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APPLICATION TO UAV DISTURBANCE ESTIMATION

JULIÁN CAYERO a,∗, DAMIANO ROTONDO a,b, BERNARDO MORCEGO a, VICENÇ PUIG a,b

aSpecific Research Center CS2AC
Polytechnic University of Catalonia (UPC), Rbla. Sant Nebridi 22, 08222 Terrassa, Spain

e-mail: {julen.cayero, damiano.rotondo, bernardo.morcego, vicenc.puig}@upc.edu
bInstitute of Robotics and Industrial Informatics (CSIC-UPC)

Polytechnic University of Catalonia (UPC), Llorens i Artigas 4–6, 08028 Barcelona, Spain

This paper presents the design of a state observer which guarantees quadratic boundedness of the estimation error. By
using quadratic Lyapunov stability analysis, the convergence rate and the ultimate (steady-state) error bounding ellipsoid
are identified as the parameters that define the behaviour of the estimation. Then, it is shown that these objectives can be
merged in a scalarised objective function with one design parameter, making the design problem convex. In the second
part of the article, a UAV model is presented which can be made linear by considering a particular state and frame of
reference. The UAV model is extended to incorporate a disturbance model of variable size. The joint model matches the
structure required to derive an observer, following the lines of the proposed design approach. An observer for disturbances
acting on the UAV is derived and the analysis of the performances with respect to the design parameters is presented. The
effectiveness and main characteristics of the proposed approach are shown using simulation results.
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1. Introduction

The problem of state observation is very relevant in
control, since in many control systems the state variables
are not accessible for measurement due to either physical
or economical limitations. For this reason, several works
in the literature have focused on the design of state
estimators (see, e.g., Zeitz, 1987; Grip et al., 2012; Zhang
et al., 2012b; Chadli and Karimi, 2013; Rotondo et al.,
2016; Hassani et al., 2017).

Among the approaches that have received attention
from the control community in recent years, there are
the ones based on quadratic boundedness (QB). Roughly
speaking, QB refers to guaranteeing the boundedness
of all the state trajectories of a system by means of
a quadratic Lyapunov function. This concept was
introduced first for nonlinear systems by Brockman and
Corless (1995), and later extended to nominally linear
systems (Brockman and Corless, 1998). Since then,
several results have exploited this concept for the purpose
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of state estimation. For instance, Alessandri et al.
(2004) used QB to deal with stability and design of
receding-horizon estimators. Also Alessandri et al.
(2006) applied QB to the design of state estimators for
discrete-time linear systems with polytopic uncertainties,
and that work was extended further by Zhang et
al. (2012a), who considered state disturbances and
measurement noise independently.

Notably, QB has been invoked to solve problems
related to output feedback stabilization (Ding, 2009;
2013; Ding and Pan, 2016; Ping et al., 2017; Ping, 2017),
fault tolerant control (Witczak et al., 2016) and fault
estimation (Buciakowski et al., 2017b; 2017a; Witczak
et al., 2017). Recently, further extensions of the QB
concept have been investigated; see, e.g., the extended
nonquadratic boundedness introduced by Zou and Li
(2011).

A related topic which has been studied extensively
for a number of years is the design of disturbance
observers. The idea that, when a disturbance estimation
is available, a control action can be taken to compensate

mailto:julen.cayero@upc.edu
mailto:damiano.rotondo@upc.edu
mailto:bernardo.morcego@upc.edu
mailto:vicenc.puig@upc.edu
mailto:vicenc.puig@upc.edu


100 J. Cayero et al.

for the influence of the disturbance has given birth to
disturbance-observer-based control (DOBC), which was
reviewed extensively by Chen et al. (2016). Since
the 1960s, several techniques have been proposed to
obtain the disturbance estimation, such as unknown input
observers (Johnson, 1971), perturbation observers (Kwon
and Chung, 2003), equivalent input disturbance-based
estimators (She et al., 2008), extended state observers (Li
et al., 2012), disturbance observers (Chen et al., 2000) and
fuzzy Takagi–Sugeno filters (Chibani et al., 2017).

