
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 1, 151–168
DOI: 10.2478/amcs-2019-0012

ENSEMBLES OF INSTANCE SELECTION METHODS:
A COMPARATIVE STUDY

MARCIN BLACHNIK a

aDepartment of Applied Informatics
Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland

e-mail: marcin.blachnik@polsl.pl

Instance selection is often performed as one of the preprocessing methods which, along with feature selection, allows a
significant reduction in computational complexity and an increase in prediction accuracy. So far, only few authors have con-
sidered ensembles of instance selection methods, while the ensembles of final predictive models attract many researchers.
To bridge that gap, in this paper we compare four ensembles adapted to instance selection: Bagging, Feature Bagging,
AdaBoost and Additive Noise. The last one is introduced for the first time in this paper. The study is based on empiri-
cal comparison performed on 43 datasets and 9 base instance selection methods. The experiments are divided into three
scenarios. In the first one, evaluated on a single dataset, we demonstrate the influence of the ensembles on the compression–
accuracy relation, in the second scenario the goal is to achieve the highest prediction accuracy, and in the third one both
accuracy and the level of dataset compression constitute a multi-objective criterion. The obtained results indicate that en-
sembles of instance selection improve the base instance selection algorithms except for unstable methods such as CNN
and IB3, which is achieved at the expense of compression. In the comparison, Bagging and AdaBoost lead in most of the
scenarios. In the experiments we evaluate three classifiers: 1NN, kNN and SVM. We also note a deterioration in prediction
accuracy for robust classifiers (kNN and SVM) trained on data filtered by any instance selection methods (including the
ensembles) when compared with the results obtained when the entire training set was used to train these classifiers.

Keywords: machine learning, classification, instance selection, ensemble methods.

1. Introduction

A typical data mining process consists of four steps: data
collection, data preprocessing, predictive modeling and,
finally, post-processing. One of the key elements of the
second stage (data preprocessing) is the selection of the
training data. For example, Wilson (1972) showed that
the correct selection of the training set samples (without
noisy samples) significantly improves the accuracy of a
classifier. A proper selection of the training set can
be obtained using instance selection methods. These
were initially designed to work with the nearest neighbor
classifier (1NN), but are often used with other classifiers
(García et al., 2016). Instance selection methods work as
a data filter that, based on the built-in heuristic, evaluates
which instances of the training set should be rejected and
which should be kept to train the predictive model.

In the third stage, where the predictive model is
built, ensembles of the base predictors are of particular
importance (Woźniak et al., 2014). They help to increase

prediction accuracy by grouping individual base expert
models and make the final decision by collecting votes of
the individual base models. Despite the great success of
the ensemble methods at the predictive stage, their use at
the preprocessing stage, especially in instance selection,
has been modest. An increase in the development of
instance selection ensembles can be observed in recent
years (Arnaiz-González et al., 2016a; García-Pedrajas and
De Haro-García, 2014; García-Osorio et al., 2010).

However, there is currently no comprehensive study
to compare different ensembles of instance selection
methods except for boosting ones (García-Pedrajas and
De Haro-García, 2014). This work bridges the gap by
comparing various solutions, including Bagging and Fea-
ture Bagging based instance selection. It also introduces
for the first time the method called Additive Noise, and
all these solutions are compared to the instance selection
ensemble based on AdaBoost. The methods presented
in our study are evaluated on 43 datasets from the Keel

marcin.blachnik@polsl.pl

152 M. Blachnik

project repository using 9 different base instance selection
methods. We analyze the ensembles in three scenarios. In
the first one, we simply demonstrate on a single dataset
how the ensembles influence the compression–accuracy
relation, then in the second scenario we optimize
ensembles to achieve a maximum prediction accuracy of
the final predictor, and in the third scenario, both the
criteria, the accuracy and training set size reduction, are
evaluated simultaneously by the ensemble.

The next section describes instance selection
methods, in particular those used in the experiments.
Then ensemble methods are discussed, with the emphasis
on the problem of adapting them to instance selection.
The following section presents the experiments and the
obtained results. The final section shortly concludes
the paper, providing suggestions for the users applying
ensembles of instance selection.

2. Basic concepts

The main purpose of this work is to compare various types
of ensembles of instance selection. First, we provide an
overview of instance selection methods and the state of
the art of ensembles in application to predictive models.
From these two we construct the ensembles of instance
selection, which returns a weight vector indicating the
importance of each training sample. This weight vector is
then used with a procedure for determining an acceptance
threshold to identify which instances should be kept and
which should be removed. All these issues are described
in this section.

2.1. Instance selection. The instance selection
algorithm works as a data filter in the preprocessing
stage, which prunes the training set before executing the
learning process of the prediction model. It receives
a dataset T and returns a dataset P such that P ⊆
T and ‖P‖ ≤ ‖T‖. T consists of n pairs T =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where each x is a
vector in the domain X such that x ∈ X ⊂ R

d and
y takes on a value from among c symbols, i.e., y ∈
{s1, s2, . . . , sc}.

Instance selection is performed by removing the data
samples (instances) which are inappropriate according
to the implemented heuristics. Therefore one of the
properties of instance selection is compression defined as

cmp = 1− ‖P‖‖T‖ . (1)

At the beginning, the development of instance
selection was aimed at improving the nearest neighbor’s
classifier (Hart, 1968; Wilson, 1972). This has led to the
emergence of two families of instance selection methods,
namely, condensation methods, which are responsible for

limiting the set of reference objects, thus speeding up the
decision making (these methods are characterized by large
compression), and noise filter methods. The latter limit the
effect of outliers and noisy samples also by eliminating
the corresponding reference objects (usually compression
is not too high). An interesting comparison of different
instance selection methods can be found in the work of
García et al. (2012).

It should be noted that a vast majority of
algorithms are focused on classification problems, and
only recently exploration of their modifications has begun,
including regression tasks (Kordos and Blachnik, 2012;
Arnaiz-González et al., 2016b; Song et al., 2017) or
stream analysis (Czarnowski and Jędrzejowicz, 2015;
Shaker and Hüllermeier, 2012; Gunn et al., 2018). It is
also worth mentioning that the use of instance selection
methods is not limited to the nearest neighbor algorithm,
but has also found applications to many other predictors.
For example, Kordos and Rusiecki (2016) evaluated
various approaches to MLP neural network training in
the presence of noise. Their results pointed out that the
ENN was among the best methods. García et al. (2016)
considered instance selection as one of the most influential
preprocessing methods.

The number of instance selection algorithms is
very high: for example, García et al. (2012) compared
over 40 algorithms and mentioned over 70 with their
variants. Among them a group of 9 selected and the
most commonly used instance selection algorithms are
evaluated. When selecting the algorithms we tried to
pick the most popular ones (see, e.g., García et al., 2016)
which are often used by many authors (see also Jankowski
and Grochowski, 2004; Wilson and Martinez, 2000), and
those algorithms that were highlighted as outstanding
by García et al. (2012). From the selected group we
excluded methods which use meta-heuristics because they
are characterized by long execution time, which limits
their usability in the context of ensembles.

Below we provide a short description of each of the
selected methods, while details can be found in the cited
publications:

• CNN: condensed nearest neighbor rule (Hart, 1968)
is an ancestor of all condensation methods. It tries
to keep the performance of the original 1NN by
classifying all instances of the training set correctly.
It starts by randomly selecting one representative
instance per class and adds it to the reference set
P (the dataset T remains unchanged while the
algorithm works); then it starts the main loop, where
each instance from T miss-classified by the nearest
neighbor classifier trained on P is added to P. The
algorithm stops when all the instances in T are
correctly classified.

• IB3: it was developed by Aha et al. (1991) as an

Ensembles of instance selection methods: A comparative study 153

instance based learning algorithm, version 3. It is an
extension of IB2, but uses a wait-and-see principle
and validates statistical significance of removing or
keeping an instance in P. It starts with an empty
set of selected instances P and then iterates over
samples from T. If an instance x is classified
incorrectly by the nearest acceptable instance from
P, x is added to P, and its classification record is
updated (how many times a given instance was used
to correctly classify other instances). Finally, the
classification record is analyzed once more to see if
any instance in P can be removed. To determine
if an instance p from P is acceptable or should be
removed, a significance test is used.

