
Int. J. Appl. Math. Comput. Sci., 2018, Vol. 28, No. 4, 719–733
DOI: 10.2478/amcs-2018-0055

COMPARISON OF PROTOTYPE SELECTION ALGORITHMS USED IN
CONSTRUCTION OF NEURAL NETWORKS LEARNED BY SVD

NORBERT JANKOWSKI a

aDepartment of Informatics
Nicolaus Copernicus University, ul. Grudziądzka 5/7, 87-100 Toruń, Poland

e-mail: norbert@is.umk.pl

Radial basis function networks (RBFNs) or extreme learning machines (ELMs) can be seen as linear combinations of
kernel functions (hidden neurons). Kernels can be constructed in random processes like in ELMs, or the positions of
kernels can be initialized by a random subset of training vectors, or kernels can be constructed in a (sub-)learning process
(sometimes by k-means, for example). We found that kernels constructed using prototype selection algorithms provide very
accurate and stable solutions. What is more, prototype selection algorithms automatically choose not only the placement of
prototypes, but also their number. Thanks to this advantage, it is no longer necessary to estimate the number of kernels with
time-consuming multiple train-test procedures. The best results of learning can be obtained by pseudo-inverse learning
with a singular value decomposition (SVD) algorithm. The article presents a comparison of several prototype selection
algorithms co-working with singular value decomposition-based learning. The presented comparison clearly shows that the
combination of prototype selection and SVD learning of a neural network is significantly better than a random selection
of kernels for the RBFN or the ELM, the support vector machine or the kNN. Moreover, the presented learning scheme
requires no parameters except for the width of the Gaussian kernel.

Keywords: radial basis function network, extreme learning machines, kernel methods, prototypes, prototype selection,
machine learning, k nearest neighbours.

1. Introduction

This paper is focused on classification problems with a
training dataset D, which consists of learning vectors xi

(xi ∈ R
n, i ∈ [1, . . . ,m]) with the corresponding class

labels yi (y = [y1, . . . , ym]).
Whenever we use support vector machines (Vapnik,

1995; Boser et al., 1992), radial basis function networks
(Broomhead and Lowe, 1988) or extreme learning
machines (Huang et al., 2004; 2006) the composed
network has the form of a linear combination of kernels:

F (x;w) =

l∑

j=1

wjgj(x) + w0, (1)

where wj are weights and gj(x) are kernel functions
(j ∈ [1, l]), while l defines the number of kernels. The
sigmoidal function

σ(x,b, θ) =
1

1 + e−(xTb−θ)
(2)

is the original kernel in the ELM, but in the RBFN it is
usually the Gaussian function

h(x,b, θ) = e−γ||x−w||2, (3)

(sometimes also used in the ELM (Huang et al., 2006)).
The learning of an RBFN or an ELM (the estimation

of w) can be defined by kernel selection and the
minimization of the goal:

J(w) = ||Gw − y||2

=

m∑

i=1

(l∑

j=1

wjgj(xi) + w0 − yi

)2 (4)

over the kernels. The matrix G is defined as

G =

⎡

⎢⎢⎢⎣

1 g1(x1) · · · gl(x1)
1 g1(x2) · · · gl(x2)
...

...
...

1 g1(xm) · · · gl(xm)

⎤

⎥⎥⎥⎦ . (5)

norbert@is.umk.pl

720 N. Jankowski

If we want to minimize the above error function, we can
look for the minimum of J(w) by solving ∇J(w) = 0.
After some transformations we obtain

w = (GTG)−1GTy = G†y. (6)

The pseudo-inverse matrix G† can be efficiently computed
by the singular value decomposition algorithm in O(ml2)
time complexity. Note that there is no problem in using
SVD for large datasets, as the complexity depends linearly
on the number of vectors in the training set D. For a
thorough investigation of Moore–Penrose pseudo-inverse
learning we refer the reader to the work of Górecki and
Łuczak (2013).

The sigmoidal kernels in ELMs are constructed by
randomizing their weights and thresholds. In the case
of Gaussian kernels, they can be initialized by a subset
of vectors of the training data D. In both the cases
the number of kernels has to be chosen manually. In
the second instance we obtain the equivalence of the
ELM with the original radial basis function network
(Broomhead and Lowe, 1988). To keep the learning really
time-efficient, we should try to use as few kernels as
possible, because the complexity depends on the square
of the number of kernels and linearly on the instance
count. Conversely, the number of kernels should not be
too small, as then we can end up with low accuracy. It can
be noted that in nontrivial learning problems the Gaussian
kernel in the ELM can be slightly more efficient (Chamara
et al., 2013) than using sigmoidal functions. In the case of
a support vector machine, the kernels (both in linear and
non-linear cases) are defined by support vectors (Boser
et al., 1992) extracted in the learning phase.

The advantage of the SVM is that the number
of support vectors is selected during training (the QP
optimization process), and therefore it is not chosen in
a random manner. Although SVM learning is optimal
(Vapnik, 1995) (optimal margin), it is not equivalent to
the best generalization capability at all (see Section 4).
However, it has been noticed that the SVM performs
better than RBFN, as, for example in the works of
Schölkopf et al. (1997; 1996) or Schwenker et al. (2001),
where the SVM was compared to several versions of the
RBFN (different kernel initializations, different phases of
learning) and was slightly better than the best RBFN.

The main contribution of this article is the very
combination of pseudo-inverse learning with selected
prototype selection methods. The advantage of this
strategy is that we no longer have to guess the number
of kernels for ELMs or RBFNs. The only parameter
of this combination is the width of the Gaussian kernel.
There are several prototype selection methods, but in
research we concentrate on the DROP2 and DROP4
algorithms, as proposed by Wilson and Martinez (2000),
and those inspired by the encoding length principle
(Cameron-Jones, 1995). Although initially prototype

selection algorithms were set forth for lazy learning,
the proposed combination of prototype selection and
pseudo-inverse learning gives a much better accuracy than
prototype selection methods alone.

How prototype selection methods work with some
classifiers has been investigated before (Jankowski and
Grochowski, 2004; Grochowski and Jankowski, 2004),
but the results were not very promising, even for
the combination of the SVM with prototype selection
algorithms.

Additionally, Yousef and el Hindi (2005) presented
an apparently wrongly investigated combination of
some prototype selection methods with pseudo-inverse
learning—it seems the authors obtained bad results by
mistake (for more details, see the comments at the end
of Section 4).

The following section presents a discussion on
prototype selection methods and presents a chosen
prototype selection algorithm for deeper analysis.
Section 3 presents the main idea of the proposed algorithm
and motivations. Section 4 is devoted to the analysis
of the new algorithm on several data benchmarks and a
comparison with best-known classification algorithms.

2. Prototype selection algorithms for
pseudo-inverse learning

The problem of selecting instances from the original
training set was investigated in many papers. Those
methods can be divided into two groups: filters and
prototype selections. We recommend some review articles
concerning those methods (Garcia et al., 2012; Wilson
and Martinez, 2000; Jankowski and Grochowski, 2004).
The main goal of the filter group is to remove outliers
or inconsistent instances from the original training data.
Probably the most well-known algorithm in this group
is edited nearest neighbours (Wilson, 1972) or the RNN
(Gates, 1972). Methods from this group are characterized
by a very small reduction of around 0–30% of instances.

The second group—prototype selection—is
characterized (usually) by a much stronger reduction,
mostly around 80–99%. However, some algorithms
may have a reduction of around 50% too (although
those could as well be described as filtering from a
more practical point of view). The reduction strength
is discussed thoroughly by Garcia et al. (2012) or
Grochowski and Jankowski (2004). In the context of lazy
learning, we can define an optimal instance selection as
an algorithm which obtains both the highest accuracy
and the highest reduction. Of course, generally, this is
a hard problem. However, it does happen that some
algorithms, like RMHC (Skalak, 1994) or Explore
(Cameron-Jones, 1995), find very few prototypes whilst
keeping very good accuracy.

Comparison of prototype selection algorithms used in construction of neural networks learned by SVD 721

Table 1. Results (accuracies, reduction rates and times) on large data sets from the work of Garcia et al. (2012).
method acc red. time N method reference

RNG 0.82 0.2 14635 n Sanchez et al., 1997
SSMA 0.817 0.984 45193 n Garcia et al., 2008
RMHC 0.813 0.9 77260 n Skalak, 1994
1NN 0.8
HMNEI 0.801 0.6 80 n Marchiori, 2008
DROP3 0.795 0.884 16899 Wilson and Martinez, 2000
CCIS 0.795 0.92 1349 Marchiori, 2010
FCNN 0.777 0.695 100 n Angiulli, 2007

We should expect from a prototype selection
algorithm to satisfy the following criteria:1

• It should not have too many configuration
parameters. Too many parameters lead to problems
with their optimization(s), which is usually very
time-consuming.

• It should have possibly small (time) complexity.

• It should not finish with too few prototypes, as it
could then compose an undersized kernel space and
the final neural network may be of poor accuracy.

• The number of prototypes should not be too big,
either. Since the complexity of the SVD algorithm
depends on the squared number of the matrix
columns, a growing number of kernels results in a
quadratically longer learning time.

• Every nonlinear learning algorithm has to learn the
borders of class regions. That is why the selected
prototypes should also be smoothly placed around
class borders.

In conclusion, we should avoid using filter methods
or prototype selections whose time complexity is too
high. Additionally, in Section 4 we show that using an
excessively strong reduction leads to a lower accuracy of
the classifier (compare results for the Explore algorithm).

To decide which prototype selection algorithm we
should consider, recall the review presented by Garcia
et al. (2012), an analysis on three types of data
benchmarks: small, average and using big datasets.
The results for small datasets in the context of kernel
construction are obviously of minor importance. Results
on average2 and big data3 as obtained by Garcia et al.
(2012) are summarized in Tables 1 and 2.