Dealing with disturbances and unmodelled dynamics
is a crucial and critical issue in the control of unmanned
aerial vehicles (UAVs). In some environments, controlling
UAVs is a very challenging task, since any controller
that does not take into account the disturbances may
lead to undesired behaviour ranging from performance
degradation to instability. For this reason, there has
been some interest in applying DOBC to UAVs. For
example, Ruggiero et al. (2014; 2015) applied disturbance
estimation techniques to UAVs by using a non-linear
model with the generalized momentum as the state. In
these works, algebraic equations involving the disturbance
and unknown derivatives of the state are derived and the
disturbance estimation is obtained by feeding the integral
of the algebraic equations to a second order filter. On
the other hand, Yüksel et al. (2014) derived a non-linear
disturbance observer based on the non-linear equations
of motion that use velocities and accelerations as states.
The stability of the observer is demonstrated in the case
of constant external disturbances (null derivative) and in
the absence of noise. Note that the effectiveness of the
above works is shown either by using indoor sensors,
which provide very precise measurements of position
and velocity, or by considering noise-free simulation
scenarios. At the same time, they share the hypothesis
that the disturbance is slow varying, which may misjudge
real disturbances acting on the UAV.

The main contribution of this paper is to design
quadratically bounded observers taking into account the
existence of a trade-off between the convergence rate and
the ultimate (steady-state) error bounding ellipsoid. In
order to handle both objectives, a scalarized objective
function with one design parameter is built, such that the
design problem is made convex. The obtained design
procedure ensures an optimal trade-off between transient
and asymptotic behaviours, in the same spirit as in the
work of Alessandri et al. (2006), but differing from it
in two important aspects. First, instead of minimizing
the ultimate upper bound of the error, the volume of the
ellipsoid to which the error belongs is minimized, which
leads to minimal error solutions. Second, while the whole
state estimation is guaranteed to converge to the real state,
the proposed design method allows the user to select
a part of the state whose associated estimation error is
minimized, which gives tighter solutions for the particular

part of the state. These facts make the proposed approach
different from other techniques developed for observer
design, such as the ones based on H∞ optimization (Wang
et al., 1999; Abbaszadeh and Marquez, 2009) or the
input-to-state stability (ISS) concept (Alessandri, 2004;
2013), which do not minimize explicitly the volume of
the steady state ellipsoid’s error.

The proposed approach is applied to the problem
of estimating the disturbances in UAVs and simulation
results are used to show its effectiveness and main
characteristics. In particular, it is shown that the UAV
model can be expressed in a linear form through an
appropriate choice of the state variables (the linear and
spin momenta) and the frame of reference (the world
one). Then, the UAV model is extended by incorporating
a disturbance high order model, as proposed by Kim
et al. (2010), Godbole et al. (2013) and Su et al.
(2015). The overall model is a linear system that matches
the structure required by the proposed quadratically
bounded observer. The model, by construction, admits
measurements obtainable from on-board sensors after an
appropriate filtering process and does not restrict the
disturbance dynamics. However, it allows the inclusion
of information about the nature of disturbances in desired
derivative order. It is worth highlighting that, due to the
specific model of the disturbance, the designed observer
embeds a proportional multiple-integral (PMI) action,
which shows the applicability of the design approach to
structures such as the ones considered by, e.g., Busawon
and Kabore (2001) or Koenig (2005).

This article is structured as follows. First, in
Section 1 the notation used along the paper is presented.
Next, Section 2 shows the derivation of the optimal
observer design procedure. In Section 3, the model of the
UAV is derived. Section 4 shows the results of applying
the derived observer to the UAV model. Finally, the
conclusions are presented in Section 5.

Notation.

A, B, . . . matrices
In identity matrix of size n× n
0m×n zero matrix of size m× n
A� transpose of matrix A
A−1 inverse of matrix A
A > 0 positive definite matrix
A ≥ 0 positive semi-definite matrix
A < 0 negative definite matrix
A ≤ 0 negative semi-definite matrix
〈A〉 linear vector space spanned by the rows

of A
a, b, . . . vectors
‖a‖ norm of the vector a
[a]× skew-symmetric matrix of vector a
q̊ unit quaternion
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R(q̊) rotation matrix given by the quaternion q̊
εM(x) ellipsoid represented by x�Mx ≤ 1

with M > 0 and symmetric
(J)� optimal value of the scalar function J

(J)† nadir value of the scalar function J

2. Optimal quadratic boundedness observer

Consider the dynamic system defined as1

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = Ax+Bu+W1η1,

y = Cx+Du+W2η2,

z = E1x,

(1)