• RNGE: relative neighbor graph editing (Bhattacharya
et al., 1984) builds a relative neighbor graph over
the training data and then selects border samples and
stores them in P. Border samples are these instances
which have at least one adjacent instance of another
class. A relative neighbor graph is determined by
validating the condition

∀
a �=b�=c

‖xa − xb‖2

≤ max (‖xa − xc‖2 , ‖xb − xc‖2) (2)

between every three instances, where {xa,xb,xc}
are instances from T and ‖·‖2 denotes the L2 norm.
The RNGE algorithm is an example of a larger group,
which also includes Voronoi editing and Gabriel
graph editing (GGE). As shown by Bhattacharya
et al. (1984), the following relation takes place:

T ⊇ PVoronoi ⊇ PGGE ⊇ PRNGE. (3)

where PVoronoi is the set of prototypes returned by
the Voronoi tessellation and PGGE is the set of
prototypes returned by GGE. The main idea behind
the whole family is to keep only these instances in P
which have at least one nearest neighbor according
to the graph structure from the opposite class; all
other instances can be removed without affecting its
performance.

• ENN: edited nearest neighbor (Wilson, 1972) is an
ancestor of noise removal methods and is often
used as an initial step before running condensation
instance selection algorithms. It detects and removes
all instances which may deteriorate the performance
of the classifier. Initially P = T; then it analyzes
the neighborhood of each query instance x. If this
instance is misclassified by its k neighbors, then it is
marked for removal from P. The actual removal is
executed as a final step of the algorithm.

• All-kNN (Tomek, 1976) is an extension of the ENN
algorithm where the ENN step is repeated for a range
of k = [kmin, . . . , kmax] values. It is the first
algorithm which can be recognized as an ensemble
as it combines results for a set of individuals for
different values of k.

• Drop3 n: decremental reduction optimization
procedure, version 3. In fact, it is a family of
algorithms among which we selected Drop3 as
suggested by Wilson and Martinez (2000). This
algorithm can be characterized as dropping instances
from P while at the beginning of the algorithm P =
T. Drop algorithms are based on the analysis of
what would happen if an instance were removed:
would then classification accuracy also drop? Drop3
is a modification of Drop2 where initially the ENN
algorithm is executed to remove noise samples. In
Drop2 the effect of removal of an instance from
P is validated using the entire training set T, and
the instances are analyzed in the order according to
the distance to the nearest enemy (an enemy is an
instance from a different class).

• ICF: iterative case filtering (Brighton and Mellish,
2002) is a two-step algorithm; first it applies the ENN
algorithm to prune noisy samples, then in the second
step it finds a local set φ(x) for every instance xi.
The local set is defined by the largest hypersphere
centered at x, which includes only instances of the
same class as x. The local set is then used to
calculate two statistics:

Coverage(x) = {x′ ∈ T : x ∈ φ(x′)} , (4)

Reachability(x) = {x′ ∈ T : x′ ∈ φ(x)} , (5)

and if Reachability(xi) > Coverage(xi), then the
sample xi is removed from P.

• HMN-E: hit miss network editing (Marchiori, 2008)
starts with constructing a hit miss network (HMN),
i.e., a graph where each data sample {xi, yi} is a
vertex Vi and edges point to the nearest neighbor
of each class, so the out-degree of each vertex is
equal to the number of classes. In addition, each
vertex of HMN is represented by two counters, hit
and miss. Denoting by {xj , yj} the nearest neighbor
of instance i, the hit miss counter of Vj is increased if
yi = yj and yi 	= yj , respectively. The HMN is then
used to select examples with four rules describing the
relation between these counters.

• CCIS: class conditional instance selection
(Marchiori, 2010) is an algorithm which consists
of two steps. In the first one, denoted as the
class conditional selection (CC), an HMN
graph is constructed, which is then used with

154 M. Blachnik

the K-divergence: an instance scoring function. The
obtained scores are evaluated first by discarding
samples with a negative or zero score, and instances
with the highest scores are iteratively added to the
final subset P. The loop ends when the empirical
error increases. The first step (CC) is followed by
thin-out selection (THIN), which selects instances
close to the decision boundary of the 1NN rule to
further increase the compression rate.

2.2. Ensemble methods. The idea of the ensembles
is to replace a single predictor with a group of experts,
who decide together (Schapire, 1990; Jacobs et al., 1991;
Wolpert, 1992; Rokach, 2009; Galar et al., 2011). In this
scenario each basic expert casts a vote or votes, which
are then collected and the final decision is made (see
Fig. 1). This basic concept is applicable only when the
results returned by the individual experts differ; otherwise,
ensembles do not give any benefits. The diversity can
be introduced by considering a mixture of prediction
models (such as neural networks, decision trees and
kNN), or by dataset modifications where each individual
base model Mi is constructed using a modified training
set. The modified training set ensures that even the
same type of prediction model returns different results
for different modifications. Basically, there are five
scenarios of dataset modifications which are applicable:
Bagging—sampling of the input data (Bauer and Kohavi,
1999), Feature Bagging—sampling of the feature space
(Skurichina and Duin, 2001), Additive Noise—adding a
noise component to the input space (Raviv and Intrator,
1996), Labels Modifications—appropriate class label
encoding in multi-class classification problems and Boost-
ing—sampling the input space according to the cost
function distribution (Freund and Schapire, 1997).

2.3. Ensembles of instance selection. The construc-
tion of ensembles of instance selection is not a new
concept, but it has been developed only by few authors.
A general scheme of the ensembles of instance selection
is shown in Fig. 2.

The first idea was proposed by Tomek (1976) and
is based on collecting votes of the ENN model for a
range of k-values. Another solution was to use the
boosting algorithm for the instance selection, as shown
by Sebban et al. (2002). An indirect solution was
to use a combination of instance selections to build
an ensemble of classifiers, where the diversity of the
base classifiers is ensured by the variety of the datasets
provided as the output of instance selection, as discussed
by García-Pedrajas (2009). García-Osorio et al. (2010)
proposed another variant of instance selection through the
democratic vote of the classifiers, where the instances
which are usually misclassified are marked for rejection.

Ensemble

De
cis

io
n

w
ei

gh
tin

g

��
��
��

��
��
��

Fig. 1. General structure of ensemble methods.

Compressed data

T+w P .

Threshold
optimization &
final selection

Threshold
optimization &
final selection

Training data
with weigh attribute

T

Data filter

Ti-1

Ti

Ti+1

Pi

Pi-1

Pi+1

IS EnsembleIS Ensemble

Fig. 2. Structure of an instance selection ensemble.

Blachnik and Kordos (2014) as well as Blachnik
(2014) adapted two other ensembles for instance
selection, namely, Bagging and Feature Bagging. Finally,
perhaps the most advanced study in this area was
conducted by García-Pedrajas and De Haro-García
(2014), who compared different boosting methods in
application to instance selection including AdaBoost,
FloatBoost, MultiBoost, ReweightBoost. They also
showed that the problem of ensembles of instance
selection can be analyzed as an ensemble of a two-class
classification problem, where each training instance is
assigned to one of two categories: selected/removed,
which we will call the instance selection label. However,
the ensemble of instance selection differs from ensembles
of classifiers. In the latter the output of individuals can
be combined in different ways, for example, using the
weighted vote, or combined by a higher level predictor
as in stacking (Wolpert, 1992) (for a more complex voting
scheme, the interested reader is referred to the works of
Kuncheva et al. (2001) or Kuncheva (2004)).

In the case of ensembles of instance selection we do
not know the true instance selection label, i.e., we do not
know precisely which instances should be kept and which
removed. We just have a collection of predicted instance
selection labels and we cannot train the combiner until we
execute a classifier which allows us to asses a given subset
of instances. This leads to methods which do not require
any supervision in building an ensemble, such as Bagging
or Feature Bagging. Otherwise, a tool is needed which
assesses the quality of the predicted instance selection la-

Ensembles of instance selection methods: A comparative study 155

Algorithm 1. Ensemble of instance selection: Additive
Noise.
Input: Training set T = {(x1, y1), . . . (xn, yn)}, x ∈

R
m. l: number of iterations, σ: noise level.

Result: Instance weights: w = {w1, w2, . . . , wn}
1 ∀

j=1,...,n
wj = 0 /* Initialize instance

weights */
2 for i = 1 . . . l do
3 T′

i = T+N(0, σ) /* Add d-dimensional
Gaussian noise with μ = 0 and given
σ to each instance in T */

4 Pi = ISModel(T′
i) /* Run the base

instance selection */
5 ∀

j∈Pi

wj+ = 1/l /* Increase counter for

selected instances */
end
return w

Algorithm 2. Ensemble of instance selection: Bagging
and Feature Bagging. The difference appears in sampling
method (T′

i = Sample(T, r)).

Input: Training set T = {(x1, y1), . . . (xn, yn)}, x ∈
R

m, l: number of iterations, r: instance
sampling ratio.