Column acc shows averaged accuracies on test
portions from cross-validation, column red shows average
reduction strengths of a given method, column time is the

1In the context of using prototypes as selection of placements for
kernels.

2Cardinality of the dataset between 2001 and 20000 instances.
3Cardinality of the dataset greater than 20000 instances.

learning time in seconds. For full details, see the work
of Garcia et al. (2012). As discussed above, a prototype
selection algorithm should not be too slow or result in
an insufficient reduction. To simplify the analysis, we
added column N with a value of ‘n’ in the rows where
the learning is too slow or in the case of an insufficient
reduction of the training set. It can be seen that in many
cases the reduction rate4 is lower than 80% or the learning
time is impractically huge. Even among the plentiness
of the reviewed methods, only in rare cases we can find
methods with both a satisfactory reduction rate and low
execution time.

It was not obvious that a combination of prototype
selection for the initialization of kernel positions with
pseudo-inverse learning of a neural network will be
fruitful, since previously (Grochowski and Jankowski,
2004) we showed that combining prototype selection
with the SVM (among others) leads to a degradation in
accuracy.

Based on the above discussion and conclusions, we
decided to analyze combinations of DROP algorithms
(Wilson and Martinez, 2000) and those based on
information coding (Cameron-Jones, 1995).

DROP2 algorithm. The family of DROP algorithms
selects a relatively small and reasonable amount of
instances. The research reported below concentrates on
DROP2 and DROP4. DROP2 performs significantly
better than DROP1, and DROP4 performs better than the
previous versions, but is a little more computationally
expensive (although of the same complexity). The main
idea of the DROP2 algorithm lies in the definition of the
set A(x, k), which consists of the vectors for which x is
one of their k nearest neighbours:

A(x, k) = {x′ : x ∈ Nk(x′)}, (7)

where Nk(x′) is the set of the k nearest neighbours of
x′. The main concept of DROP2 is to delete all vectors
whose removal does not change the classification of the
remainder of the set D. This idea produces the definition

4By the reduction rate we mean the ratio of the number of instances
removed to the cardinality of the original dataset.

722 N. Jankowski

Table 2. Results (accuracies, reduction rates and times) on average data sets from the work of Garcia et al. (2012).
method acc red. time N method reference

RMHC 0.83 0.9 12028 n Skalak, 1994
SSMA 0.829 0.98 6306 n Garcia et al., 2008
RNG 0.823 0.116 1866 n Sanchez et al., 1997
HMNEI 0.818 0.535 28.98 n Marchiori, 2008
ModelCS 0.816 0.065 15.46 n Brodley, 1995
CHC 0.809 0.991 6803 n Cano et al., 2003
GGA 0.808 0.908 21262 n Kuncheva, 1995
1NN 0.806
AllKNN 0.805 0.21 24.6 n Aha et al., 1991
POP 0.803 0.08 0.17 n Riquelme et al., 2003
RNN 0.802 0.945 24480 n Gates, 1972
IB3 0.801 0.767 6.61 n Aha et al., 1991
MSS 0.801 0.573 7.9 n Barandela et al., 2005
FCNN 0.796 0.76 3.2 n Angiulli, 2007
CNN 0.791 0.737 1.1 n Hart, 1968
MENN 0.784 0.314 37 n Hattori and Takahashi, 2000
Cpruner 0.76 0.889 35.3 Zhao et al., 2003
Reconsistent 0.75 0.68 1621 n Lozano et al., 2003
DROP3 0.743 0.89 160 Wilson and Martinez, 2000
CCIS 0.713 0.95 12.4 Marchiori, 2010
MCNN 0.68 0.991 4.4 Devi and Mury, 2002
ICF 0.678 0.8 93 Brighton and Mellish, 2002

of the set A, which simplifies the testing of the changes in
classification to the elements of A, contrary to testing on
the whole of D.

The algorithm model of DROP2 is as
follows:

1: function DROP2(D,k)
2: repeat
3: for xi in D in dist-order do
4: delete xi if it does not change the
5: classification of instances from A(xi, k)
6: end for
7: until no changes in D
8: return D

The ‘dist-order’ above defines a descending order of
instances (in D) with respect to the distance to their
nearest enemy (the nearest instance from an opposite
class). The previous version of DROP1 did not use the
‘dist-order’, and its accuracy was significantly worse on
average. The outer loop usually iterates a few times.
The inner loop iterates for each instance in D. The time
complexity is O(m3n). The reduction of D is quite
strong; for details, please see the works of Wilson and
Martinez (2000) or Grochowski and Jankowski (2004).

DROP4. The next version of the DROP algorithm
begins with eliminating inconsistent instances. An in-
consistent instance is one whose neighbours are mostly
from a different class, but additionally the deletion of this
instance would not decrease classification accuracy. The
test of inconsistency is performed for each instance.

The algorithm model of DROP4 is as
follows:

1: function DROP4(D,k)
2: for xi in D do
3: delete xi if kNN(x,k) �= yi and it will not
4: change classification of instances
5: from A(xi, k)
6: end for
7: repeat
8: for xi in D in dist-order do
9: delete xi if it will not change

10: classification of instances from A(xi, k)
11: end for
12: until no changes in D
13: return D
Here kNN(x,k) is the result of kNN classification of x.

Owing to the deletion of inconsistent prototypes, the
main part of DROP4 is somewhat smoother, as it does not
depend on inconsistent instances.

DROP3 is just slightly different from DROP4—in
the condition of deletion in the first loop, the right-hand
side of the conjunction is dropped.

Encoding length. The next three algorithms are based
on the concept of the encoding length (Cameron-Jones,
1995). The heart of the idea is Cameron’s criterion below,
which should be minimized through the extraction of

Comparison of prototype selection algorithms used in construction of neural networks learned by SVD 723

unnecessary instances from the original dataset D:

J(m,m′, q) = F (m′,m) +m′ log2 K (8)

+ F (q,m−m′) + q log2(K − 1),

where m is the number of instances in the original dataset
D, m′ is the number of instances in the prototype set S,
and K is the number of classes, q defines the number
of badly classified instances in D \ S, where F (m,n) is
defined by

F (m,n) = log∗
(

m∑

i=0

n!

i!(n− i)!

)
, (9)

log∗ n = argmin
k

F ′(k) ≥ n, (10)

where F ′(0) = 1, F ′(i) = 2F
′(i−1).

It can be easily seen that Cameron’s criterion is
smaller if the reduction is stronger and does not increase
the error on D \ S.

The (original) encoding length algorithm
starts with all instances of D as prototypes, and
iteratively tries to remove each instance, if only
this reduces Cameron’s criterion. Its scheme is as
follows:

1: function EncLen(D, startS = D, R = D)
2: S = startS
3: m′ = m
4: q = numerOfErrors(D \ S, S)
5: j = J(m,m′, q)
6: for xi in R do
7: S = S \ {xi}
8: m′ = m′ − 1
9: q = numerOfErrors(D \ S, S)

10: j′ = J(m,m′, q)
11: if j′ ≤ j then
12: j = j′

13: else
14: S = S ∪ {xi}
15: m′ = m′ + 1
16: end if
17: end for
18: return S

Here numerOfErrors(D \ S, S) is defined as the number
of classification errors obtained on instances from D \ S
using the current set of prototypes S. The first argument
of the EncLen D defines the learning set, the second
argument startS defines the initial set of prototypes, the
third argument R of EncLen defines which vectors will
be analyzed for possible removal. The call to start the
original EncLen is EncLen(D,D,D). What this means
is that the training dataset is D, the algorithm starts with
the whole of D as the prototype set, and in the main
loop all vectors will be checked for possible removal.

Please compare it to the calls of EncLen in the algorithms
EncLenGrow and DEL (below), where EncLen will be
called with different arguments in other contexts.

Explore. The next algorithm, Explore, also uses
Cameron’s criterion, but in a more sophisticated manner.
It mixes a few goals in one, bigger scheme. The
first part of Explore is the EncLenGrow sub-procedure,
which starts from an empty set of prototypes S and
tries, for each instance in D, to add it as a prototype,
if only this reduces Cameron’s criterion. In contrast
to EncLen, this procedure tries to add, not to remove.
However, after this phase the EncLen procedure is called
to remove prototypes from S, should it reduce Cameron’s
criterion (as before). Such a strategy prevents it from
retaining unnecessary prototypes. Its scheme is as
follows:

1: function EncLenGrow(D)
2: S = ∅
3: m′ = 0
4: q = numerOfErrors(D \ S, S)
5: j = J(m,m′, q)
6: for xi in D do
7: S = S ∪ {xi}
8: m′ = m′ + 1
9: q = numerOfErrors(D \ S, S)

10: j′ = J(m,m′, q)
11: if j′ ≤ j then
12: j = j′

13: else
14: S = S \ {xi}
15: m′ = m′ − 1
16: end if
17: end for
18: S = EncLen(D, S, S)
19: return S

Having finished the EncLenGrow part, the Explore
algorithm tries to tune S by several iterations of
attempting actions randomly chosen between addition
or removal of a single instance, or substitution of one
instance in S with an instance from D \ S, but the actions
are only executed if they result in decreasing Cameron’s
criterion. Finally, the scheme of Explore can be given as
follows:

1: function Explore(D, p)
2: S = EncLenGrow(D)
3: for i=1 to p do
4: switch (random action 1 of 3)
5: case 1:
6: try to add a random instance from D \ S
7: only when J will decrease
8: case 2:
9: try to remove random instance from S

10: only when J will decrease

724 N. Jankowski

11: case 3:
12: try to
13: add random instance from D \ S
14: AND
15: remove random instance from S
16: only when J will decrease
17: end switch
18: end for
19: return S

A typical value of p is 1000.