where x = x(t) ∈ R
n represents the state, u =

u(t) ∈ R
m represents the input, y = y(t) ∈ R

p

represents the output, η1 = η1(t) ∈ R
l1 represents the

disturbances affecting the dynamic model, η2 = η2(t) ∈
R

l2 represents the measurement noise and z = z(t) ∈ R
q

represents a subset of the state vector. Also, the matrices
A ∈ R

n×n, B ∈ R
n×m, W1 ∈ R

n×l1 , C ∈ R
p×n,

D ∈ R
p×m, W2 ∈ R

p×l2 and E1 ∈ R
q×n are constant

with E1 representing a part of a permutation matrix.
Let the vector containing the disturbance and noise

terms, denoted as η̄ =
(
η�
1 , η

�
2

)�
, be bounded by the

ellipsoid εQ(η̄), i.e.,

η̄�Qη̄ ≤ 1, (2)

and let the estimation of the state x be represented by x̂
and the error associated to the state estimation denoted as
e = x− x̂. In addition, let the error of estimation of z be
defined as ez = E1e.

The main goal of this section is to design a linear
observer for the state, which provides some guarantees on
the signal ez . To this end, consider the usual linear state
estimation dynamics given by

˙̂x = (A+ LC) x̂+ (B+ LD)u− Ly. (3)

Then, the dynamics of the estimation error are described
by

ė = (A+ LC) e+W1η1 + LW2η2. (4)

Definition 1. The system in Eqn. (4), under the
conditions in Eqn. (2), is quadratically bounded for a
given symmetric matrix P > 0 if the derivative of the
quadratic Lyapunov function V = e�Pe given by

V̇ = 2e�Pė (5)

is guaranteed to be negative for values of V > 1, i.e.,

V = e�Pe > 1 ⇒ V̇ = 2e�Pė < 0, ∀ η̄ ∈ εQ. (6)
1Throughout the paper, the dependence of signals on time is omitted

to simplify the notation.

The quadratic boundedness conditions stated above
can be formulated as a feasibility problem.

Proposition 1. The dynamic system in Eqn. (4) with
Eqn. (2) is quadratically bounded with a Lyapunov matrix
P if there exist a symmetric matrix P > 0, a matrix L and
a scalar α > 0 for which

⎡

⎢
⎢
⎣

Ψ+ αP PW1 YW2

W�
1 P −αQ

W�
2 Y

�

⎤

⎥
⎥
⎦ ≤ 0, (7)

with
Ψ = A�P+PA+YC+C�Y� (8)

and
Y = PL. (9)

Proof. The time rate of change in the quadratic Lyapunov
function V (e) = e�Pe along the solutions of Eqn. (4) is
given by

V̇ (e,η1,η2)

= e�Pė+ ė�Pe

= e�P
(
(A+ LC) e+W1η1 + LW2η2

)

+
(
e� (A+ LC)

�
+ η�

1 W
�
1 + η�

2 W
�
2 L

�
)
Pe

= e�
(
A�P+PA+PLC+C�L�P

)
e

+ η�
1 W

�
1 Pe+ e�PW1η1 + η�

2 W
�
2 L

�Pe

+ e�PLW2η2.

(10)

Given the unknown nature of η1 and η2, it is not
guaranteed that V̇ is negative definite. However, note that
the condition in Eqn. (2) bounds the values of η1 and η2,
making V̇ < 0 for sufficient large values of e and any
choice of L that makes A+ LC < 0.

Defining x̄ =
(
e�, η̄

)�
and making the change of

variables Y = PL, the last equation can be rewritten in a
quadratic form as

V̇ (x̄) = x̄�

⎡

⎢
⎣

Ψ PW1 YW2

W�
1 P 0 0

W�
2 Y

� 0 0

⎤

⎥
⎦ x̄, (11)

which is negative semi-definite in the case when
⎡

⎢
⎣

Ψ PW1 YW2

W�
1 P 0 0

W�
2 Y

� 0 0

⎤

⎥
⎦ ≤ 0. (12)

On the other hand, using the condition V =
e�Pe > 1 and Eqn. (2), the inequality

e�Pe > η̄�Qη̄ (13)
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can be established or, equivalently,

x̄�
[−P 0

0 Q

]

x̄ < 0, (14)

which implies that the symmetric matrix
[−P 0

0 Q

]

< 0. (15)

By applying the S-procedure over the inequalities in
Eqns. 12 and 15, Eqn. (7) is obtained. �

Proposition 2. The quadratic boundedness in Eqn. (7)
implies exponential convergence of the error e to the in-
terior of εP(e) with the decay rate driven by α provided
that η̄ fulfils Eqn. (2).