Result: Instance weights: w = {w1, w2, . . . , wn}
6 ∀

j=1,...,n
wj = 0 /* Initialize instance

weights */
7 for i = 1, . . . , l do
8 T′

i = Sample(T, r) /* Sample instances
from T */

9 Pi = ISModel(T′
i) /* Run the base

instance selection */
10 ∀

j∈Pi

wj+ = 1/l /* Increase counter for

selected instances */
end
return w

bels, such as in Boosting, that incorporates a classifier to
change the sampling distribution.

Drawing inspiration from classifier-ensembles, here
we present one more instance-selection ensemble, which
is based on Additive Noise. It is very similar to Bagging
and Feature Bagging, but instead of sampling the dataset
T, the diversity is introduced by adding a Gaussian noise
with μ = 0 and given σ.

For the purpose of the study, four methods were
evaluated: three which do not require any extra predictor
to construct the ensemble, such as Bagging, Feature Bag-
ging, Additive Noise and one which, belongs to the Boost-
ing family. Here we use AdaBoost, which, according to
García-Pedrajas and De Haro-García (2014), was among

the top solutions. All these methods are sketched and
discussed below:

• Bagging (see Algorithm 2), where each set of
prototypes Pi is constructed using an instance
selection base method denoted by ISModel(·) and
the dataset Ti is generated as a random subset of the
original training set T; the data are sampled from a
uniform distribution and each selected instance p ∈
P has the same weight w = 1/l.

• Feature Bagging (see Algorithm 2), where the main
difference appears only in the sampling scheme.
Similarly, each set of prototypesPi is obtained using
also ISModel(·), but the dataset Ti is generated
from the training set T by a random selection of
a subset of attributes (Ti contains all n instances
of T). The attributes are sampled from a uniform
distribution and each vote has the same weight w =
1/l.

• Additive Noise (see Algorithm 1), where each set of
selected samples Pi is obtained using ISModel(·)
and the dataset Ti is generated from the training set
T by adding noise to each input instance and each
vote has the same weight. As already mentioned,
this method originates from the concept initially
proposed for classifiers ensembles and described by
Raviv and Intrator (1996).

• Boosting (see Algorithm 3), where each set of
selected samples Pi is obtained using ISModel(·)
and the dataset Ti is obtained from the training
set T by selecting instances from the distribution
derived from the probability of misclassification of
an instance, so that the misclassified instances are
more likely to be drawn. In addition, each instance
in Pi casts a vote weighted by the accuracy of that
classifier. Perhaps the best known implementation of
the boosting algorithm is AdaBoost (Freund et al.,
1996) and its variants described by Zhu et al. (2009),
which were adapted to the problem of instance
selection by García-Pedrajas and De Haro-García
(2014). In the experiments, 1NN(Pi) was used to
determine the weight of votes.

Note that, according to Fig. 2, all of the described
solutions return as an output the entire training set T
with an extra attribute representing the collected votes.
Thus each training instance is annotated by the value
which describes how often it was selected by the ensemble
member or, in other words, how often it occurs in the
selected samples Pi. Here this value is called the weight
(wi: weight value of instance i) and allows ordering
instances from the least influential, selected by none of the
ensemble members, up to the most influential (selected

156 M. Blachnik

by all members). Note that the final subset of instances
needs to be determined by some threshold value denoted
as θ above which all instances are selected (P ⊂ T ↔
(xi, yi) ∈ T, wi > θ). This aspect is analyzed in the
following section.

2.4. Optimization of the threshold. The selection of
the appropriate acceptance threshold has critical impact
on the final results. It requires a judge who rates various
thresholds and determines the best one. It is usually
implemented with a classifier that for each threshold
θ returns a performance achieved for given subset of
instances. Note that the proper estimation of the accuracy
requires an internal cross-validation procedure. Here, in
the ensembles of instance selection, usually 1NN is used
as it does not require any parameter tuning and can be
efficiently implemented.

The set of thresholds considered Θ =
{θ1, θ2, . . . , θz} can be determined in various ways.
A naive solution is to manually set up thresholds, for
example, Θ = {0.2, 0.4, 0.6, 0.8}, and then conduct the
assessment. This solution was used, e.g., by Blachnik
and Kordos (2014) or Blachnik (2014), but it can lead
to nonoptimal results, since the distribution of votes is
nonlinear and varies between individual algorithms (e.g.,
see Fig. 3).

García-Pedrajas and De Haro-García (2014)
proposed a better solution, where all possible threshold
values were analyzed; the collection of votes was sorted
and for each unique value of weight the performance
was evaluated. This solution is appropriate for methods
which cast equal vote weights, such as Bagging, Feature
Bagging and Additive Noise, because the number of
unique values is at most equal to that of ensemble models.

However, for boosting methods, such a solution may
lead to a high increase in computational cost, since each
component model returns a different weight. In this case,
each instance may have a different weight. Hence the
analysis requires n threshold evaluations (n is the number
of training samples). Therefore, in this paper if the
number of possible thresholds exceeds that of individual
ensemble members (as for the AdaBoost algorithm), we
propose discretization of the weight attribute to limit
the number of bins to that of ensemble models. For
this task, we use clustering based discretization with the
fuzzy C-means (FCM) algorithm (Bezdek et al., 1984).
Clustering based discretization avoids the problem of
grouping similar objects into two different discretization
bins (this problem is an issue in equal-width and
equal-frequency discretization), therefore assuring much
more accurate results. The last problem within the
threshold optimization procedure, which needs to be
defined, is the performance measure, which considers
compression and prediction accuracy together. As
these two objectives are frequently contradictory, i.e.,

Samples id
0 50 100 150 200

W
ei

gh
ts

0

0.2

0.4

0.6

0.8

1

ENN All-KNN ICF Drop3 RNG IB3 CNN

Fig. 3. Example of instances weight distribution returned by the
Bagging ensemble for all of the base methods. Results
were obtained for the well-known wine dataset.

high accuracy requires more training samples and high
compression may cause loss of accuracy, a compromise
can be defined as

perf = α× acc + (1− α)× cmp, (6)

where cmp is compression measure (see (1)), acc is any
classification accuracy measure such as AUC, mean recall
or mean precision, although here in the paper we use the
standard definition:

acc =
#correctly classified instances

#all classified instances
, (7)

and α is the trade-off coefficient, which determines the
relevance or influence of the individual components.

2.5. Other issues with ensembles of instance selec-
tion. Two more problems facing ensembles of instance
selection or, more precisely, of the Data Filtering process
(see Fig. 2) are discussed in this section. The first one
is computational complexity. As for just the first three
methods, namely, Bagging, Feature Bagging and Additive
Noise, they can be easily parallelized without any memory
or time side effects. In other words, using concurrent data
access, the memory usage is constant and, similarly, the
time does not change, because the only overhead appears
in collecting and aggregating votes cast by individuals,
which is a very cheap procedure (summation over weights
returned by the individuals).

In the case of a single processor environment the
execution time is O(l × OIS + OAgg), where l is the size
of the ensemble and OIS is the computational complexity
of the base instance selection algorithm (see Table 1) and
OAgg is the aggregation time. On the other hand, in a
multiprocessor environment with shared dataset access,
the instance selection stage can be parallelized into l
processors; then the execution time is O(OIS + OAgg +
c) where c represent a constant responsible for parallel
environment preparation, but since OIS � OAgg � c,
we obtain O(OIS).

Ensembles of instance selection methods: A comparative study 157

Table 1. Computational complexity of the evaluated instance selection algorithms. Note that the theoretical values can be reduced by
distance caching and spatial data structures such as KD-Tree, Locality Sensitive Hashing, etc.

CNN IB3 RNGE ENN All-kNN Drop3 ICF HMN-E CCIS

n3 n2 n3 n2 n2 n3 n3 n2 n2

Another situation appears in the case of AdaBoost,
because here the iterations are mutually dependent, so the
next iteration relies on the results of the previous one,
meaning it cannot be parallelized. Moreover, AdaBoost
also requires the built-in classifier to be executed to adapt
the distribution weights. This leads to an execution time
of order O(l × (OIS + OP) + OAgg), where OP is the
execution time of the predictor and l now represents the
number of iterations. In the case of the 1NN classifier it
leads to O(l × (

OIS + n2
)
).