DEL. The last prototype selection algorithm analyzed
in this article also uses Cameron’s criterion, although in
a different way compared to the previous ones. First,
we construct a set R of instances from D whose classes
are inconsistent with their neighbours’ labels (i.e., the
instances badly classified by the kNN). After that, each
instance from R is removed if only this reduces Cameron’s
criterion. This is another form of reducing inconsistent
instances (compare with DROP4). In the next phase,
the instances from S are sorted in descending order
with respect to the distance to their nearest enemy (cf.
DROP2). Using such an order, the EncLen procedure
is called repeatedly until no instance is removed during
the procedure. The final scheme of the DEL procedure is
presented below:

1: function DEL(D)
2: R = set of badly classified instances from D
3: S = EncLen(D, D, R)
4: S = sort(S) in descending order by distance
5: to nearest enemy
6: repeat
7: S′ = S
8: S = EncLen(D, S, S)
9: until S = S′

10: return S

All of the prototype selection algorithms presented in
the above review will be used as elements of the entire
learning algorithm introduced in the next section.

The complexities of the above algorithms are
O(m3n) and Ω(m2n). All algorithms except Explore
provide an instance reduction rate close to 0.9. The
reduction rate of the Explore algorithm is around 0.98.

3. Prototype-based kernels for extreme
learning machines and radial basis
function networks

Whenever we use RBFN or ELM learning, the model is
defined by a linear combination (w) of kernels gj(x,xj):

F (x) =

l∑

j=1

wigj(x,xj) + w0. (11)

The main goal of this article is to propose learning
algorithms that automatically choose kernel placements
and the number of kernels for the RBFN and the ELM,
contrary to their original versions, as learning algorithms
with manual selection of the number of kernels and their
placements. Additionally, the complexity of the learning
algorithms should be as small as possible.

The proposed algorithms are combinations of SVD
learning with prototype selection. Currently, such
combinations’ complexity is O(ml2 + m3n), as so are
the costs of SVD and prototype selection (where l is
the number of kernels). In the case of manual selection
of the number of kernels, a validation process must be
used, e.g., cross-validation, and finally, such learning uses
much more CPU time (being a multi-learning and testing
process).

To eliminate this disadvantage, we can first start
with one of the prototype selection algorithms, and the
selected prototypes can define the placements of the new
kernels (typically Gaussian) for the RBFN or the ELM.
Based on the selected prototypes, the kernels are defined.
Next, using the aforementioned kernels, we move from
the original space of the data D to a new kernel space
with a data matrix G, obtained by computing each kernel
for each of the data instance in D (cf. Eqns. (4) and
(5)). The last two steps are the computation of the
pseudo-inverse H by SVD and the multiplication of H by
the vectors of class labels. The scheme of this algorithm
is as follows:

1: function ProtoLearning(D, PrototypeSelection)
2: [p1, . . . ,pl] = PrototypeSelection(D)
3: Gij = gj(xi,pj) ∀i∈[1,...,m],j∈[1,...,l]

4: G′ = [1 G]
5: H = svd_pseudo_inv(G′)
6: w = Hy
7: return weights w and kernels g∗

Here gj(x) is the (Gaussian) kernel placed at x′
j , G is

a matrix with one column per kernel, each kernel being
evaluated on every instance in the dataset. The matrix
G′ has an additional column of 1′s with respect to w0 in
Eqn. (11).

In the case of the original RBFN, the first two
instructions of the above scheme are substituted with
random selection of instances from the dataset and
gj is a (Gaussian) kernel, while in the case of the
ELM, originally gj is a sigmoidal function with random
projection (random weights), or a Gaussian kernel.

Now, it is clear that the number of kernels l has strong
influence on the computational costs, as the complexity of
SVD is O(ml2). The combination of prototype selection
with SVD amounts to a total pessimistic complexity of
O(ml2 +m3n). But, currently, we are working on faster
versions of DROP algorithms and encoding length-based
ones, and we are close to obtaining an estimated

Comparison of prototype selection algorithms used in construction of neural networks learned by SVD 725

complexity close to O(nm log2 m). Such complexity can
be obtained using locality-sensitive hashing supported by
additional data structures used to decrease recalculations.
This is very important in the context of huge datasets.

4. Result analysis of pseudo-inverse
learning with prototype selection-based
kernels

The goal of this section is to present a comparative
analysis of the presented ProtoLearning algorithm
with other known algorithms.

To make a comparison of different algorithms,
we use around 40 datasets from the UCI machine
learning repository (Merz and Murphy, 1998) devoted
to classification problems. The datasets differ in the
origin, goals, the number of instances, features and
classes, to present an objectively realistic behaviour of
the new algorithms proposed. A summary of the datasets’
properties is presented in Table 3.

All tests were conducted on the basis of 10-fold
stratified cross-validation repeated 10 times. For each test
the dataset was standardized. All experiments were made
in the data mining framework called Anemon written
in C#/.Net. Anemon is our own framework with many
algorithms including neural networks, machine learning
and statistics. Should the reader be interested in the details
of the presented algorithm, we can share source codes.

The general ProtoLearning algorithm was
combined with all the prototype selection algorithms
described above. In this way, six combinations
were obtained: Drop2-NN, Drop3-NN, Drop4-NN,
Explore-NN, EncLen-NN, Del-NN, each being a
neural network with kernel placements defined by
the prototype algorithm respective to the combination
name. Additionally, we present results achieved by a
1-NN classifier using the results of prototype selection
algorithms.

The aforementioned networks were compared with
the following learning machines: a linear discriminant
learned by SVD (LDA), extreme learning machines with
a sigmoidal kernel function (ELM), a radial basis function
network with a Gaussian kernel (RBFg), k nearest
neighbours (k = 5), a support vector machine with a
linear kernel (L-SVM) and with a Gaussian kernel (SVM).

We formed three tables to compare several
configurations of learning machines. The first one
compares all combinations of prototype selection
for kernel construction with neural networks (see
Table 4). Two best prototype-based kernel selection
methods—DROP2 and EncLen—were compared with
known classifiers in Tables 6 and 7.

In Table 5 we present the results of prototype
selection algorithms, without using them as the source of
kernel positions. The comparison of results in Table 4

with those in Table 5 clearly shows that the combination
of prototype selection methods with neural networks leads
to much better results than using prototype selection
algorithms alone (in the 1-NN scenario, as previously
mentioned).

Each learning algorithm was always used with the
same learning parameters for each benchmark dataset (no
manual parameter tuning was done). ELMs and RBFNs
were learned with 160 random kernels.5 The placements
of the RBFN’s kernels were vectors randomly selected
from the given benchmark dataset. ELMs use random
weights (b) and thresholds (θ), as in Eqn. (2). RBFg,
DROP*-NN, Explore-NN and Del-NN were used with the
Gaussian function (Eqn. (3)) with γ = 2−5. The kNN
was used with k = 5 and the Euclidean metric. L-SVM
and SVM were used with C = 1. SVM was used with a
Gaussian kernel with γ = 0.16

To visualize the performance of all algorithms, we
present the average accuracy and the rank for each
benchmark dataset and learning machine. For each
benchmark and each machine we used the same seed for
randomization, which enabled us to employ paired t-tests
to provide more trustful analysis.

Notice that each cell of the main part of Tables 4–7
is in the form

acc+ std(rank), (12)

where acc is the average test accuracy (for a given
dataset and a given learning machine), std is its standard
deviation and rank is the rank as described below. If a
given cell of the table is in bold, this means that the result
is the best for a given dataset or not significantly worse
than the best one (rank equal to 1 = winners).

Cumulative results of the analysis are presented by
the number of wins (and unique wins), with the mean rank
and mean accuracy as complementary information.

The ranks are calculated for each machine for a
given dataset D as follows. First, for a given benchmark
dataset D the averaged accuracies of all learning machines
are sorted in descending order. The machine with the
highest average accuracy is ranked 1. Then, the following
machines in the accuracy order whose accuracies are not
statistically different from the result of the first machine
are ranked 1, until a machine with a statistically different
result is encountered. That machine starts the next rank
group (2, 3, and so on), and an analogous process is
repeated on the remaining (yet unranked) machines.

A meta-code of the above procedure is given
below. The rank function computes ranks for
comparing learning machines based on the array of

5This is ‘not too small’ and ‘not too big’ for the analyzed bench-
marks. The idea behind choosing this value was to keep the number of
kernels constant, but not too big, as with the growth in the number of
kernels the complexity grows quadratically.

6Note that on the average the SVM prefers (in terms of achieving
good accuracy) a different γ than RBF neural networks.

726 N. Jankowski

Table 3. Summary of data set properties used in the analysis of learning algorithms.
data set # classes # instances # features # ordered f.

arrhythmia 11 63 279 206
autos 6 159 25 15
balance-scale 3 625 4 4
blood-transfusion-service-center 2 748 4 4
breast-cancer-wisconsin-diagnostic 2 569 30 30
breast-cancer-wisconsin-original 2 683 9 9
breast-cancer-wisconsin-prognostic 2 194 33 33
breast-tissue 6 106 9 9
car-evaluationNOM 4 1728 21 0
cardiotocography-1 10 2126 21 21
cardiotocography-2 3 2126 21 21
chess-king-rook-vs-king-pawn 2 3196 38 38
cmc01 3 1473 24 24
congressional-voting-records 2 232 16 16
connectionist-bench-sonar-mines-vs-rocks 2 208 60 60
connectionist-bench-vowel-recognition-deterding 11 528 10 10
cylinder-bands 2 277 39 18
dermatology 6 358 34 1
ecoli 8 336 7 7
glass 6 214 9 9
habermans-survival 2 306 3 3
hepatitis 2 80 19 6
ionosphere 2 351 34 34
iris 3 150 4 4
libras-movement 15 360 90 90
liver-disorders 2 345 6 6
lymph 4 148 18 3
monks-problems-1 2 556 15 15
monks-problems-2 2 601 15 15
monks-problems-3 2 554 15 15
parkinsons 2 195 22 22
pima-indians-diabetes 2 768 8 8
sonar 2 208 60 60
spambase 2 4601 57 57
spect-heart 2 267 22 22
spectf-heart 2 267 44 44
statlog-australian-credit 2 690 38 38
statlog-german-credit 2 1000 24 24
statlog-heart 2 270 20 7
statlog-vehicle-silhouettes 4 846 18 18
teaching-assistant-evaluation 3 151 54 54
thyroid-disease 3 7200 21 21
vote 2 232 16 0
wine 3 178 13 13
zoo 7 101 17 1

their accuracy vectors Ai for the given dataset. We
are using the paired t-test: the pttest function
that returns true if two chains of accuracies are not
statistically different (with threshold α). Its scheme is as
follows:

1: function ranks(A1, . . . , Ab, α)
2: for i=1 to b do
3: mi = mean_acc(Ai)
4: end for

5: [mk1 , . . . ,mkb
] = sort([m1, . . . ,mb])

6: r = 1
7: i = j = 1
8: while i ≤ b do
9: if not pttest(Akj ,Aki ,α) then

10: r = r + 1
11: j = i
12: end if
13: rks = r;

Comparison of prototype selection algorithms used in construction of neural networks learned by SVD 727

14: s = s+ 1
15: end while
16: return [r1, . . . , rb]

Thanks to the concept of the rank, we recognize
not only the winners and the defeated, but more groups
depending on really significant differences. This helps us
to see how strongly a given machine defeats another in the
meaning of statistical differences.