Proof. Pre and post-multiplying Eqn. (7) by x̄� and x̄,
respectively, leads to

V̇ (e) + αV (e)− αη̄�Qη̄ ≤ 0. (16)

By using Eqn. (2), it is clear that

V̇ (e) ≤ αη̄�Qη̄ − αV (e) ≤ α
(
1− V (e)

)
, (17)

which makes V̇ (e) < 0 for e�Pe > 1.
By integrating the case scenario in which V̇ ′(e) =

α
(
1− V ′(e)

)
, it can be seen that

V (e) ≤ 1 + (V0 − 1)exp (−αt) , (18)

with V0 = V (t0) = e(t0)
�Pe(t0) representing the

unknown value of V (t) at the initial time instant t0. For all
t > t0, the solutions of V (e(t)) are ultimately bounded by
V = 1, the errors e are guaranteed to converge to εP(e)
whenever V0 > 1 and will remain inside εP(e) as soon as
they reach it or as long as V0 < 1.

Moreover, the value α modulates the decay rate: the
higher α, the higher the convergence rate. �

As a consequence of the convergence guarantee of
e to εP(e), the estimation error ez will converge to the
interior of the ellipsoid εPz(ez), where εPz(ez) is the
resulting ellipsoid after projecting εP(e) over the vector
space generated by the rows of E1, 〈E1〉 and

Pz = E1PE�
1 −E1PE�

2

(
E2PE�

2

)−1

E2PE�
1 , (19)

with E2 representing any orthogonal complement of E1,
i.e., E1E

�
2 = 0. An exhaustive derivation is provided in

Appendix.

2.1. State observer design. From the statements
presented above, given a fixed measure of the ellipsoid
containing the terms η̄, it can be established that the
estimation error ez will depend on

• the size of εPz(ez), which represents a measure
of the ultimate error bounds and can be measured
through the volume of the ellipsoid (Ros et al., 2002)

Vol (εPz ) =
Bq

√
det (Pz)

, (20)

where Bq represents the volume of the unit-ball of
dimension q (the dimension of the row space of E1);

• the convergence rate represented by α, which defines
the behaviour of the transient response.

Ideally, the chosen observer gain L must try to
maximize α while minimizing Vol (εPz). However, both
objectives are not independent but are subject to the
satisfaction of the constraint in Eqn. (7). Indeed, there
does not necessarily exist a solution of the problem which
optimizes α and Vol (εPz) at the same time.

Following the spirit of Alessandri et al. (2006),
but re-scaling the objectives as suggested by Miettinen
(1999), a parametrized mixed objective function that
merges both the objectives can be defined as

Jμ(α,Pz) = μJ1 + (1 − μ)J2, (21)

where μ has been introduced as a design parameter that
defines the trade-off between J1 and J2, defined as

J1 =
Vol (εPz)−Vol (εPz)

�

Vol (εPz )
† −Vol (εPz)

�
(22)

and

J2 =
α− α�

α† − α�
. (23)

The introduction of Ji, i = 1, 2 scales the values of
the individual objectives. Ji ∈ [0, 1]. It takes the value of
0 when the objective is completely achieved, i.e., α = α�,
Vol (εPz ) = Vol (εPz)

� and the value of 1 in the opposite
case, i.e, for the nadir (worst optimal) value Vol (εPz) =

Vol (εPz )
† given at α = α†.

The optimal quadratically bounded state observer
which minimizes Eqn. (21) can be designed by solving
the optimization problem

min
α>0,P>0,Y

Jμ(α,Pz), (24)

subject to Eqn. (7), for a fixed value of μ. In general, the
solution of Eqn. (24) is not straightforward. However, an
alternative optimization problem, which shares the same
solution, can be achieved in two steps:

Step 1. The constraint in Eqn. (7) is not linear due to
the product of unknown variables α and P. Nevertheless,
it can be interpreted as an LMI for constant values of α.
Thus, an equivalent problem to Eqn. (24) can be obtained
by splitting it in two nested optimization problems, one
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efficiently solvable by SDP solvers inside, a second one
with a single optimization variable

min
α>0

Jμ(α,Vol
(
ε+Pz

)
), (25)

with ε+Pz
representing the ellipsoid whose associated

quadratic matrix P+
z is obtained by using Eqn. (19) with

P = P+, which solves the optimization problem for fixed
values of α and μ:

(P+,Y+) = arg min
P>0,Y

Jμ(α,Vol
(
εPZ

)
) (26)

subject to Eqn. (7).