The total computational complexity of the Data
Filtering process also involves a threshold optimization
procedure. This stage can be very time consuming
because it requires a classifier to be executed for each
acceptance threshold θ. It even increases when the
model is sensitive to hyper-parameters, which requires
precise tuning. For example, it appears for kNN, SVM
or neural networks. In this case the computational
complexity of the threshold optimization procedure can
be expressed as O(l × ε × ω × OP), where l1 is the
size of Θ , ε represents the number of repetitions of
the cross-validation procedure (usually ε = 10), ω
is the number of evaluated parameters and OP is the
computational complexity of the final predictor. To reduce
the computational complexity, we use 1NN, which can
be very efficiently implemented and does not require
any parameter tuning. A naive implementation leads to
O(l × 10× n2).

This analysis illustrates that proper implementation
of instance selection ensembles horizontally scales very
well and on multi-core processors using a computer
cluster can be used without significant time drawbacks.

The second problem is the size of the ensemble.
In contrast to the ensemble of classifiers, here the size
plays a less important role. It is responsible for collecting
enough votes to stabilize the instance weight distribution
returned by the ensemble, so that the order of instances
sorted according to this weight does not change or changes
insignificantly. This ranking (results of the sorting)
is then used by the threshold optimization procedure,
which finally determines which instances to keep and
which to reject. This is different from the ensemble
of classifiers, since in Bagging, Feature Bagging, Addi-
tive Noise and AdaBoost the final classification directly
depends on the collected votes and thus on the size of the

1Above, l was used to represent the size of the ensemble, but accord-
ing to the threshold optimization procedure the size of the ensemble is
equivalent to the number of thresholds, so we use the same symbol.

ensemble—there is no threshold optimization step.

3. Experimental setup

For a fair comparison of the described solutions, a number
of experiments were carried out on the data sets available
in the Keel project repository (Alcalá-Fdez et al., 2011).
For this purpose, 43 datasets containing only numerical
attributes were selected from the repository. This allowed
Euclidean distances to be used in the experiments without
the need for special preprocessing or the application of
heterogeneous distance measures. A description of the
data sets is given in Table 2.

The experimental procedure consisted of dataset
preparation, including normalizing attributes to the range
[0, 1], and then performing the 10-fold cross-validation
test. Within the cross-validation, first the process of
instance selection on the training set was performed.
At the output it generated an attribute called the
weight, which describes the frequency of selection of the
individual instances, so each instance of the training set
was assigned a weight value representing how often it
was selected by the internal methods of the ensemble,
and then the weights were normalized in the range [0, 1].
The next step was to optimize the acceptance threshold
as described in Section 2.4. In that optimization process,
internal cross-validation was used with the 1NN classifier
as discussed in Section 2.5. As a result of the threshold
optimization procedure, all the instances which had higher
weight than the acceptance threshold θ were used to train
the final classifiers.

Here we evaluated 1NN, kNN and Gaussian SVM.
The 1NN classifier was used as it is the default
model used in conjunction with instance selection
algorithms and it is also characterized by a high
evaluation speed (it does not require any parameter
optimization), while kNN and SVM require careful
parameter optimization, which was achieved using
grid search with an internal cross-validation procedure.
Finally, the best prediction model obtained from the
parameter optimization procedure was applied to the test
dataset of the outer cross-validation test and the results
were expressed by the mean value and the standard
deviation of both accuracy and compression.

The procedure is visualized in Fig. 4. Figure 4(a)
shows the main process and Fig. 4(b) represents the
internal cross-validation procedure used to optimize the
hyper-parameters of the classifier. For all ensembles, 30

158 M. Blachnik

10 fold Cross Validation

Training data

Testing data

Compressed data

Threshold opt.Threshold opt.IS EnsembleIS Ensemble

Training data
with weigh attribute

(a)

Optimize classifier
Set optimization

parameters

Cross-Validation

(b)

Fig. 4. Scheme of the process used in the experiments including the classifier optimization procedure: main process (a), classifier
optimization procedure (b).

Table 2. Datasets used in the experiments with basic statistics.
id Dataset (T) # Samples # Attributes # Classes

1 appendicitis 106 7 2
2 balance 625 4 3
3 banana 5300 2 2
4 bands 365 19 2
5 bupa 345 6 2
6 cleveland 297 13 5
7 coil2000 9822 85 2
8 glass 214 9 6
9 haberman 306 3 2
10 hayes-roth 160 4 3
11 heart 270 13 2
12 hepatitis 80 19 2
13 ionosphere 351 33 2
14 iris 150 4 3
15 led7digit 500 7 10
16 letter 20000 16 26
17 magic 19020 10 2
18 mammographic 830 5 2
19 marketing 6876 13 9
20 monk-2 432 6 2
21 movement_libras 360 90 15
22 newthyroid 215 5 3
23 optdigits 5620 64 10
24 page-blocks 5472 10 5
25 penbased 10992 16 10
26 phoneme 5404 5 2
27 pima 768 8 2
28 ring 7400 20 2
29 satimage 6435 36 6
30 segment 2310 19 7
31 sonar 208 60 2
32 spambase 4597 57 2
33 spectfheart 267 44 2
34 tae 151 5 3
35 texture 5500 40 11
36 thyroid 7200 21 3
37 titanic 2201 3 2
38 twonorm 7400 20 2
39 vehicle 846 18 4
40 wdbc 569 30 2
41 wine 178 13 3
42 wisconsin 683 9 2
43 yeast 1484 8 10

component base models were evaluated. It is enough to
stabilize the weight distribution of the base methods. An
overview of the parameter settings is shown in Table 3.

For the calculations, the RapidMiner software with
the Information Selection extension (developed by the
author of this paper) was used. The implementations
of the HMN-E were imported from the WekaIS package
developed by Arnaiz-González et al. (2016b) and CCIS
from the Keel project (Herrera, 2005).

The results of the experiments are presented in
tabular and graphical form. The statistical significance
of the results was verified using the Friedman rank
test to check the significance of the difference between
results and then the Wilcoxon rank test to compare pairs
of algorithms, in particular the base instance selection
algorithm with the ensemble methods. In addition, the
Bonferroni–Holm procedure (Abdi, 2010) was used to
fix the problem of multiple comparisons. All tests were
performed for a significance level of 0.05. The detailed
results are available at www.prules.org/material
s/isensemble.

4. Results and a discussion

The conducted experiments were divided into three stages
according to the evaluation criteria. The purpose of the
first stage was to indicate the influence of the threshold
θ on the relationship between compression and accuracy.
This analysis was carried out for a single dataset, for
which a front of the obtained solution was visualized on
the compression–accuracy plot, referring it to the base
instance selection method and the solution obtained by
a classifier trained on the dataset without any instance
selection.

The other two stages were carried out on the entire
collection of the data sets to assess the quality of each
of the ensemble methods considering Eqn. (6) as the
overall performance measure, which combines prediction
accuracy and compression into a single objective function.
In the first group of experiments, the ensemble was

www.prules.org/materials/isensemble
www.prules.org/materials/isensemble

Ensembles of instance selection methods: A comparative study 159

Table 3. Method configuration parameters.

Method Parameters

CNN -

IB3 k = 3, σmin = 0.7, σmax = 0.9

RNGE -

Drop3 k = 3

ICF k = 3

ENN k = 3

All-kNN kmin = 3, kmax = 5

AdaBoost -

Bagging r = 0.9

Feature Bagging r = 0.95

Additive Noise σ = 0.1

kNN k ∈ [1, 3, 4, 5, 6, 9, 11, 13, 17, 20]

SVM γ ∈ [0.1, 0.3, 0.5, 0.7] × 10−1, C ∈ 10[−3,...,2]

optimized to achieve the highest prediction accuracy (α =
1 in (6)), but the compression was also recorded. The
second group of experiments was aimed at analyzing
how changing parameter α influences the output of the
performance measure (6). In the second scenario the
threshold optimization procedure took into account both
compression and prediction accuracy. In the second
procedure we evaluated only the results of the 1NN
classifier as the other methods behave similarly. Also,
we wanted to reduce the computational effort because the
parameter optimization procedure for kNN and SVM is
computationally expensive and we needed to repeat it for
every value of α.

4.1. Scenario 1. The aim of the first scenario of the
experiments is to show the influence of the threshold θ
on the compression—accuracy relation, and to refer this
solution to the results obtained by base instance selection.
For that purpose we selected the letter dataset, which
is the largest of the evaluated datasets, and executed
the experiments, where for each acceptance threshold
we recorded the accuracy of the 1NN classifier and
compression, which allowed as to draw solution curves
also called front. The obtained results are shown in Fig. 5.