The last two rows of Tables 4–7 present cumulative
results. The mean rank row presents the most significant
information about the average ranks of the machines—for
each machine, its average rank over all datasets is
presented with standard deviation. The third row presents
the numer of wins (how many times the given machine
was the best or was not significantly worse than the best)
for each machine, and in brackets, the number of unique
wins. By a unique machine win we mean the case when
all other machines are significantly worse. More simply,
if the winner machine was the only one to achieve rank 1
(as described above), it is a unique winner.

From the mean rank row in Table 4, we can find that
the best mean rank7 1.38 is assigned to EncLen-NN and
1.4 is assigned to DROP2-NN. Also, the number of wins8

is the biggest for DROP2-NN (31) and for EncLen-NN
(30). DROP4 came very close to the previous results,
with a mean rank of 1.49 and 28 wins. The worst kernels
were provided by Explore and DEL. We should remember,
however, that those algorithms keep only a very small
amount of original vectors as prototypes (Grochowski and
Jankowski, 2004).

Analyzing Tables 4 and 5, we can find the
differences between RBF/ELM neural networks with
kernels initialized by prototypes and prototype methods
alone. It is quite clear that the proposed method yields a
significantly better classification.

In Tables 6 and 7 we present a comparison of the
two best kernel providers (EncLen-NN and DROP2) with
known learning algorithms. In Table 6 the best learning
machine is the proposed EncLen-NN. Its mean rank is
1.87 and the win number is 18, while six of them are
unique. The highest number of wins and the smallest
value of the average rank means that the EncLen-NN is
significantly better than the other algorithms.

The second-best is RBFg with a mean rank of 2.04
and 16 wins. You can see that the third result was LDA
with a significantly smaller mean rank 2.8.

In Table 7, the best algorithm is DROP2-NN with a
mean rank of 1.98 and 19 wins (6 of them unique). The
second-best result was obtained by RBFg with a mean
rank of 2.07 and 16 wins (3 of them unique).

In all cases the proposed learning machines were
significantly better than other learning machines. Please

7Smaller value means better.
8Bigger means better.

note that the proposed methods are significantly better
than the SVM or the ELM.

What is more, we can easily see that the
proposed classification algorithms perform even better
than sophisticated committees of learning machines, for
example those proposed by Woźniak and Krawczyk
(2012). The reader can compare the averaged accuracies
presented in the above tables with those given by Woźniak
and Krawczyk (2012). This shows that trustful learning
can be now much (computationally) simpler and more
accurate.

As mentioned earlier, in our articles (Jankowski and
Grochowski, 2004; Grochowski and Jankowski, 2004),
we proposed and analyzed a combination of prototype
selection with a neural network or an SVM, but the
results were not very promising. Later, a similar idea was
presented by Yousef and el Hindi (2005). However, their
results are, in our opinion, erroneously bad—the results
on several datasets are much worse than ours, as presented
in the above tables. One of the biggest differences lies in
the construction of the Gaussian function. Yousef and el
Hindi claim that they use individual standard deviation σj

per attribute instead of γ−1, as in Eqn. (3):

σj =

√√√√ 1

m

m∑

i=1

(xij − x̄j)2, (13)

where xij is the value of the j-th attribute for the i-th
instance and x̄j is the mean of the attribute j. After
adapting our own code to use a Gaussian kernel as
presented by Yousef and el Hindi (2005), we obtained
worse results than presented in this article, yet they were
somewhat different from those by Yousef and el Hindi
(2005). This suggests that the authors of the cited article
may have made some other mistakes. Finally, the idea of
combining prototype methods with neural networks has
been erroneously viewed to be ill-advised so far.

5. Summary

The proposed learning algorithms, instead of randomly
selecting the kernels for the RBFN or the ELM, use a
prototype selection algorithm, and after that, the selected
prototypes compose the kernels for the RBFN or the ELM,
learned by a pseudo-inverse matrix (by SVD). Test results
clearly show that such new algorithms are significantly
better than learning machines such as the SVM, RBFN,
ELM or kNN, and are additionally more stable.

Thanks to this concept, the new algorithms
automatically select the kernels and their number. There is
no need for manually tuning the number of kernels. What
is more, there is no need for manually tuning any other
parameter in the new algorithm, which is a big advantage,
as it implies no need for inner cross-validation. It is a
good alternative for the costly manual or automatic (for

728 N. Jankowski

Table 4. Comparison of neural networks with prototype-based kernel selection by DROP2, DROP3, DROP4, Explore, EncLen and
DEL.

Drop2-NN Drop3-NN Drop4-NN Explore-NN EncLen-NN Del-NN

arrhythmia 32±8.9(2) 33.6±9.4(1) 34±8.9(1) 33.7±9.3(1) 34±9.6(1) 31.7±7.7(2)
autos 72.2±12(2) 67.6±12(3) 69.4±12(3) 47.9±12(4) 75.1±12(1) 73.1±11(2)
balance-scale 90.8±1.9(1) 90.4±1.7(2) 90.3±1.8(2) 89.3±2.5(3) 90.2±1.9(2) 90.9±1.4(1)
blood-transfusion 79.1±3.6(2) 79.5±3.7(1) 79.4±3.7(1) 76.1±1.2(4) 79.4±3.7(1) 76.7±2.2(3)
breast-cancer-
diagnostic

96.6±2.4(1) 96.3±2.5(1) 96.6±2.4(1) 92.3±6.6(2) 96.3±2.6(1) 93.6±3.8(2)

breast-cancer-
original

96.8±2(2) 96.7±2(2) 96.7±2.2(2) 97±1.9(1) 96.8±2.1(1) 96.9±1.8(1)

breast-cancer-
prognostic

77.4±7(1) 78.4±6.1(1) 77.3±7.1(1) 76.3±2.2(2) 78.3±7.2(1) 76.3±2.2(2)

breast-tissue 61.7±14(2) 63.5±12(1) 61.2±15(2) 65.9±11(1) 60.3±11(2) 64±13(1)
car-evaluation 90.9±2.2(2) 91.2±2.1(2) 91.4±2(2) 71.2±3.9(4) 94.4±1.7(1) 84.9±2.9(3)
cardiotocography-1 84.5±2.2(1) 84.2±2.1(1) 84.5±2.3(1) 76±10(3) 84.2±2.2(1) 83±2.1(2)
cardiotocography-2 92.7±1.6(1) 92.6±1.7(2) 92.9±1.7(1) 83.4±3(4) 92.6±1.9(2) 89±2.2(3)
chess-rook-vs-
pawn

98.9±0.64(1) 98.6±0.67(2) 98.9±0.62(1) 84.1±12(5) 98.2±0.74(3) 92.7±1.7(4)

cmc 49±4.3(2) 51±3.5(1) 49.3±4(2) 49±5.3(2) 48.4±4.3(3) 48.1±4.2(3)
congressional-
voting

96.5±3.7(1) 96.6±3.7(1) 96.5±3.7(1) 91±6.1(3) 95.3±4.8(2) 90.3±6.3(3)

connectionist-
bench-sonar

84.5±6.6(1) 81.8±7.4(2) 82.8±7(2) 67.2±9.2(4) 83.6±6.6(1) 70.6±9(3)

connectionist-
bench-vowel

96.7±2.5(1) 96.7±2.7(1) 96.6±2.6(1) 68.1±9.4(3) 96±2.9(2) 96.2±2.6(2)

cylinder-bands 68.9±4.4(1) 67.8±4.6(2) 68.3±4.9(1) 64.3±0.96(3) 68±5(2) 64.3±0.96(3)
dermatology 95.7±3.1(1) 94.9±3.3(2) 95.1±3.3(2) 87.6±6.1(4) 95.5±3(1) 93.9±3.9(3)
ecoli 86.5±5.4(1) 86.1±5.2(2) 86.6±5(1) 85.3±5.2(3) 86.3±5.1(2) 87.1±4.9(1)
glass 66±9.8(1) 66.5±9.2(1) 66±9.7(1) 62±9(2) 65.3±9.3(1) 66.8±9.1(1)
habermans-survival 74±5.5(1) 73.8±5.8(1) 72.8±5.9(2) 73.5±2.7(1) 73.1±5.9(2) 73.4±1.9(1)
hepatitis 84.4±12(1) 84.5±11(1) 85.3±11(1) 82.8±7.3(2) 85.4±11(1) 82.8±7.1(2)
ionosphere 93.2±3.9(1) 91.6±4.5(3) 92.4±4.1(2) 79.4±9(4) 92.7±4.3(1) 91.1±5(3)
iris 96.9±4.2(1) 96.5±4.8(1) 96.5±4.8(1) 91.7±7.7(3) 96.5±4.7(1) 95.7±4.9(2)
libras-movement 86±5.7(1) 82.7±5.5(3) 85±5.8(2) 61.1±7.8(4) 86.1±5.1(1) 84.9±5.8(2)
liver-disorders 68.4±7.2(1) 68.5±7.3(1) 68.1±7(1) 58.9±5.7(3) 67.3±8.5(1) 61.6±7.3(2)
lymph 84.3±8.9(2) 85.7±8.2(1) 86.4±9(1) 74.1±11(4) 85.1±8.6(1) 81.7±9.8(3)
monks-problems-1 99.9±0.69(1) 99.9±0.44(1) 99.9±0.69(1) 68.8±7.1(3) 99.9±0.44(1) 77.5±7.6(2)
monks-problems-2 59.5±6.9(3) 61.7±6.6(2) 61.3±6.2(2) 65.7±0.85(1) 60.4±7(2) 65.7±0.82(1)
monks-problems-3 98.8±1.6(1) 98.8±1.5(1) 98.8±1.5(1) 88.8±9.3(4) 98.3±2(2) 95.4±3.5(3)
parkinsons 89.3±6.3(1) 89.1±6.6(1) 89.1±6.3(1) 79.7±7.4(3) 89.5±6.8(1) 82.2±7.7(2)
pima-indians-
diabetes