Step 2. For fixed values of α and μ, J2 is a constant
and μBq acts as a scaling parameter. Given that the
square root function present in Eqn. (20) is monotonically
increasing, solving Eqn. (26) is equivalent to maximizing
the alternative objective function J ′(Pz) = det (Pz)
subject to Eqn. (7).

Even though the determinant of Pz can be rendered
convex since Pz is positive definite by construction, while
its modeling from the original unknown P cannot, due
to the product on the right-hand side of Eqn. (19). This
drawback can be overcome by considering a new matrix
X ≥ 0 and the constraint

X ≤ Pz. (27)

Equation (27) can be expressed as an LMI on P by
considering it as the Schur complement of P′

22 in P′, with

P′ =
[
P′

11 P′
12

P′
21 P′

22

]

=

[
E1PE�

1 −X E1PE�
2

E2PE�
1 E2PE�

2

]

> 0.

(28)

Given that E =
(
E�

1 E�
2

)�
is a full rank matrix

representing a permutation, the transformation

E�P′E ≥ 0 (29)

leads to the simpler matrix inequality independent of E2,

P−E�
1 XE1 ≥ 0. (30)

The previous condition implies the existence of an
ellipsoid εX(ez) that encloses εPz(ez). Minimizing the
volume of εX(ez), i.e., maximizing the determinant of the
matrix X, will make εX(ez) converge to the minimum
volume εPz (ez) as long as no additional conditions over
X are applied.

As a result of the above, Eqn. (26) can be replaced
by the convex optimization problem:

Find

(X+,P+,Y+) = arg max
X>0,P>0,Y

det (X), (31)

subject to Eqns. (7) and (30), which guarantees that ε+X =
ε+Pz

. Note that, since μ is not present in Eqn. (31), the
optimal values X+ = X+(α), P+ = P+(α) and Y+ =
Y+(α) will only depend on the chosen value of α.

Taking into account the previous comments, the
optimal quadratically bounded observer represented by
L� = (P�)−1 Y� is given by the solution of the
optimization problem in Eqn. (25), with ε+X = ε+Pz

and
X+ being the solution of Eqn. (31).

3. UAV dynamic equations

In this section, the UAV model that will be used later to
derive the disturbance observer is presented. First, the
continuous dynamic motion equations for 3D rigid bodies,
formulated in momentum form, expressed in the world
reference frame and considering the action of gravity,
wrench actuators and disturbances, are presented. To the
best of the authors’ knowledge, this choice, which has
the benefit of making the system linear, has not been
made before in the field of disturbance estimation in
UAVs. Second, a simple but general disturbance model
is reviewed. Finally, the joint model taking into account
the previous two dynamics is shown.

3.1. Dynamic motion equations. Let the frame, {W}
be an inertial one with the origin on the earth surface with
a given fixed orientation. The NED (north-east-down)
configuration is used here as a usual convention, i.e., the
x-axis of the frame points towards the north pole, the
y-axis points to the east and the z-axis points down, in
the direction of the Earth’s center.

Let the frame {B} be a non-inertial frame centred in
the body’s centre of mass and rigidly attached to it with
the x-axis pointing to the front, the y-axis pointing to the
right and the z-axis pointing down. Figure 1 shows these
reference frames.

Let the quaternion q̊ = [q0, q
�
v ]

� define the attitude
between frames, such that

rw = R(q̊) rb , (32)

where rw and rb are different representations of a generic
vector r ∈ R

3 expressed in the frames {W} and {B}

Fig. 1. World and body reference frames depicted.
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respectively, and R(q̊) ∈ SO(3) is a rotation matrix, i.e.,
RR� = R�R = I3, given by

R(q̊) =
(
q0 − q�

v qv

)
I3+2

(
qvq

�
v

)
+2q0 [qv]× , (33)

where [qv]× is a skew symmetric matrix for which qv ×
r = [qv]× r.