Analysis of the results indicate that, in most cases,
the shape of the solution curve has a relatively flat segment
for low compression values (the derivative close to zero),
followed by an inflection section, ending with a high
drop in accuracy with a relatively small decrease in
compression (high value of the module of the derivative).
This shape of the curve is desirable and expected,
although it depends on the location of the base solution. If

the latter is outside the curve at a large distance to the right
as for IB3 and CNN, the ensembles may cause a significant
reduction in compression with no gain in accuracy.

The benefits appear when one maximizes only
prediction accuracy; then for these two methods we
observe a significant accuracy gain. If the solution
of the base instance selection lies near the curves, as
in the remaining majority, then we can distinguish the
following three scenarios. When the base solution lies
in a steep section, as for Drop3, ICF, then with a small
loss of compression we can expect a relatively significant
improvement in accuracy. If, on the other hand, the
solution is in a flat section, such as for ENN or All-kNN,
then with a small decrease in accuracy we can expect a
significant improvement in compression. Finally, if the
base solution lies at the beginning of the inflection point,
as for RNGE or CCIS, then this solution can be treated as
optimal from the point of view of a given base method.
The worst scenario occurs when the relationship between
compression and accuracy is linear with a medium angle
of the slope, such as for All-kNN and ENN, for Fea-
ture Bagging; then we observe low usefulness of a given
ensemble method.

It should be noted that these results were obtained for
a single dataset, so for the purpose of generalization we
carried out the following two scenarios of experimental
research.

4.2. Scenario 2. As mentioned above, the experiments
of Scenario 2 were conducted to compare different
ensemble methods in terms of maximum prediction
accuracy. This scenario imitates use-cases where instance
selection is employed to boost the accuracy of the

160 M. Blachnik

(a) IB3 (b) CNN (c) Drop3

(d) All-kNN (e) ENN (f) ICF

(g) CCIS (h) HMN-E (i) RNGE

Fig. 5. Influence of the acceptance threshold of the ensembles on the relation between compression and accuracy for the letter dataset
for the base methods and the 1NN classifier.

prediction model. For this purpose, we compared the
basic instance selection method (without an ensemble),
the four ensembles methods discussed earlier and the
results obtained for the classifier trained without instance
selection. The experiments were repeated for 9 different
instance selection methods described in Section 2.1 and
three classifiers: 1NN, kNN and SVM. Separately for
each basic instance selection, the obtained results for each
dataset were ranked from the worst (rank = 1) to the best
(rank = 5) and then averaged. This allows us to fairly
assess and compare the ensembles—see Table 4.

Similarly to ranking, for each ensemble and base
instance selection method we averaged the accuracies
obtained over all evaluated datasets. This shows how
much the results differ. The compression depicted in that
table is independent of the classifier and constant for each
basic instance selection—see Fig. 4. Note that in this
scenario the threshold of the ensemble was optimized to
achieve the highest prediction accuracy (α = 1), so the
compression was ignored in threshold optimization. In
Table 4 the row denoted as Average represents the average
over values in columns.

For statistical comparison, first, we used the
Friedman test to indicate if there are differences among

the types of ensembles on the evaluated datasets. Then
the results were evaluated with the Wilcoxon rank test,
and the methods which were statistically significantly
better than the reference base instance selection method
are marked with the (+) sign while significantly worse
results with (−) sign (including the Bonferroni–Holm
correction). Similarly, we performed a significance test
against the classifier trained on the entire training set
T to indicate if instance selection and the ensembles
significantly improved (⊕ sign) or worsened (sign) the
results.

The results presented in Table 4 are also shown
in Fig. 6. The x-axis represents the gain in terms of
average compression, and the gain in terms of average
prediction accuracy is shown on the y-axis. The gain
means the difference between the results obtained for a
given ensemble method (REns) and the reference base
method (RBase), so it takes the form (REns − RBase),
where R denotes accuracy and compression, for the x-axis
and the y-axis, respectively. Different symbols in the
figure correspond to different classifiers, so the crosses
represent results obtained for 1NN, circles for kNN and
squares for SVM. We placed all of the evaluated classifiers
into a single graph to make the comparison simpler. As

Ensembles of instance selection methods: A comparative study 161

Table 4. Average ranks and mean of prediction accuracy and compression for the ensembles and the base models for the 1NN, kNN
and SVM classifiers. The rows denoted as Average represent the means of the above values for a given ensemble.

base Bagging Feature Bagging Additive Noise AdaBoost T
Rnk acc Rnk acc Rnk acc Rnk acc Rnk acc Rnk acc

1N
N

IB3 1.48 0.77 3.98 0.81 + 4.05 0.81 + 3.70 0.81 + 4.02 0.81 + 3.78 0.80 +
CNN 1.26 0.78 3.97 0.81 + 3.91 0.81 + 3.80 0.81 + 3.72 0.81 + 4.35 0.80 +
ICF 2.24 0.79 3.84 0.81 + 3.64 0.81 + 3.94 0.82 + 3.80 0.81 + 3.53 0.80

Drop3 2.70 0.80 3.73 0.81 + 3.51 0.81 3.86 0.81 3.55 0.81 3.65 0.80
RNGE 1.64 0.78 2.95 0.80 + 3.16 0.80 ’+ 4.21 0.80 ’+ 4.27 0.81 + 4.77 0.80 +

All-kNN 2.70 0.80 3.77 0.81 + 3.76 0.81 + 3.98 0.82 3.56 0.82 + 3.24 0.80
ENN 2.83 0.80 3.55 0.81 4.03 0.82 + 4.02 0.82 3.44 0.82 3.13 0.80

HMN-E 2.60 0.79 3.65 0.81 + 4.14 0.82 + 3.66 0.82 3.43 0.81 3.51 0.80
CCIS 2.08 0.76 3.51 0.80 + 3.42 0.81 + 4.23 0.82 + 3.94 0.81 + 3.81 0.80 +

Average 2.17 0.79 3.66 0.81 3.74 0.81 3.93 0.81 3.75 0.81 3.75 0.80

kN
N

IB3 1.33 0.77 3.77 0.83 + 4.13 0.83 + 4.01 0.83 + 3.55 0.83 + 4.22 0.83 +
CNN 1.33 0.75 4.17 0.84 +⊕ 3.97 0.84 + 3.98 0.84 + 3.90 0.83 + 3.66 0.83 +
ICF 1.93 0.78 3.24 0.81 + 3.51 0.82 + 4.00 0.82 + 3.49 0.82 + 4.83 0.83 +

Drop3 2.06 0.80 3.30 0.81 + 3.50 0.81 + 3.71 0.82 + 3.60 0.82 + 4.83 0.83 +
RNGE 1.53 0.80 3.49 0.83 + 3.83 0.83 + 4.08 0.84 + 4.35 0.84 + 3.72 0.83 +

All-kNN 2.30 0.80 3.51 0.81 + 3.55 0.82 + 3.62 0.82 + 3.77 0.82 + 4.26 0.83 +
ENN 2.59 0.81 2.94 0.81 3.78 0.82 + 3.88 0.83 3.45 0.82 4.35 0.83 +

HMN-E 2.72 0.82 3.29 0.82 3.52 0.82 4.20 0.83 3.16 0.82 4.10 0.83
CCIS 2.12 0.76 2.98 0.81 + 3.38 0.81 + 4.28 0.83 + 3.50 0.82 + 4.74 0.83 +

Average 1.99 0.79 3.41 0.82 3.68 0.82 3.97 0.83 3.64 0.83 4.30 0.83

SV
M

IB3 1.23 0.80 4.12 0.84 + 3.74 0.84 + 3.62 0.84 + 3.87 0.84 + 4.42 0.85 +
CNN 2.06 0.81 3.43 0.84 + 3.79 0.84 + 4.02 0.84 + 3.84 0.84 + 3.86 0.85 +
ICF 2.09 0.80 3.51 0.83 + 3.34 0.83 + 3.79 0.84 + 3.77 0.83 + 4.50 0.85 +

Drop3 2.27 0.81 2.98 0.82 + 3.49 0.82 + 3.59 0.83 3.52 0.83 + 5.15 0.85 +
RNGE 2.23 0.83 3.36 0.84 + 4.01 0.85 + 3.71 0.85 + 3.91 0.85 + 3.78 0.85 +

All-kNN 2.23 0.82 3.45 0.83 + 3.63 0.83 + 3.70 0.84 + 3.37 0.84 + 4.62 0.85 +
ENN 2.92 0.83 2.95 0.83 3.43 0.84 3.73 0.84 3.58 0.84 4.38 0.85 +

HMN-E 3.07 0.84 3.07 0.84 3.30 0.84 3.65 0.84 3.55 0.84 4.36 0.85
CCIS 1.91 0.77 2.92 0.82 + 3.16 0.83 + 4.27 0.84 + 3.97 0.83 + 4.78 0.85 +