72.5±4.6(3) 74±5(2) 72.7±4.9(3) 74.8±4.9(1) 73.3±4.9(2) 75±5.2(1)

sonar 84.5±6.6(1) 81.8±7.4(2) 82.8±7(2) 67.2±9.2(4) 83.6±6.6(1) 70.6±9(3)
spambase 91.2±1.2(1) 91.2±1.2(1) 91.3±1.3(1) 82.9±8.3(4) 91.1±1.3(2) 87.6±1.6(3)
spect-heart 82.8±6.1(1) 82.5±6.1(1) 82.6±6.2(1) 79.7±3.1(3) 82.7±5.7(1) 81.2±4.8(2)
spectf-heart 79.9±6.8(1) 79.6±7.1(1) 79.1±7(1) 79.3±2(1) 79.8±7(1) 79.4±1.7(1)
statlog-australian-
credit

84.2±4(1) 84.8±4.4(1) 84.4±4.2(1) 75.9±7.4(3) 84.8±4.3(1) 83.6±4.2(2)

statlog-german-
credit

74.2±4.3(2) 75±4(1) 74.2±3.8(2) 71.1±2.6(3) 74.7±3.8(1) 70.6±2.2(3)

statlog-heart 81±7.4(2) 82.3±7.9(1) 81.8±8(1) 80.3±7.7(2) 82.6±7.6(1) 79.9±7.8(2)
statlog-vehicle 83.4±3.8(1) 83.2±3.7(1) 83.2±3.9(1) 60.8±12(3) 83.2±4.1(1) 79.9±3.7(2)
teaching-assistant 51±11(3) 46.3±12(4) 50.3±11(3) 41.4±11(5) 56.5±12(1) 53.8±12(2)
thyroid-disease 96.2±0.51(1) 95.8±0.52(3) 96.2±0.53(1) 93.5±0.35(5) 96±0.54(2) 94.1±0.51(4)
vote 96.8±3.2(1) 96.5±3.5(1) 96.4±3.9(1) 92±5.5(2) 96.3±3.9(1) 92.2±5.3(2)
wine 97.8±3.5(1) 98.1±3.1(1) 98±3.1(1) 97.1±3.6(2) 97.7±3.3(1) 96.9±3.7(2)
zoo 61.8±12(3) 48±11(5) 54.8±11(4) 40.4±2.4(6) 70.5±13(1) 67.5±12(2)
Mean Rank 1.4±0.099 1.6±0.14 1.49±0.11 2.98±0.19 1.38±0.087 2.2±0.12
Wins[unique] 31[0] 27[1] 28[0] 7[0] 30[4] 9[0]

Comparison of prototype selection algorithms used in construction of neural networks learned by SVD 729

Table 5. Comparison of prototype selection algorithms: DROP2, DROP3, DROP4, Explore, EncLen and DEL.
Drop2 Drop3 Drop4 Explore EncLen Del

arrhythmia 49.67±21(2) 52.9±21(1) 54.31±23(1) 55.4±22(1) 48.83±23(2) 49.05±23(2)
autos 67.74±11(3) 56.23±10(5) 63.86±12(4) 48.87±9.9(6) 73.1±12(1) 70.6±12(2)
balance-scale 74.64±5.4(4) 80.4±4.1(2) 79.82±4.3(2) 81.75±5.3(1) 72.18±6.5(5) 78.83±4.8(3)
blood-transfusion 69.28±6.2(4) 75.11±4.6(2) 71.3±5.8(3) 76.02±1.2(1) 67.68±5.8(5) 75.83±4.2(1)
breast-cancer-
diagnostic

91.9±3.3(2) 93.62±2.8(1) 93.44±3.2(1) 94.25±3.9(1) 86.94±4.6(4) 89.08±5.8(3)

breast-cancer-
original

93.46±2.8(3) 95.19±2.5(2) 94.72±2.8(2) 96.68±2(1) 90.5±4.7(4) 96.3±2.1(1)

breast-cancer-
prognostic

68.87±10(3) 72.39±9.9(2) 66.96±10(3) 76.17±2.7(1) 68.49±9.8(3) 76.32±2.2(1)

breast-tissue 66.22±12(1) 63.15±14(2) 65.68±14(1) 61.02±12(2) 66.4±13(1) 64.71±13(1)
car-evaluation 80.23±2.8(2) 79.46±2.8(3) 79.79±2.8(2) 70.26±1.1(5) 85.98±2.7(1) 75.57±2.7(4)
cardiotocography-1 70.67±3.3(2) 70.91±2.9(2) 71.1±3(1) 63.13±7.2(4) 71.63±3.1(1) 67.36±3.2(3)
cardiotocography-2 86.8±2.4(3) 87.84±1.8(1) 87.34±2(2) 83.4±3.1(5) 86.32±2.4(3) 84.64±2.6(4)
chess-rook-vs-
pawn

90.46±1.7(2) 90.54±1.6(2) 91.04±1.6(1) 76.64±6.2(5) 82.23±2.5(4) 83.24±2.4(3)

cmc 42.95±3.9(2) 45.23±3.4(1) 43.01±3.9(2) 43.31±4(2) 42.27±4.1(3) 41.99±4(3)
congressional-
voting

81.31±9.3(4) 91.15±5.5(1) 89.35±7.3(2) 90.93±6.5(1) 84.83±9.1(3) 87.97±6(2)

connectionist-
bench-sonar

81.96±8.6(1) 78.69±8.9(3) 80.53±7.9(2) 70.52±10(4) 81.74±8.3(1) 66.78±10(5)

connectionist-
bench-vowel

96.33±2.8(1) 94.45±3.7(3) 96.02±3(1) 51.92±9.1(4) 95.32±3.3(2) 95.55±3.1(2)

cylinder-bands 65.43±8.1(1) 60.91±8.3(3) 62.68±8.6(2) 64.26±0.96(1) 63.88±8.3(1) 64.26±1.2(1)
dermatology 88.02±5(1) 87.34±4.3(1) 87.6±4.7(1) 81.85±6.1(3) 85.84±5.2(2) 85.72±6.1(2)
ecoli 79.85±6.6(3) 84.78±5.2(1) 84.13±4.8(1) 81.47±6.5(2) 77.66±7.3(4) 82.42±6.3(2)
glass 66.53±9.5(2) 68.33±8.4(1) 67.22±9.4(2) 60.21±9.6(3) 69±8.4(1) 65.93±9.1(2)
habermans-survival 65.62±8.9(4) 69.49±7(2) 67.78±6.9(3) 73.14±2.2(1) 66.58±7.8(3) 73.14±3.1(1)
hepatitis 82.25±11(1) 81.38±13(1) 82.38±13(1) 83.75±5.8(1) 79.63±15(2) 83.25±7.4(1)
ionosphere 81.12±6.9(2) 83.96±5(1) 80.48±7.4(2) 78.06±7.4(3) 84.89±7.3(1) 81.08±7.5(2)
iris 92.6±6.7(2) 93.87±6.2(1) 93.87±6.2(1) 93.47±7.6(1) 90.87±7.5(3) 88.33±8.2(4)
libras-movement 81.75±6.7(1) 76.58±6.2(3) 81.5±6.4(1) 56.86±8.4(4) 80.83±6.8(1) 79.75±7.1(2)
liver-disorders 61.66±8.7(1) 59±8(2) 60.29±8.2(1) 58.66±5.7(2) 61.71±7.9(1) 57.69±7.6(2)
lymph 76.7±9.6(1) 75.49±11(2) 77.19±11(1) 70.5±12(3) 76.58±11(1) 68.7±12(3)
monks-problems-1 94.66±2.9(1) 94.69±2.9(1) 94.62±2.9(1) 70.42±7.1(4) 88.82±5.1(2) 74.41±6.6(3)
monks-problems-2 55.96±6.5(4) 58.67±5(2) 57.42±6.2(3) 65.72±0.79(1) 52.32±6.7(5) 65.72±0.79(1)
monks-problems-3 93.18±3.5(1) 93.39±3.5(1) 93.39±3.5(1) 84.59±6.8(2) 85.77±4.6(2) 82.52±6.6(3)
parkinsons 87.73±7.1(1) 86.89±7.6(1) 87.82±7.4(1) 80.83±7(3) 85.51±7.8(2) 83.41±7.7(2)
pima-indians-
diabetes

