunen 10 45 9 9 4.322 4.561 3.435 3.859
Optdigit 10 45 9 9 4.503 4.470 3.399 4.566
Pendigit 10 45 9 9 4.031 3.494 3.487 3.491
Primary Tumor 13 78 12 12 6.672 6.476 5.391 7.610
Libras Movement 15 105 14 14 5.493 5.114 4.325 4.411
Abalone 16 120 15 15 9.242 8.540 8.768 7.626
Krkopt 18 153 17 17 6.743 4.847 3.957 5.083
Spectrometer 21 210 20 20 6.728 6.080 4.411 4.613
Isolet 26 325 25 25 6.865 6.015 5.064 5.323
Letter 26 325 25 25 6.771 7.104 4.922 5.910
Plant Margin 100 4950 99 99 11.338 8.600 6.973 7.576
Plant Shape 100 4950 99 99 11.935 9.653 6.965 7.446
Plant Texture 100 4950 99 99 12.230 9.618 7.022 8.329

Cheong, S., Hoon Oh, S. and Lee, S.-Y. (2004). Support vector
machines with binary tree architecture for multi-class
classification, Neural Information Processing Letters
2(3): 47–51.

Chmielnicki, W. and Stąpor, K. (2016). Using the
one-versus-rest strategy with samples balancing to improve
pairwise coupling classification, International Jour-
nal of Applied Mathematics and Computer Science
26(1): 191–201, DOI: 10.1515/amcs-2016-0013.

Crammer, K. and Singer, Y. (2002). On the learnability and
design of output codes for multiclass problems, Machine
Learning 47(2–3): 201–233.

Dong, C., Zhou, B. and Hu, J. (2015). A hierarchical SVM based
multiclass classification by using similarity clustering, In-

ternational Joint Conference on Neural Networks, Killar-
ney, Ireland, pp.1–6.

Fei, B. and Liu, J. (2006). Binary tree of SVM: A new
fast multiclass training and classification algorithm, IEEE
Transactions on Neural Networks 17(3): 696–704.

Friedman, J. (1996). Another approach to polychotomous
classification, Technical report, Stanford University,
Stanford, CA.

García, S., Fernández, A., Luengo, J. and Herrera, F. (2010).
Advanced nonparametric tests for multiple comparisons in
the design of experiments in computational intelligence
and data mining: Experimental analysis of power, Infor-
mation Sciences 180(10): 2044–2064.

Hastie, T. and Tibshirani, R. (1998). Classification by pairwise
coupling, Annals of Statistics 26(2): 451–471.

716 P. Kantavat et al.

Hsu, C. and Lin, C. (2002). A comparison of methods for
multiclass support vector machines, IEEE Transactions on
Neural Networks 13(2): 415–425.

Joachims, T. (1999). Making large-scale SVM learning
practical, in B. Schölkopf et al. (Eds.), Advances in
Kernel Methods—Support Vector Learning, MIT Press,
Cambridge, MA.

Kijsirikul, B., Ussivakulz, N. and Road, P. (2002). Multiclass
support vector machines using adaptive directed acyclic
graph, International Joint Conference on Neural Networks,
Honolulu, HI, USA, pp. 980–985.

Knerr, S., Personnaz, L. and Dreyfus, G. (1990). Single-layer
learning revisited: A stepwise procedure for building and
training a neural network, Neurocomputing 68(68): 41–50.

Kumar, M.A. and Gopal, M. (2010). Fast multiclass SVM
classification using decision tree based one-against-all
method, Neural Processing Letters 32(3): 311–323.

Kumar, M.A. and Gopal, M. (2011). Reduced one-against-all
method for multiclass svm classification, Expert Systems
with Applications 38(11): 14238–14248.

Lei, H. and Govindaraju, V. (2005). Half-against-half multi-class
support vector machines, in N.C. Oza et al. (Eds.), Mul-
tiple Classifier Systems, MCS 2005, Lecture Notes in
Computer Science, Vol. 3541, Springer, Berlin/Heidelberg,
pp. 156–164.

Liu, B., Cao, L., Yu, P.S. and Zhang, C. (2008).
Multi-space-mapped SVMs for multi-class classification,
Proceedings of 8th IEEE International Conference on Data
Mining, Washington, DC, USA, Vol. 8, pp. 911–916.

Madzarov, G., Gjorgjevikj, D. and Chorbev, I. (2009). A
multi-class SVM classifier utilizing binary decision tree
support vector machines for pattern recognition, Electrical
Engineering 33(1): 233–241.