The equations of motion for a rigid body expressed
in the frame {W} using the system’s linear momentum
and spin momentum are

ṗw =

(

m gw +R(q̊) fb a + fw
e

R(q̊) τb a + τw
e

)

, (34)

where pw ∈ R
6 is the lumped momentum, defined as

pw =

(
m vw

Jw ωw

)

, (35)

the vector vw ∈ R
3 defines the relative velocity of the

origin of {B}with respect to the origin of {W}, expressed
in {W} coordinates; ωw ∈ R

3 represents the relative
angular velocity of {B} with respect to {W}, also in {W}
coordinates; m ∈ R denotes the body’s mass; Jw ∈ R

3

is the inertia of the body as seen from {W}, which is
related to constant inertia of the body Jb by Jw (q̊) =
R(q̊) Jb R(q̊)�; gw ∈ R

3 is the gravity’s acceleration
vector, known in {W}; fb a ∈ R

3 and τb a ∈ R
3 are

the actuator force and torque vectors, which are naturally
described in the body frame; finally, fw

e ∈ R
3 and

τw
e ∈ R

3 are the unknown external forces and torques
acting on the platform.

Equation (34) can be written in a compact way as

ṗw =
(
mg′ +R′(q̊)wa + d

)
, (36)

where

g′ =
(

gw �, 0, 0, 0
)�

(37)

is the extended gravity vector,

R′(q̊) =
(
R(q̊) 0
0 R(q̊)

)

(38)

is an augmented rotation matrix,

w�
a =

(
fb �
a , τb �

a

)
(39)

is the actuator wrench and

d = Δwa +Δg′ +
(

fw
e

τw
e

)

(40)

is a vector representing the disturbances acting on the
system, which may contain not only the effect of the
external wrench but also that of unmodelled dynamics,
represented by Δwa and Δg′.

3.2. Disturbance model. The dynamics of d are
generally unknown and this is the main reason why works
like those of Ruggiero et al. (2014) and Yüksel et al.
(2014) assume that ḋ = 0. However, this constraint could
slow down the estimation output in the case of fast varying
dynamics. In order to alleviate this drawback, it could be
assumed that the disturbance d is a continuous function
driven by an unknown time varying exogenous input η(t)
at its r-th derivative,

(r)

d = η(t), (41)

as suggested by Kim et al. (2010) and later used by Su
et al. (2015).

In this case, it is interesting to consider an augmented
version of the disturbance vector, given by

dv =
(
d�, ḋ�, · · · ,

(r−1)

d�
)�

, (42)

with the dynamics of dv described by

ḋv = Fdv +Gη1, (43)

where F ∈ R
6(r−1)×6(r−1) is given by

F =

(

06r×6

I6(r−1)

06×6(r−1)

)

(44)

and G ∈ R
6(r−1)×6 is defined as

G =

(
06(r−1)×6

I6

)

. (45)

The disturbance vector d can be recovered any time
from dv as d = Hdv, where H ∈ R

6×6(r−1) is another
selection matrix defined by

H =
(
I6, 06×6(r−1)

)
. (46)

3.3. Extended model considering disturbances. The

augmented dynamic model with state x� =
(

pw �, d�
v

)

and dynamics given by (36) and (43) can be summarized
as

ẋ =

(
ṗw

ḋv

)

=

(
mg′ +R′(q̊)wa +Hdv

Fdv +Gη1

)

. (47)

Let q̊ and wa be known and let η1 = η1(t) represent
an unknown input; then the dynamics in (47) are linear
and can be rewritten as

ẋ = Ax+Bu+W1η1, (48)

where

A =

(

06(r+1)×6

H

F

)

, (49)
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B =

(
I6

06r×6

)

, (50)

W1 =

(
06×6

G

)

, (51)

and
u = mg′ +R′(q̊)wa. (52)

3.4. System’s measurements. In the case of typical
navigation applications, an upper-layer estimator is used
to reconstruct attitude and velocity states while filtering
and removing the bias from the sensors’ readings; see, for
example, the works of Santamaria-Navarro et al. (2015),
Lynen et al. (2013) or Kelly and Sukhatme (2011). As it
is a common practice, we will assume in this work that
q̊, vw , ωb and the measurements from accelerometers
represented by

ab =
fb a +R�(q̊) fw

ext

m
(53)

are known at regular time intervals. Moreover, the
actuator wrench wa is also assumed known.