68.71±5.6(3) 72.08±5.5(1) 70.41±5(2) 72.59±5.7(1) 67.93±5.6(3) 69.89±5.6(2)

sonar 81.96±8.6(1) 78.69±8.9(3) 80.53±7.9(2) 70.52±10(4) 81.74±8.3(1) 66.78±10(5)
spambase 86.34±1.6(3) 88.01±1.8(1) 87.64±1.6(2) 82.46±4.3(5) 82.64±2.2(5) 84.14±2(4)
spect-heart 77.5±7.5(2) 75.48±8.4(3) 77.61±7.7(2) 79.42±1.7(1) 72.02±8.9(4) 79.45±1.8(1)
spectf-heart 67.4±8.5(3) 69.46±7.8(2) 68.22±8.9(2) 79.42±1.7(1) 69.08±8.4(2) 79.19±2.7(1)
statlog-australian-
credit

75.38±5.7(3) 77.49±4.9(2) 77.72±5.7(2) 76.87±6.5(2) 74.06±6(4) 80.64±5.5(1)

statlog-german-
credit

65.47±4.9(4) 68.1±4(3) 66.23±4.4(4) 70.91±3(1) 65.29±4.4(5) 69.69±3.2(2)

statlog-heart 74.56±7.6(3) 76.37±7.6(2) 75.78±7.5(2) 78.78±6.8(1) 73.07±7.8(3) 76.37±8.8(2)
statlog-vehicle 66.22±4.3(2) 68.18±4.8(1) 67.4±4.4(1) 51.41±8.5(4) 65.54±4.1(2) 64.01±4.5(3)
teaching-assistant 49.92±12(1) 40.86±11(4) 45.46±13(3) 40.72±12(4) 52.08±12(1) 49.75±11(2)
thyroid-disease 87.99±1.3(3) 90.72±2.3(2) 90.65±1.5(2) 93.13±7.1(1) 87.2±1.7(3) 88.3±10(3)
vote 85.24±9.1(3) 90.46±7.2(1) 90.72±6.6(1) 89.26±7.1(1) 84.81±9.1(3) 87.82±8.9(2)
wine 93.08±6.5(1) 93.37±5.9(1) 93.54±5.7(1) 93.29±6.7(1) 91.66±6.4(2) 89.93±7.2(3)
zoo 53.98±13(1) 44.97±13(3) 49.33±13(2) 39.55±5.8(4) 52.77±14(1) 52.35±13(1)
Mean Rank 2.178±0.16 1.889±0.14 1.778±0.12 2.422±0.23 2.511±0.2 2.289±0.17
Wins[unique] 16[0] 19[3] 19[1] 20[4] 14[2] 12[1]

730 N. Jankowski

Table 6. Comparison of neural networks with kernels from EncLen prototype selection with LDA, ELM, RBFg, kNN, L-SVM and
SVM.

EncLen-NN LDA ELM RBFg kNN L-SVM SVM

arrhythmia 34±9.6(4) 53±20(1) 26.1±17(5) 44.4±16(3) 52.4±16(1) 49.7±20(2) 0±0(6)
autos 75.1±12(2) 64.1±10(4) 67.2±9.6(3) 81.7±11(1) 62.6±12(4) 53±11(6) 57±12(5)
balance-scale 90.2±1.9(2) 86.6±2.7(5) 86.6±2.7(5) 90.8±1.9(1) 87.6±2.9(4) 84.5±3.1(6) 89.6±2(3)
blood-transfusion 79.4±3.7(1) 77.3±1.9(2) 77±2.1(2) 79.5±3.7(1) 76.3±4.2(3) 76.1±0.62(4) 76.8±2(3)
breast-cancer-
diagnostic

96.3±2.6(2) 95.7±2.7(3) 94.9±2.9(4) 97.4±2.2(1) 97±2.1(1) 97.3±2.2(1) 96.2±2.5(2)

breast-cancer-
original

96.8±2.1(2) 96±2(4) 96.3±2(3) 96.1±2.2(3) 96.7±1.9(2) 96.6±2(2) 97±2.1(1)

breast-cancer-
prognostic

78.3±7.2(2) 80±8.1(1) 78.3±8.6(2) 72.7±8.9(4) 76.2±6.3(3) 80.5±8.3(1) 76.6±3.7(2)

breast-tissue 60.3±11(3) 66.2±13(2) 68±12(1) 54.6±16(4) 65.9±13(2) 43.6±8.5(5) 42.3±8.4(6)
car-evaluation 94.4±1.7(1) 84.2±2(5) 84.2±2(5) 92.4±1.7(3) 93.1±1.4(2) 82.2±3.5(6) 88±2(4)
cardiotocography-1 84.2±2.2(1) 66.4±2.8(6) 67.2±3.1(5) 80.9±2.4(2) 75.1±2.7(3) 58.2±2.7(7) 70.5±2.8(4)
cardiotocography-2 92.6±1.9(1) 86.5±1.8(7) 86.8±2(6) 91.4±1.9(2) 90.8±1.8(3) 87.4±1.9(5) 90.4±1.8(4)
chess-rook-vs-
pawn

98.2±0.74(1) 94.1±1.4(5) 94±1.5(5) 95±1.2(3) 94.6±1.2(4) 96.8±0.98(2) 98.3±0.76(1)

cmc 48.4±4.3(3) 50.4±3.6(2) 50.4±3.9(2) 53.4±4.1(1) 46.8±4(4) 18.7±2.8(6) 30.6±3(5)
congressional-
voting

95.3±4.8(3) 97±3.6(1) 97±3.6(1) 95.3±4.4(3) 92.1±5.1(4) 95.4±4.7(3) 96.3±3.9(2)

connectionist-
bench-sonar

83.6±6.6(1) 75.2±9.7(4) 74.1±10(4) 84.9±7.5(1) 81.3±7.6(2) 74.6±9(4) 78.4±6.9(3)

connectionist-
bench-vowel

96±2.9(1) 47.6±5.5(5) 47.7±5.5(5) 95.4±3.2(2) 93.4±3.4(3) 25.7±4.1(6) 60.9±4.9(4)

cylinder-bands 68±5(3) 74.5±7.1(1) 64.5±8.1(5) 70.3±5.9(2) 62±8(6) 75.1±6.9(1) 66.7±3(4)
dermatology 95.5±3(1) 95±3.4(2) 95±3.5(1) 95.7±3(1) 92.5±3.6(4) 93.4±3.9(3) 86.7±4.9(5)
ecoli 86.3±5.1(1) 84.8±5.1(2) 84.8±5.1(2) 86.1±5.2(1) 85.6±4.7(1) 76.1±6.2(4) 83.1±5.3(3)
glass 65.3±9.3(1) 60.8±9.6(3) 62.1±9.7(2) 65±9.2(1) 65.8±8(1) 36.4±7(5) 56.8±7.9(4)
habermans-survival 73.1±5.9(2) 74.2±4.2(1) 74.2±4.2(1) 73.6±5.7(1) 71.1±6.5(4) 72.6±2.5(3) 73.4±3.8(2)
hepatitis 85.4±11(2) 83.1±11(3) 83.1±11(3) 89.9±10(1) 87±11(2) 81.6±10(3) 88±8.3(1)
ionosphere 92.7±4.3(2) 86.4±4.1(4) 86.4±4.6(4) 93.2±3.8(2) 84.5±4.6(5) 88.4±4.6(3) 94.7±3.6(1)
iris 96.5±4.7(1) 83±8.2(3) 83±8.2(3) 95±6.5(2) 95±5.6(2) 78.1±8.6(4) 96.2±5.3(1)
libras-movement 86.1±5.1(1) 57.7±7.6(5) 63.1±7.3(4) 84.4±6(2) 75.8±5.8(3) 49.5±6.4(6) 46.7±7.6(7)
liver-disorders 67.3±8.5(2) 68.9±6.9(2) 69±7(2) 67.8±7(2) 61.8±8.1(3) 69.1±7.3(2) 71±7.2(1)
lymph 85.1±8.6(1) 83.7±8.7(1) 83.8±8.8(1) 82.1±9.7(2) 80.1±9.7(2) 80.4±9.3(2) 79±9.4(3)
monks-problems-1 99.9±0.44(2) 74.6±4.5(4) 74.6±4.5(4) 99.9±0.35(2) 99.6±0.95(3) 74.6±4.5(4) 100±0(1)
monks-problems-2 60.4±7(3) 63.1±2.9(2) 63.1±2.9(2) 62.2±7.3(2) 54.5±5.6(4) 65.7±0.79(1) 60.5±4.2(3)
monks-problems-3 98.3±2(3) 96.4±2.5(4) 96.4±2.5(4) 98.8±1.5(2) 98.9±1.5(1) 98.9±1.5(1) 98.9±1.5(1)
parkinsons 89.5±6.8(2) 88.6±6.9(2) 88.4±7(2) 92.1±6.4(1) 91.3±6.3(1) 86.9±7.5(3) 89±5.7(2)
pima-indians-
diabetes

73.3±4.9(3) 77.3±4.6(1) 77.3±4.5(1) 73.2±4.6(3) 74±4.8(3) 77±4.5(1) 76.1±4.6(2)

sonar 83.6±6.6(1) 75.2±9.7(4) 74.1±10(4) 84.9±7.5(1) 81.3±7.6(2) 74.6±9(4) 78.4±6.9(3)
spambase 91.1±1.3(3) 88.7±1.4(6) 89.9±1.4(5) 90.6±1.2(4) 90.9±1.4(3) 92.9±1.1(1) 91.6±1.4(2)
spect-heart 82.7±5.7(1) 83.4±5.3(1) 83.2±5.5(1) 82.1±6.9(2) 81.8±6.6(2) 81.7±6.1(2) 82.4±6.1(2)
spectf-heart 79.8±7(1) 77.2±5.8(2) 76.9±7.3(2) 79±7.7(1) 72.8±6.5(3) 79.1±7.5(1) 78±4.4(2)
statlog-australian-
credit