Average 2.22 0.81 3.31 0.83 3.54 0.84 3.79 0.84 3.71 0.84 4.43 0.85

C
om

pr
es

si
on

IB3 6.00 0.82 ⊕ 3.63 0.30 -⊕ 3.16 0.31 -⊕ 3.53 0.32 -⊕ 3.55 0.24 -⊕ 1.13 0.00 -
CNN 5.95 0.67 ⊕ 3.91 0.25 -⊕ 3.16 0.24 -⊕ 3.67 0.25 -⊕ 3.22 0.16 -⊕ 1.08 0.00 -
ICF 5.77 0.81 ⊕ 4.58 0.66 -⊕ 3.65 0.54 -⊕ 2.72 0.32 -⊕ 3.22 0.44 -⊕ 1.06 0.00 -

Drop3 5.86 0.88 ⊕ 4.44 0.72 -⊕ 4.12 0.70 -⊕ 2.56 0.39 -⊕ 3.01 0.60 -⊕ 1.01 0.00 -
RNGE 5.70 0.53 ⊕ 4.98 0.41 -⊕ 3.44 0.24 -⊕ 2.74 0.14 -⊕ 3.00 0.13 -⊕ 1.14 0.00 -

All-kNN 4.99 0.25 ⊕ 4.00 0.20 -⊕ 3.45 0.18 -⊕ 2.88 0.14 -⊕ 4.65 0.22 -⊕ 1.02 0.00 -
ENN 4.27 0.19 ⊕ 4.40 0.21 -⊕ 3.27 0.17 -⊕ 2.95 0.14 -⊕ 5.09 0.25 -⊕ 1.02 0.00 -

HMN-E 5.26 0.47 ⊕ 4.14 0.36 -⊕ 3.81 0.33 -⊕ 2.74 0.21 -⊕ 4.03 0.34 -⊕ 1.01 0.00 -
CCIS 5.74 0.81 ⊕ 4.44 0.65 -⊕ 4.09 0.62 -⊕ 2.30 0.20 -⊕ 3.33 0.44 -⊕ 1.09 0.00 -

Average 5.50 0.60 4.28 0.42 3.57 0.37 2.90 0.23 3.68 0.31 1.06 0.00

each graph represents the gains, the origin corresponds to
the base instance selection method. This makes it easier to
interpret, as positive values mean an improvement while
negative represent a deterioration in comparison with the
reference base method.

The summary of Table 4 is depicted in Fig. 7. The
bar plot shows the average rank values from Table 4
(the higher, the better). The highest bars in that graph
appear for classifiers trained without instance selection. In
general, this confirms the results obtained by Jankowski
and Grochowski (2004) as well as Grochowski and
Jankowski (2004) who also reported the problem of
performance degradation of robust classifiers trained on
the data filtered by instance selection. However, the
ensembles often allow to keep the performance not

significantly different. The exception is Drop3 and
ICF, where the results over all evaluated datasets were
significantly worse than the reference classifiers SVM
and kNN trained on the entire training set (see the
 marks). For SVM, also CCIS, ENN and All-kNN
could not be improved by the ensemble and achieve
significantly worse results than the reference classifier.
In these cases, only AdaBoost worked correctly, leading
to insignificantly worse results (note that the threshold
optimization procedure did not allow including the entire
training set).

The only exception is the 1NN classifier, for which
ensembles allow keeping the same accuracy as the
classifier trained on the entire training set, but reducing
the size of the stored samples. A comparison of

162 M. Blachnik

(a) IB3 (b) CNN (c) Drop3

(d) All-kNN (e) ENN (f) ICF

(g) CCIS (h) HMN-E (i) RNGE

Fig. 6. Gain plot showing the difference between the results obtained for the ensembles (including results obtained for the classifier
trained on the entire training set) and the reference results obtained by the base instance selection method. The values on the
x-axis represent the difference in terms of mean compression, and those on the y-axis represent the differences in terms of
mean accuracy REns. −Rbase . The gray shades represent results obtained for the evaluated classifiers.

the ensembles and base instance selection indicates a
significant improvement in the ranks of accuracy over
base instance selection. This is confirmed by the
significant tests (see the + marks) and nicely visualized
in the graphs of Fig. 6, and in Table 4. Note that for IB3
and CNN (nonstable methods) the results of the ensembles
are not significantly different from those of the reference
classifiers trained without instance selection. This is due
to a very low compression (see Fig. 6) rate, which means
that almost all samples are included in the training set P .

Considering the compression, according to the
average rank shown in Fig. 8 the worst results were
obtained by Additive Noise and the best ones by the base

instance selection algorithms. In almost all cases the
compression obtained by the ensembles was significantly
worse than for the base method. Only AdaBoost for ENN
and All-kNN as well as Bagging for ENN allowed an
improvement of the compression, but not significant.

Finally, an overall comparison is given in Fig. 9,
where all methods are combined in a single plot for the
1NN classifier. The values represent the mean values
over ranks obtained for each dataset, for which all the
base methods with the ensembles were ranked at once.
From these results we can see that the highest accuracy
is obtained with the Additive Noise method, which wraps
ENN and All-kNN base instance selection. In the bottom

Ensembles of instance selection methods: A comparative study 163

Algorithm 3. Ensemble of instance selection: AdaBoost.

Input: Training set T = {(x1, y1), . . . (xn, yn)}, x ∈
R

m, l: number of iterations.
Result: Instance weights: w = {w1, w2, . . . , wn}

11 ∀
j=1,...,n

vj = 1/n /* Initialize internal

sampling weights */
12 ∀

j=1,...,n
wj = 1/n /* Initialize instance

weights */
13 T′

1 = T14 for i = 1, . . . , l do
15 Pi = ISModel(T′

i) /* Run the base
instance selection */

16 id = ∀
j=1,...,n

1NN(Pi,xj) 	= yj /* Get

identifiers of incorrectly
classified instances based on 1NN
classifier trained on Pi */

17 εi =
1
n

∑
id vi /* Calculate error */

18 if εi > 0.5 then
19 αi = 020 v← ∀

j=1,...,n
vj = 1/n /* Reset

sampling weights */
21 else if εi = 0 then
22 αi = 123 v← ∀

j=1,...,n
vj = 1/n /* Reset

sampling weights */
24 else
25 αi =

1
2 log10

1−εi
εi

26 foreach xj ∈ T do
27 if 1NN(Pi,xj) == yj then
28 vj =

vj
2(1−εi)

29 else
30 vj =

vj
2εi

end
end

31 v← ∀
j=1,...,n

vj =
vj∑
vj

/* Normalize

sampling weights */
end

32 T′
i = Sample(T,w) /* Bootstrap
sample from T according to weights
distribution w */

33 T′
i = Unique(T′

i) /* Remove repeated
instances from T′

i */
34 ∀

j∈Pi

wj+ = αi /* Increase counter for

selected instances */
end

35 w← ∀
j=1,...,n

vj =
wj

maxwj
/* Normalize

instance weights */
return w

right corner are located all of the base instance selection
methods. Here noticeable is Drop3, which has the highest
compression rank and the highest accuracy rank among

Algorithm 4. Threshold optimization algorithm.

Input: Training set T = {(x1, y1), . . . (xn, yn)}, x ∈
R

m, w: instance weight vector, l: maximum
number of thresholds, α: compression accuracy
trade-off parameter.

Result: Selected subset: P ⊂ T
36 Θ = Unique(w) /* Find set of unique

weight values */
37 s = |Θ| /* Get number of possible

thresholds */
38 if s > l then
39 Θ = Discretize(w, l) /* Discretize

w into l bins and keep l thresholds

*/
40 else
41 l = s /* Set the number of thresholds

in case s < l */
end

42 for i = 1, . . . , l do
43 θ = Θi /* Select threshold */

CrossValidation (T) : perf
44 P = {xi ∈ TTrain : wi > θ} /* Select

all instances such that wi > θ */
45 y′

Test = Predictor(P,TTest) /* Train
Predictor (1NN) on P and apply
to TTest */

46 acc = Accuracy(yTest ,y
′
Test)

/* Calculate accuracy */

47 cmp = 1− |P|
|TTrain| /* Calculate

compression */
48 perf = α× acc + (1− α)× cmp /* Get

final performance */
end

49 if perf > perf Best then /* Keep best
performance */

50 perf Best = perf51 θBest = θ

end
end

52 P = {xi ∈ T : wi > θBest} /* Select
instances according to θBest */

return P

the base methods. Moreover, the accuracy rank of Drop3
is comparable to the ranks of the ensembles. Note that
these results of the ensembles were obtained to maximize
the accuracy and ignore the compression (α = 1), so the
distribution of the results may change when compression
is also considered.