In this work, these data will be used to construct the
input vector u provide measurements of the system as

y =

(
pw + ηp

fw
ext + ηfa

)

=

⎛

⎜
⎜
⎝

m vb

R(q̊)
(
Jb ωb

)

R(q̊)
(
m ab + fb a

)

⎞

⎟
⎟
⎠+ η2.

(54)

with η2 = η2(t) representing the measurement errors.
From the previous equation, the linear measurement
model can be formulated as

y = Cx+W2η2, (55)

with

C =
(
I9 09×6r+3

)
(56)

and
W2 = I9. (57)

4. UAV optimal quadratic boundedness
observer

In this section, we use the design procedure presented in
Section 3 to generate an observer for the UAV represented
by Eqns. (48) and (54). To demonstrate the estimation
performance, we use the simulation setup in Fig. 2,
where a quadrotor with m = 1.023 kg and Jb =
diag (9.5, 9.5, 18.6)10−3 kgm2 is controlled to perform a
hovering flight during the whole simulation. The inputs

Fig. 2. Simulation setup.

of the dynamic model are the desired angular velocities of
the four rotors ΩR along with the disturbance d, whose
time plot is given in Fig. 3. The disturbance is a force
acting on the world x direction. The set of sensors
considered includes an IMU that measures the angular
velocity of the UAV and the acceleration of external
forces, a tri-axial magnetometer that outputs the Earth’s
magnetic field direction and a GPS sensor that outputs
the position in the {W} frame. The controller, the
UAV model and the actuator model are a modification of
those presented by Hartman et al. (2014), but considering
quaternions for attitude parametrization and calibrated
to resemble the behaviour of an AscTec Hummingbird
quadrotor. The sensor models have been calibrated on the
basis of real experiments over the experimental platform.

With this information, a state estimation process
produces estimates of the vector y for which the
measurement errors have been identified to be inside an
ellipsoid εQ2(η2) with

Q2

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.5 −0.3 0.3 8.3 −3.2 −3.1 −0.2 −0.02 −0.1
0.7 −0.1 −10.5 9.3 −6.2 0.04 −0.03 −0.01

0.9 3.30 3.7 −3.9 0.02 −0.02 −0.09
2903 111.7 −277.8 −2.4 −0.6 −0.2

4281 242.1 0.6 2.5 −1.5
951.2 −1.6 1.6 1.05

SYM 0.2 −0.01 −0.01
0.1 −0.01

0.1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(58)

Finally, the wrench in the actuators is supposed to
be completely known, given that the actuator model
reproduces exactly the implementation in the dynamic
block.

Given the disturbance in Fig. 3, the value of the
order of the disturbance model has been set to r =
3, while Q1 = 106I6 has been selected big enough
to make εQ1(η1) sufficiently small while taking into
account possible numerical errors on the simulation. As
a consequence, the matrix

Q =
1

2

(
Q1 0
0 Q2

)

(59)

defines the model and measurement errors ellipsoid in
Eqn. (54).
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Fig. 3. Disturbance applied to the quadrotor. The first part is a
succession of constant signals (from t = 5 s to t = 15 s).
The second part is a triangular signal (from t = 20 s to
t = 30 s) and the third one is a quadratic signal (from
t = 35 s to t = 45 s).
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Fig. 4. Minimum value of Vol
(
ε+X

)
as a function of α.
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Fig. 5. Values of the objective function as a function of α for
fixed μ and an optimal value of the objective function.
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Fig. 6. Optimal values of the convergence rate and ultimate
bounding volume as a function of the design parameter.

Since in this case the ultimate goal is to estimate
only the disturbances d whereas the exact values of the
remaining states are irrelevant, E1 has been chosen as

E1 = (06×6,H) . (60)

By using the previous data, the optimization problem
in Eqn. (31) has been solved for values of α ∈ [0, 20].

The optimal volume of the produced ellipsoids ε+X(α) is
shown in Fig. 4.

The results of the objective function for several
values of μ along with the optimal value as a function of
α can be found in Fig. 5.