84.8±4.3(2) 85.6±4.1(1) 85.1±4.3(2) 84.8±4.7(2) 79.6±5.4(4) 84.8±4(2) 82.9±4.2(3)

statlog-german-
credit

74.7±3.8(3) 76.9±3.8(1) 76.5±3.9(2) 75.2±4(3) 72.4±4(4) 76.6±3.9(1) 75.3±3.3(3)

statlog-heart 82.6±7.6(2) 84.3±7(1) 84.3±7(1) 76.4±9.1(3) 82.1±7.1(2) 83.7±7.1(1) 82.9±6.9(2)
statlog-vehicle 83.2±4.1(1) 75.6±4.2(3) 77.1±4.2(2) 83.3±3.8(1) 73±4.1(4) 68.2±4.5(5) 65.8±3.8(6)
teaching-assistant 56.5±12(2) 59.5±12(1) 60.1±12(1) 61.3±13(1) 42.4±12(4) 53.9±11(3) 39.7±11(5)
thyroid-disease 96±0.54(1) 93.3±0.29(6) 93.6±0.26(5) 95.5±0.56(2) 94.9±0.46(3) 93.7±0.35(4) 95.4±0.41(2)
vote 96.3±3.9(2) 97±3.1(1) 97±3.1(1) 94.3±4(3) 92.1±5.4(4) 96.9±3.2(1) 96.9±3.1(1)
wine 97.7±3.3(2) 98.9±2.4(1) 98.9±2.4(1) 93.7±8(4) 96.7±3.7(3) 96.4±3.8(3) 98.3±2.8(1)
zoo 70.5±13(3) 94.8±5.7(1) 92.8±7.3(2) 71.6±13(3) 40.3±9.4(4) 93.8±5.9(1) 35.2±12(5)
Mean Rank 1.87±0.13 2.8±0.27 2.84±0.24 2.04±0.15 2.93±0.18 3.13±0.28 2.96±0.25
Wins[unique] 18[6] 15[1] 11[1] 16[3] 6[0] 12[2] 10[4]

Comparison of prototype selection algorithms used in construction of neural networks learned by SVD 731

Table 7. Comparison of neural networks with kernels from DROP2 prototype selection with LDA, ELM, RBFg, kNN, L-SVM and
SVM.

Drop2-NN LDA ELM RBFg kNN L-SVM SVM

arrhythmia 32±8.9(4) 53±20(1) 26.1±17(5) 44.4±16(3) 52.4±16(1) 49.7±20(2) 0±0(6)
autos 72.2±12(2) 64.1±10(4) 67.2±9.6(3) 81.7±11(1) 62.6±12(4) 53±11(6) 57±12(5)
balance-scale 90.8±1.9(1) 86.6±2.7(4) 86.6±2.7(4) 90.8±1.9(1) 87.6±2.9(3) 84.5±3.1(5) 89.6±2(2)
blood-transfusion 79.1±3.6(2) 77.3±1.9(3) 77±2.1(3) 79.5±3.7(1) 76.3±4.2(4) 76.1±0.62(5) 76.8±2(4)
breast-cancer-
diagnostic

96.6±2.4(2) 95.7±2.7(3) 94.9±2.9(4) 97.4±2.2(1) 97±2.1(1) 97.3±2.2(1) 96.2±2.5(3)

breast-cancer-
original

96.8±2(2) 96±2(4) 96.3±2(3) 96.1±2.2(3) 96.7±1.9(2) 96.6±2(2) 97±2.1(1)

breast-cancer-
prognostic

77.4±7(2) 80±8.1(1) 78.3±8.6(2) 72.7±8.9(4) 76.2±6.3(3) 80.5±8.3(1) 76.6±3.7(2)

breast-tissue 61.7±14(3) 66.2±13(2) 68±12(1) 54.6±16(4) 65.9±13(2) 43.6±8.5(5) 42.3±8.4(6)
car-evaluation 90.9±2.2(3) 84.2±2(5) 84.2±2(5) 92.4±1.7(2) 93.1±1.4(1) 82.2±3.5(6) 88±2(4)
cardiotocography-1 84.5±2.2(1) 66.4±2.8(6) 67.2±3.1(5) 80.9±2.4(2) 75.1±2.7(3) 58.2±2.7(7) 70.5±2.8(4)
cardiotocography-2 92.7±1.6(1) 86.5±1.8(7) 86.8±2(6) 91.4±1.9(2) 90.8±1.8(3) 87.4±1.9(5) 90.4±1.8(4)
chess-rook-vs-
pawn

98.9±0.64(1) 94.1±1.4(6) 94±1.5(6) 95±1.2(4) 94.6±1.2(5) 96.8±0.98(3) 98.3±0.76(2)

cmc 49±4.3(3) 50.4±3.6(2) 50.4±3.9(2) 53.4±4.1(1) 46.8±4(4) 18.7±2.8(6) 30.6±3(5)
congressional-
voting

96.5±3.7(2) 97±3.6(1) 97±3.6(1) 95.3±4.4(3) 92.1±5.1(4) 95.4±4.7(3) 96.3±3.9(2)

connectionist-
bench-sonar

84.5±6.6(1) 75.2±9.7(4) 74.1±10(4) 84.9±7.5(1) 81.3±7.6(2) 74.6±9(4) 78.4±6.9(3)

connectionist-
bench-vowel

96.7±2.5(1) 47.6±5.5(5) 47.7±5.5(5) 95.4±3.2(2) 93.4±3.4(3) 25.7±4.1(6) 60.9±4.9(4)

cylinder-bands 68.9±4.4(3) 74.5±7.1(1) 64.5±8.1(5) 70.3±5.9(2) 62±8(6) 75.1±6.9(1) 66.7±3(4)
dermatology 95.7±3.1(1) 95±3.4(2) 95±3.5(2) 95.7±3(1) 92.5±3.6(4) 93.4±3.9(3) 86.7±4.9(5)
ecoli 86.5±5.4(1) 84.8±5.1(2) 84.8±5.1(2) 86.1±5.2(1) 85.6±4.7(2) 76.1±6.2(4) 83.1±5.3(3)
glass 66±9.8(1) 60.8±9.6(3) 62.1±9.7(2) 65±9.2(1) 65.8±8(1) 36.4±7(5) 56.8±7.9(4)
habermans-survival 74±5.5(1) 74.2±4.2(1) 74.2±4.2(1) 73.6±5.7(1) 71.1±6.5(4) 72.6±2.5(3) 73.4±3.8(2)
hepatitis 84.4±12(3) 83.1±11(3) 83.1±11(3) 89.9±10(1) 87±11(2) 81.6±10(4) 88±8.3(1)
ionosphere 93.2±3.9(2) 86.4±4.1(4) 86.4±4.6(4) 93.2±3.8(2) 84.5±4.6(5) 88.4±4.6(3) 94.7±3.6(1)
iris 96.9±4.2(1) 83±8.2(3) 83±8.2(3) 95±6.5(2) 95±5.6(2) 78.1±8.6(4) 96.2±5.3(1)
libras-movement 86±5.7(1) 57.7±7.6(5) 63.1±7.3(4) 84.4±6(2) 75.8±5.8(3) 49.5±6.4(6) 46.7±7.6(7)
liver-disorders 68.4±7.2(2) 68.9±6.9(2) 69±7(2) 67.8±7(2) 61.8±8.1(3) 69.1±7.3(2) 71±7.2(1)
lymph 84.3±8.9(1) 83.7±8.7(1) 83.8±8.8(1) 82.1±9.7(2) 80.1±9.7(2) 80.4±9.3(2) 79±9.4(3)
monks-problems-1 99.9±0.69(2) 74.6±4.5(4) 74.6±4.5(4) 99.9±0.35(2) 99.6±0.95(3) 74.6±4.5(4) 100±0(1)
monks-problems-2 59.5±6.9(3) 63.1±2.9(2) 63.1±2.9(2) 62.2±7.3(2) 54.5±5.6(4) 65.7±0.79(1) 60.5±4.2(3)
monks-problems-3 98.8±1.6(2) 96.4±2.5(3) 96.4±2.5(3) 98.8±1.5(2) 98.9±1.5(1) 98.9±1.5(1) 98.9±1.5(1)
parkinsons 89.3±6.3(2) 88.6±6.9(2) 88.4±7(2) 92.1±6.4(1) 91.3±6.3(1) 86.9±7.5(3) 89±5.7(2)
pima-indians-
diabetes

72.5±4.6(4) 77.3±4.6(1) 77.3±4.5(1) 73.2±4.6(3) 74±4.8(3) 77±4.5(1) 76.1±4.6(2)

sonar 84.5±6.6(1) 75.2±9.7(4) 74.1±10(4) 84.9±7.5(1) 81.3±7.6(2) 74.6±9(4) 78.4±6.9(3)
spambase 91.2±1.2(3) 88.7±1.4(7) 89.9±1.4(6) 90.6±1.2(5) 90.9±1.4(4) 92.9±1.1(1) 91.6±1.4(2)
spect-heart 82.8±6.1(1) 83.4±5.3(1) 83.2±5.5(1) 82.1±6.9(2) 81.8±6.6(2) 81.7±6.1(2) 82.4±6.1(2)
spectf-heart 79.9±6.8(1) 77.2±5.8(2) 76.9±7.3(2) 79±7.7(1) 72.8±6.5(3) 79.1±7.5(1) 78±4.4(2)
statlog-australian-
credit

84.2±4(3) 85.6±4.1(1) 85.1±4.3(2) 84.8±4.7(2) 79.6±5.4(5) 84.8±4(2) 82.9±4.2(4)

statlog-german-
credit

74.2±4.3(4) 76.9±3.8(1) 76.5±3.9(2) 75.2±4(3) 72.4±4(5) 76.6±3.9(1) 75.3±3.3(3)

statlog-heart 81±7.4(3) 84.3±7(1) 84.3±7(1) 76.4±9.1(4) 82.1±7.1(2) 83.7±7.1(1) 82.9±6.9(2)
statlog-vehicle 83.4±3.8(1) 75.6±4.2(3) 77.1±4.2(2) 83.3±3.8(1) 73±4.1(4) 68.2±4.5(5) 65.8±3.8(6)
teaching-assistant 51±11(3) 59.5±12(1) 60.1±12(1) 61.3±13(1) 42.4±12(4) 53.9±11(2) 39.7±11(5)
thyroid-disease 96.2±0.51(1) 93.3±0.29(6) 93.6±0.26(5) 95.5±0.56(2) 94.9±0.46(3) 93.7±0.35(4) 95.4±0.41(2)
vote 96.8±3.2(1) 97±3.1(1) 97±3.1(1) 94.3±4(2) 92.1±5.4(3) 96.9±3.2(1) 96.9±3.1(1)
wine 97.8±3.5(2) 98.9±2.4(1) 98.9±2.4(1) 93.7±8(4) 96.7±3.7(3) 96.4±3.8(3) 98.3±2.8(1)
zoo 61.8±12(4) 94.8±5.7(1) 92.8±7.3(2) 71.6±13(3) 40.3±9.4(5) 93.8±5.9(1) 35.2±12(6)
Mean Rank 1.98±0.15 2.82±0.27 2.89±0.24 2.07±0.16 3.02±0.19 3.16±0.27 3.04±0.25
Wins[unique] 19[6] 15[1] 10[1] 16[3] 6[1] 12[2] 9[4]

732 N. Jankowski

example, via inner CV learning) estimation of the number
of kernels.