4.3. Scenario 3. The key objective of instance
selection is to compress the training data to increase
the training speed but also the execution speed of a

164 M. Blachnik
A

ve
r.

 A
cc

ur
ac

y
R

an
k

0

1

2

3

4

5

B
as

e

B
ag

g.

F
.B

ag
gi

ng

A
dd

.N
oi

se

A
da

B
oo

st

F
ul

l

1-NN
k-NN
SVM

Fig. 7. Comparison of the average rank of accuracy over all
evaluated instance selection methods for three classi-
fiers: 1NN, kNN and SVM trained using a dataset com-
pressed by base instance selection and four ensembles of
instance selection.

A
ve

r.
 C

om
pr

es
si

on
 R

an
k

0

1

2

3

4

5

6

B
as

e

B
ag

g.

F
.B

ag
gi

ng

A
dd

.N
oi

se

A
da

B
oo

st

F
ul

l

Fig. 8. Comparison of the average rank of compression over all
evaluated instance selection methods for base instance
selection and four ensembles of instance selection.

classifier (it reduces the execution time at least for
most of distance based classifiers such as all analyzed
methods: 1NN, kNN or SVM). Thus the second group
of the experiments was dedicated to analyze the relation
between the compression and prediction accuracy. In
the experiments, the relationship expressed in (6) was
evaluated for α = [0.5, 0.6, 0.7, 0.8, 0.9, 1]. The collected
performances were ranked separately for each α value,
as in the previous experiments. The obtained values are
presented as charts (Fig. 10) independently for each of
the base methods. In that figure the x-axis represents the
values of α while the y-axis stands for the value of ranks
of the evaluated methods recorded for a given value of α.
Here, the experiments were performed only for the 1NN
classifier.

The analysis of the results shown in Fig. 10 indicates
that for the unstable condensation base methods: CNN
and IB3 the best solution is obtained without any
ensemble. However, for α = 1 the ensembles starts to

dominate. This agrees with the results observed in Sce-
nario 1. That is the result of a long tail in the estimated
weight distribution (for example, see Fig. 3). However,
for the remaining instance selection base algorithms the
ensemble methods dominate. For the condensation group:
Drop3, ICF, both Bagging and Additive Noise win. For
the noise removal methods like ENN and All-kNN the first
place is taken by AdaBoost and right behind it is Bagging.
Similar results are obtained for methods with moderate
compression like HMN-E and CCIS, where again Bag-
ging and AdaBoost dominate, but for RNGE AdaBoost is
outperformed by Additive Noise.

In order to draw an overall comparison of the
obtained results, the area under the curves shown in each
chart of Fig. 10 was determined. This allows us to
describe the results with a single value, thus facilitating
the interpretation of the results. The obtained values are
listed in Table 5 as well as represented as a stacked bar
chart for each ensemble (see Fig. 11). The last row in the
table and the hight of the bars indicate the best methods,
which are Bagging with AdaBoost right behind it, then
the third place is taken by Additive Noise and the last one
belongs to Feature Bagging. A relatively high bar was
also obtained for the base method, but as can be seen, it is
determined by the performance of unstable condensation
methods such as IB3 and CNN, which do not work well
with the ensembles.

5. Conclusions

In the paper we introduced one new type of ensemble,
called Additive Noise, to cover all basic types of
ensembles and compared all four ensembles of instance
selection methods: Bagging, Feature Bagging, AdaBoost
and the new Additive Noise. All these methods were
compared and tested using 9 different base methods,
namely, CNN, IB3, ICF, Drop3, ICF, All-kNN, ENN,
HMN-E and CCIS. The study included a detailed analysis
of three scenarios. In the first one, the ensembles
were evaluated in order to analyze the influence of the
threshold θ on the accuracy–compression relation. In the
second scenario the ensembles were optimized to achieve
maximum prediction accuracy. Finally, in the third
scenario, accuracy and compression were combined into a
single fitness function and optimized to imitate a use-case
when both compression and accuracy are desired.

From Scenario 1 we can see how the ensembles
influence instance selection: we can observe desired
and undesired behaviors of the ensembles. The best
solution is when the base model lies on the solution curve
in the flat section (for low compression) or the steep
section—then we can respectively improve compression
without significant accuracy loss or improve accuracy
without a significant compression loss. However, it is
possible that the solution of the base model lies outside

Ensembles of instance selection methods: A comparative study 165

Fig. 9. Overall comparison of all evaluated ensembles (for α = 1) and base methods. The values represent the average rank.

(a) IB3 (b) CNN (c) Drop3

(d) All-kNN (e) ENN (f) ICF

(g) CCIS (h) HMN-E (i) RNGE

Fig. 10. Relation between the value of α and the average rank of the performance evaluated using (6).

166 M. Blachnik

Table 5. Area under the curves shown in Fig. 10 for each base model.

base Bagging
Feature
Bagging

Additive
Noise

AdaBoost

IB3 1.93 1.14 1.22 1.47 1.74
CNN 1.93 1.55 1.15 1.41 1.47

Drop3 1.44 1.88 1.45 1.67 1.07
ICF 1.23 1.83 1.50 1.78 1.16

RNGE 1.26 1.79 1.46 1.56 1.43
All-kNN 0.91 2.00 1.09 1.43 2.07

ENN 0.79 2.03 1.08 1.48 2.13
HMN-E 0.84 1.84 1.21 1.74 1.87

CCIS 1.28 1.83 1.61 1.02 1.77

Sum 11.60 15.88 11.77 13.55 14.70

Table 6. Recommendations for the selection of the ensemble type for a specific instance selection base method. The number of check-
marks (at most three) indicates the quality of the preference.

Method Bagging
Feature
Bagging

Additive
Noise

AdaBoost

Unstable CNN �
condensation IB3 �

Stable ICF ��� ��
condensation Drop3 ��� ��

CCIS ��� � ���
Medium HMN-E ��� �� ���

compression RNGE �� � �� �
Noise ENN �� � ���

filtering All-kNN �� � ���

the solution curve, and then we may expect a loss in
compression. It occurs for unstable base methods, when in
each iteration of the ensemble different and not repeatable
instances are selected. Finally, it may happen that the
solution curve is linear with a medium slope angle; then
the ensembles do not bring significant benefit unless we
are interested only in accuracy.

Ensemble [-]

basic
Bagg.

Feat. B
agg.

Add. Noise

AdaBoost

O
ve

ra
ll

pe
rf

or
m

an
ce

0

5

10

15

IB3
CNN
Drop3
ICF
RNG
AllKNN
ENN
HMNE
CCIS

Fig. 11. Stacked bar chart of the results shown in the rows of Ta-
ble 5. It represents the quality of the ensemble methods
for each of the base instance selection algorithms. The
values are calculated taking the area under the ranks ob-
tained for each ensemble method for changing α values
(see Fig. 11)

Scenario 2 indicates two conclusions: one that
ensembles allows an improvement in the accuracy in
comparison with base instance selection (in most cases
it is a statistically significant improvement except CNN
and IB3), but they decrease the accuracy of the final
classifiers (except for 1NN) trained on the entire training
set. In the comparison the best results are obtained
for Bagging and AdaBoost, but Bagging has a better
average compression rank and is easy to parallelize, so we
recommend it in practical applications. On the average,
the best compression was obtained for the base instance
selection. The only exception is ENN and All-kNN, but
the difference was not significant.

Finally, in Scenario 3 we compared both
compression and accuracy aggregated into a single
objective function. The significance of the first and
second criteria was modeled by the α parameter. From
this experiment we can see that there are methods called
unstable (sensitive to initialization) for which ensembles
have limited applicability (only when α is close to 1);
then for the remaining methods Bagging and AdaBoost
usually led followed by Additive Noise. Feature Bagging
takes the last place among the ensembles.

The performed study does not allow us to indicate a
single winner in terms of a pair base method–ensemble.
One type of ensemble works better with the one base

Ensembles of instance selection methods: A comparative study 167

method, but for others may lead to poor results. In general
we do not recommend to use ensembles for unstable
methods which are sensitive to random initialization, for
all others our recommendations are included in Table 6.
The number of check marks (�) indicates how strongly
a given type of ensemble is recommended for use with a
particular instance selection method.

References
Abdi, H. (2010). Holm’s sequential Bonferroni procedure, En-

cyclopedia of Research Design 1(8): 620–627.