Platt, J., Cristianini, N. and Shawe-Taylor, J. (2000). Large
margin DAGs for multiclass classification, in S.A. Solla
et al. (Eds.), Advances in Neural Information Processing
Systems, MIT Press, Cambridge, MA, pp. 547–553.

Songsiri, P., Kijsirikul, B. and Phetkaew, T. (2008).
Information-based dicrotomizer: A method for multiclass
support vector machines, IEEE International Joint Con-
ference on Neural Networks, Hong Kong, China,
pp. 3284–3291.

Songsiri, P., Phetkaew, T. and Kijsirikul, B. (2015).
Enhancement of multi-class support vector machine
construction from binary learners using generalization
performance, Neurocomputing 151(P1): 434–448.

Takahashi, F. and Abe, S. (2002). Decision-tree-based multiclass
support vector machines, Proceedings of the 9th Inter-
national Conference on Neural Information Processing,
ICONIP’02, Singapore, Singapore, Vol. 3, pp. 1418–1488.

Vapnik, V.N. (1998). Statistical Learning Theory, John Wiley &
Sons, New York, NY.

Vapnik, V.N. (1999). An overview of statistical learning theory,
IEEE Transactions on Neural Networks 10(5): 988–99.

Vapnik V.N., C.A. (1974). Teoriya Raspoznavaniya Obrazov:
Statisticheskie Problemy Obucheniya (Theory of Pattern
Recognition: Statistical Problems of Learning), Nauka,
Moscow.

Yang, X., Yu, Q., He, L. and Guo, T. (2013). The
one-against-all partition based binary tree support vector
machine algorithms for multi-class classification, Neuro-
computing 113(3): 1–7.

Pittipol Kantavat received the BEng and MEng
degrees in computer engineering from Chula-
longkorn University, Thailand, in 2004 and 2008,
respectively. He is currently a PhD candidate in
computer engineering at Chulalongkorn Univer-
sity. His study has been supported by the Royal
Golden Jubilee PhD Program. His research inter-
ests include artificial intelligence, pattern recog-
nition and machine learning.

Boonserm Kijsirikul received the BEng de-
gree in electronic and electrical engineering, and
the MSc and PhD degrees in computer science
from the Tokyo Institute of Technology, Japan, in
1986, 1990, and 1993, respectively. He is cur-
rently a professor at the Department of Computer
Engineering, Chulalongkorn University, Thai-
land. His research interests include machine
learning, artificial intelligence, natural language
processing, and speech recognition.

Patoomsiri Songsiri received the BSc degree
in computer science (first class honor) from the
Prince of Songkla University, Thailand, in 2001.
She received the MSc degree in computer sci-
ence and the PhD degree in computer engineer-
ing from Chulalongkorn University, Thailand, in
2006 and 2015, respectively. She has conducted
research supported by the Rachadapisek Som-
pote Fund for Postdoctoral Fellowship at Chula-
longkorn since 2015. Her research interests in-

clude pattern recognition and machine learning.

Ken-ichi Fukui has been an associate professor
in the Institute of Scientific and Industrial Re-
search (ISIR), Osaka University, since 2015. He
received a Master’s degree from Nagoya Univer-
sity in 2003, and a PhD in information science
from Osaka University in 2010. He was a spe-
cially appointed assistant professor from 2005
to 2010 and an assistant professor from 2010 to
2015 at the ISIR, Osaka University. His research
interests include machine learning and data min-

ing algorithms as well as their environmental contribution.

Efficient decision trees for multi-class support vector machines . . . 717

Masayuki Numao is a professor in the Depart-
ment of Architecture for Intelligence, Osaka Uni-
versity. He received a BEng degree in electri-
cal and electronics engineering in 1982 and a
PhD degree in computer science in 1987 from
the Tokyo Institute of Technology. He worked
in the Department of Computer Science, Tokyo
Institute of Technology, from 1987 to 2003, and
was a visiting scholar at CSLI, Stanford Univer-
sity, from 1989 to 1990. His research interests

include artificial intelligence, machine learning, affective computing and
empathic computing.

Received: 3 October 2017
Revised: 21 April 2018
Accepted: 18 May 2018

	Introduction
	OVO-based decision tree SVM
	Binary tree of the SVM
	Information-based dichotomization

	Proposed methods
	Information-based decision tree
	Information-based and generalization-error estimation decision tree
	Examples of IB-DTree and IBGE-DTree

	Experiments and results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