Additionally, the complexity of the new algorithm
is O(ml2 + m3n) and Ω(ml2 + m2n); however, we
are working on a new version of DROP algorithms,
whose complexity should be reduced from O(m3n) to an
estimated complexity around O(nm log2 m), whereupon
this algorithm will be useful even for huge datasets.

References
Aha, D.W., Kibler, D. and Albert, M.K. (1991). Instance-based

learning algorithm, Machine Learning 6(1): 37–66.

Angiulli, F. (2007). Fast nearest neighbor condensation for large
data sets classification, IEEE Transactions on Knowledge
and Data Engineering 19(11): 1450–1464.

Barandela, R., Ferri, F. and Sanchez, J. (2005). Decision
boundary preserving prototype selection for nearest
neighbor classification, International Journal of Pattern
Recognition and Artificial Intelligence 19(6): 787–806.

Boser, B.E., Guyon, I.M. and Vapnik, V. (1992). A training
algorithm for optimal margin classifiers, in D. Haussler
(Ed.), Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, ACM Press, New York,
NY, pp. 144–152.

Brighton, H. and Mellish, C. (2002). Advances in instance
selection for instance-based learning algorithms, Data
Mining and Knowledge Discovery 6(2): 153–172.

Brodley, C. (1995). Recursive automatic bias selection for
classifier construction, Machine Learning 20(1/2): 63–94.

Broomhead, D.S. and Lowe, D. (1988). Multivariable functional
interpolation and adaptive networks, Complex Systems
2(3): 321–355.

Cameron-Jones, R.M. (1995). Instance selection by encoding
length heuristic with random mutation hill climbing, Pro-
ceedings of the 8th Australian Joint Conference on Artifi-
cial Intelligence, Canberra, Australia, pp. 99–106.

Cano, J.-R., Herrera, F. and Lozano, M. (2003). Using
evolutionary algorithms as instance selection for data
reduction in KDD: An experimental study, IEEE Transac-
tions on Evolutionary Computation 7(6): 561–575.

Chamara, L.L., Kasun, Zhou, H. and Huang, G.-B. (2013).
Representational learning with ELMs for big data, IEEE
Intelligent Systems 28(6): 31–34.

Devi, V. and Murty, M. (2002). An incremental prototype set
building technique, Pattern Recognition 35(2): 505–513.

Garcia, S., Cano, J. and Herrera, F. (2008). A memetic
algorithm for evolutionary prototype selection: A scaling
up approach, Pattern Recognition 41(8): 2693–2709.

Garcia, S., Derrac, J., Cano, J. and Herrera, F. (2012). Prototype
selection for nearest neighbor classification: Taxonomy
and empirical study, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 34(3): 417–435.

Gates, G. (1972). The reduced nearest neighbor rule, IEEE
Transactions on Information Theory 18(3): 431–433.

Górecki, T. and Łuczak, M. (2013). Linear discriminant
analysis with a generalization of the Moore–Penrose
pseudoinverse, International Journal of Applied Math-
ematics and Computer Science 23(2): 463–471, DOI:
10.2478/amcs-2013-0035.

Grochowski, M. and Jankowski, N. (2004). Comparison of
instances selection algorithms. I: Results and comments,
in L. Rutkowski et al. (Eds.), Artificial Intelligence and
Soft Computing, Lecture Notes in Computer Science, Vol.
3070, Springer-Verlag, Berlin/Heidelberg, pp. 580–585.

Hart, P.E. (1968). The condensed nearest neighbor rule, IEEE
Transactions on Information Theory 14(3): 515–516.

Hattori, K. and Takahashi, M. (2000). A new edited k-nearest
neighbor rule in the pattern classification problem, Pattern
Recognition 33(3): 521–528.

Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K. (2004). Extreme
learning machine: A new learning scheme of feedforward
neural networks, International Joint Conference on Neural
Networks, Budapest, Hungary, pp. 985–990.

Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K. (2006). Extreme
learning machine: Theory and applications, Neurocomput-
ing 70(1–3): 489–501.

Jankowski, N. and Grochowski, M. (2004). Comparison of
instances selection algorithms. II: Algorithms survey, in
L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft
Computing, Lecture Notes in Computer Science, Vol.
3070, Springer-Verlag, Berlin/Heidelberg, pp. 598–603.

Kuncheva, L. (1995). Editing for the k-nearest neighbors
rule by a genetic algorithm, Pattern Recognition Letters
16(8): 809–814.

Lozano, M., Sanchez, J. and Pla, F. (2003). Using the
geometrical distribution of prototypes for training set
condensing, Conference of the Spanish Association for Ar-
tificial Intelligence, San Sebastian, Spain, pp. 618–627.

Marchiori, E. (2008). Hit miss networks with applications to
instance selection, Journal of Transactions on Machine
Learning Research 9: 997–1017.

Marchiori, E. (2010). Class conditional nearest neighbor for
large margin instance selection, IEEE Transactions Pattern
Analysis and Machine Intelligence 32(2): 364–370.

Merz, C.J. and Murphy, P.M. (1998). UCI Repository of Machine
Learning Databases, https://archive.ics.uci.
edu/ml/index.php.

Riquelme, J., Aguilar-Ruiz, J. and Toro, M. (2003). Finding
representative patterns with ordered projections, Pattern
Recognition 36(4): 1009–1018.

Sanchez, J., Pla, F. and Ferri, F. (1997). Prototype selection for
the nearest neighbor rule through proximity graphs, Pat-
tern Recognition Letters 18(6): 507–513.

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P.,
Poggio, T. and Vapnik, V. (1996). Comparing support
vector machines with Gaussian kernels to radial basis
function classifiers, Technical Report AI, Memo No 1599,
CBCL Paper No 142, MIT, Cambridge, MA.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

Comparison of prototype selection algorithms used in construction of neural networks learned by SVD 733

Schölkopf, B., Sung, K.-K. and Burges, C. (1997). Comparing
support vector machines with Gaussian kernels to radial
basis function classifiers, IEEE Transactions on Signal
Processing 45(11).

Schwenker, F., Kestler, H.A. and Palm, G. (2001). Three
learning phases for radial-basis-function networks, Neural
Networks 14(4–5): 439–458.

Skalak, D.B. (1994). Prototype and feature selection by
sampling and random mutation hill climbing algorithms,
International Conference on Machine Learning, New
Brunswick, NJ, USA, pp. 293–301.

Vapnik, V. (1995). The Nature of Statistical Learning Theory,
Springer-Verlag, New York, NY.

Wilson, D. (1972). Asymptotic properties of nearest neighbor
rules using edited data, IEEE Transactions on Systems,
Man, and Cybernetics 2(3): 408–421.

Wilson, D.R. and Martinez, T.R. (2000). Reduction techniques
for instance-based learning algorithms, Machine Learning
38(3): 257–286.

Woźniak, M. and Krawczyk, B. (2012). Combined classifier
based on feature space partitioning, International Jour-
nal of Applied Mathematics and Computer Science
22(4): 855–866, DOI: 10.2478/v10006-012-0063-0.

Yousef, R. and el Hindi, K. (2005). Training radial basis function
networks using reduced sets as center points, International
Journal of Information Technology 2(1): 21–35.

Zhao, K., Zhou, S., Guan, J. and Zhou, A. (2003). C-pruner: An
improved instance pruning algorithm, 2nd International
Conference on Machine Learning and Cybernetics, Xi’an,
China, pp. 94–99.

Norbert Jankowski has been an associate
professor at Nicolaus Copernicus University in
Toruń, Poland, since 2012. He obtained his
DSc in computer science at the Systems Research
Institute, Polish Academy of Sciences, and his
PhD in computer science at the Institute of Bio-
cybernetic and Biomedical Engineering, Polish
Academy of Sciences. He also holds an MSc in
computer science from the Institute of Computer
Science, University of Wrocław, Poland. His

main research areas include computational intelligence, meta-learning,
machine learning, neural networks, data mining, pattern recognition,
complexity, algorithms and data structures. He is the author of two
books: Ontogenic Neural Networks (2003) and Meta-Learning in Com-
putational Intelligence (2011), as well as 77 papers.

Received: 27 December 2017
Revised: 22 May 2018
Re-revised: 27 July 2018
Accepted: 12 August 2018

	Introduction
	Prototype selection algorithms for pseudo-inverse learning
	Prototype-based kernels for extreme learning machines and radial basis function networks
	Result analysis of pseudo-inverse learning with prototype selection-based kernels
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