Aha, D., Kibler, D. and Albert, M. (1991). Instance-based
learning algorithms, Machine Learning 6(1): 37–66.

Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García,
S., Sanchez, L. and Herrera, F. (2011). Keel data-mining
software tool: Data set repository, integration of algorithms
and experimental analysis framework, Journal of Multiple-
Valued Logic & Soft Computing 17: 255–287.

Arnaiz-González, Á., Blachnik, M., Kordos, M. and
García-Osorio, C. (2016a). Fusion of instance
selection methods in regression tasks, Information
Fusion 30: 69–79.

Arnaiz-González, Á., Díez-Pastor, J., Rodríguez, J.J. and
García-Osorio, C.I. (2016b). Instance selection for
regression: Adapting DROP, Neurocomputing 201: 66–81.

Bauer, E. and Kohavi, R. (1999). An empirical comparison of
voting classification algorithms: Bagging, boosting, and
variants, Machine Learning 36(1): 105–139.

Bezdek, J.C., Ehrlich, R. and Full, W. (1984). FCM: The fuzzy
C-means clustering algorithm, Computers & Geosciences
10(2–3): 191–203.

Bhattacharya, B., Poulsen, R. and Toussaint, G. (1984).
Application of proximity graphs to editing nearest
neighbor decision rules, International Symposium on In-
formation Theory, Santa Monica, CA, USA, pp. 97–108.

Blachnik, M. (2014). Ensembles of instance selection methods
based on feature subset, IEEE Procedia Computer Science
35: 388–396.

Blachnik, M. and Kordos, M. (2014). Bagging of instance
selection algorithms, International Conference on Artifi-
cial Intelligence and Soft Computing, Zakopane, Poland,
pp. 40–51.

Brighton, H. and Mellish, C. (2002). Advances in instance
selection for instance-based learning algorithms, Data
Mining and Knowledge Discovery 6(2): 153–172.

Czarnowski, I. and Jędrzejowicz, P. (2015). Ensemble online
classifier based on the one-class base classifiers for mining
data streams, Cybernetics and Systems 46(1–2): 51–68.

Freund, Y. and Schapire, R.E. (1996). Experiments with a new
boosting algorithm, International Conference on Machine
Learning, Bari, Italy, pp. 148–156.

Freund, Y. and Schapire, R.E. (1997). A decision-theoretic
generalization of on-line learning and an application to
boosting, Journal of Computer and System Sciences 55(1):
119–139.

Galar, M., Fernández, A., Barrenechea, E., Bustince, H. and
Herrera, F. (2011). An overview of ensemble methods for
binary classifiers in multi-class problems: Experimental
study on one-vs-one and one-vs-all schemes, Pattern
Recognition 44(8): 1761–1776.

García-Osorio, C., de Haro-García, A. and García-Pedraja,
N. (2010). Democratic instance selection: A linear
complexity instance selection algorithm based on
classifier ensemble concepts, Artificial Intelligence
174(4–5): 410–441.

García, S., Derrac, J., Cano, J.R. and Herrera, F. (2012).
Prototype selection for nearest neighbor classification:
Taxonomy and empirical study, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 34(3): 417–435.

García-Pedrajas, N. (2009). Constructing ensembles of
classifiers by means of weighted instance selection, IEEE
Transactions on Neural Networks 20(2): 258–277.

García-Pedrajas, N. and De Haro-García, A. (2014). Boosting
instance selection algorithms, Knowledge-Based Systems
67: 342–360.

García, S., Luengo, J. and Herrera, F. (2016). Tutorial on
practical tips of the most influential data preprocessing
algorithms in data mining, Knowledge-Based Systems
98: 1–29.

Grochowski, M. and Jankowski, N. (2004). Comparison
of instance selection algorithms. II: Results and
comments, Lecture Notes in Computer Science, Vol.
3070, pp. 580–585.

Gunn, I.A., Arnaiz-González, Á. and Kuncheva, L.I. (2018). A
taxonomic look at instance-based stream classifiers, Neu-
rocomputing 286: 167–178.

Hart, P. (1968). The condensed nearest neighbor rule, IEEE
Transactions on Information Theory 14(3): 515–516.

Herrera, F. (2005). Keel, knowledge extraction based on
evolutionary learning, Spanish National Projects
TIC2002-04036-C05, TIN2005-08386-C05 and
TIN2008-06681-C06, http://www.keel.es.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton, G.E.
(1991). Adaptive mixtures of local experts, Neural Com-
putation 3(1): 79–87.

Jankowski, N. and Grochowski, M. (2004). Comparison of
instance selection algorithms. I: Algorithms survey, In-
ternational Conference on Artificial Intelligence and Soft
Computing, Zakopane, Poland, Vol. 3070, pp. 598–603.

Kordos, M. and Blachnik, M. (2012). Instance selection
with neural networks for regression problems, Interna-
tional Conference on Artificial Neural Networks, Lau-
sanne, Switzerland, pp. 263–270.

Kordos, M. and Rusiecki, A. (2016). Reducing noise impact on
MLP training, Soft Computing 20(1): 49–65.

Kuncheva, L. (2004). Combining Pattern Classifiers: Methods
and Algorithms, Wiley, Hoboken, NJ.

Kuncheva, L.I., Bezdek, J.C. and Duin, R.P. (2001). Decision
templates for multiple classifier fusion: An experimental
comparison, Pattern Recognition 34(2): 299–314.

http://www.keel.es

168 M. Blachnik

Marchiori, E. (2008). Hit miss networks with applications to
instance selection, Journal of Machine Learning Research
9(Jun): 997–1017.

Marchiori, E. (2010). Class conditional nearest neighbor for
large margin instance selection, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 32(2): 364–370.

Raviv, Y. and Intrator, N. (1996). Bootstrapping with noise:
An effective regularization technique, Connection Science
8(3–4): 355–372.

Rokach, L. (2009). Taxonomy for characterizing ensemble
methods in classification tasks: A review and annotated
bibliography, Computational Statistics & Data Analysis
53(12): 4046–4072.

Schapire, R.E. (1990). The strength of weak learnability, Ma-
chine Learning 5(2): 197–227.

Sebban, M., Nock, R. and Lallich, S. (2002). Stopping criterion
for boosting-based data reduction techniques: From binary
to multiclass problem, Journal of Machine Learning Re-
search 3(Dec): 863–885.

Shaker, A. and Hüllermeier, E. (2012). IBLStreams: A system
for instance-based classification and regression on data
streams, Evolving Systems 3(4): 235–249.

Skurichina, M. and Duin, R.P. (2001). Bagging and the random
subspace method for redundant feature spaces, Interna-
tional Workshop on Multiple Classifier Systems, Cagliari,
Italy, pp. 1–10.

Song, Y., Liang, J., Lu, J. and Zhao, X. (2017). An efficient
instance selection algorithm for k nearest neighbor
regression, Neurocomputing 251: 26–34.

Tomek, I. (1976). An experiment with the edited
nearest-neighbor rule, IEEE Transactions on Systems,
Man, and Cybernetics 6: 448–452.

Wilson, D. (1972). Asymptotic properties of nearest neighbor
rules using edited data, IEEE Transactions Systems, Man
and Cybernetics 2: 408–421.

Wilson, D. and Martinez, T. (2000). Reduction techniques
for instance-based learning algorithms, Machine Learning
38(3): 257–268.

Wolpert, D.H. (1992). Stacked generalization, Neural Networks
5(2): 241–259.

Woźniak, M., Graña, M. and Corchado, E. (2014). A survey of
multiple classifier systems as hybrid systems, Information
Fusion 16: 3–17.

Zhu, J., Zou, H., Rosset, S. and Hastie, T. (2009). Multi-class
AdaBoost, Statistics and Its Interface 2(3): 349–360.

Marcin Blachnik received his MSc in elec-
tronics and telecommunications in 2002 and his
PhD in computer science in 2007, both from the
Silesian University of Technology, Poland. He
is currently an assistant professor in the Depart-
ment of Industrial Informatics there. His inter-
ests include data mining, data reduction, similar-
ity based methods, meta-learning and its applica-
tions to industrial processes.

Received: 20 March 2018
Revised: 18 September 2018
Re-revised: 24 October 2018
Accepted: 7 November 2018

	Introduction
	Basic concepts
	Instance selection
	Ensemble methods
	Ensembles of instance selection
	Optimization of the threshold
	Other issues with ensembles of instance selection

	Experimental setup
	Results and a discussion
	Scenario 1
	Scenario 2
	Scenario 3

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