Finally, the optimal values of the unnormalized

objectives α� and Vol
(
ε+X

)
as a function of the design

parameter μ are shown in Fig. 6.
Disturbance estimation performance for the values of

the decision variable μ = 0.2 and μ = 0.95 are shown
in Fig. 7. Note that the estimation of the disturbance
is not straightforward since in the abrupt changes in
the signal the derivatives are unbounded by definition.
However, even in this case, the filter design guarantees
the error stability and, by comparing the two outputs, it
can be appreciated that, when the hypothesis of the filter
(in this case

...
d ∈ εQ1(η1)) are fulfilled, the estimation

corresponding to higher μ is slower than the one with a
lower value of μ, while it converges to a smaller region
in the neighbourhood of the true signal, as can also be
observed in Fig. 6.

5. Conclusions

The design procedure presented in the first part of the
paper is a generic development devoted to generate state
observers for linear uncertain systems. The presented
results allow deriving observers that guarantee an optimal
trade-off between minimum volume error solutions and
a maximum convergence rate. Considering the volume
of the solution as an objective to minimize is an idea
that has not been presented in the literature before. In
the modelling part, we have presented a linear model
for a quadrotor which considers a possible high order
disturbance acting over the aircraft as part of the state.

It should be assumed that such a linear model for a
quadrotor is not a simplification but rather an exact result
obtained after considering a proper state and reference
frames. Both the model and theory meet to formulate a
state observer which ensures the stability of the estimation
while minimizing the error associated to the disturbance.
The example considered exhibits the effect of the decision
variable in the design, and the results demonstrate the
performance of the observer for different choices of the
design parameter estimating a disturbance.

The quadrotor model and the extended system used
to estimate disturbances in the second part of the article
can be employed along with other state estimation designs
based on ISS or H∞, among others, to provide different
estimation observers. In a future work we plan to make
an analysis of these methods to show explicitly how they
affect the minimum volume of the error ellipsoid as well
as the decaying rate and provide a fair comparison with
the results presented here. Future works will also include
experimental results using a real UAV platform.
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Fig. 7. Disturbance estimation and errors.
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Appendix

Given the ellipsoidal set defined by

εP(x) := x�Px ≤ 1, (A1)

with x ∈ R
n and P > 0, this section is devoted to

finding the projection of this ellipsoid onto the subspace
to which the vector z1 belongs, z1 ∈ R

m, m < n,
being a part of the vector x, i.e., z = E1x, with E1 ∈
R

m×n representing a distribution matrix. This problem is
equivalent to finding the ellipsoidal projection of εP(x)
onto the subspace spanned by the rows of E1, denoted by
〈E1〉.

Consider also E2 ∈ R
l with l = m − n to be an

orthogonal complement of E1, i.e., 〈E2〉 is orthogonal to
〈E1〉⊥ and z2 = E2x. Then we have

z = Ex, (A2)

with
E� =

[
E�

1 E�
2

]
(A3)

and z =
(
z�
1 , z

�
2

)�

Moreover, since matrix E represents an orthonormal
basis of Rn, its inverse E−1 = E� and, as a consequence,

x = E�z =
[
E�

1 E�
2

]
z = E�

1 z1 +E�
2 z2. (A4)

The projection of the boundary of the ellipsoid in
Eqn. (A1) represented by ∂εP(x) onto 〈E1〉 describes the
boundary of the target ellipsoid εPz(z1) represented as
∂εPz(z1). Consider the scalar function S = x�Px − 1.
Then

∂εPz(z1) :=
(
x | S = 0,∇x (S) ∈ 〈E1〉

)

or, equivalently,

∂εPz(z1) :=
(
x | S = 0,E2∇x (S) = 0

)
. (A5)

The second condition on the right-hand side of
Eqn. (A5) implies that

E2Px = 0 (A6)

By substituting Eqn. (A4) into the previous relation, a
map between z1 and z2 can be found for points on the
boundary as

z2 = −
(
E2PE�

2

)−1

E2PE�
1 z1.

The previous result, along with Eqn. (A4), can be
substituted in x�Px = 1, leading to

∂εPz(z1) :=
(
z1 | z�

1 Pzz1 = 1
)
,

with Pz = E1PE�
1 −E1PE�

2

(
E2PE�

2

)−1
E2PE�

1 .
Since εPz(z1) must contain the origin as εP(x) did,

εPz(z1) will be defined by

εPz(z1) :=
(
z1 | z�

1 Pzz1 ≤ 1
)
.
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