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In this paper, we are concerned with drive-response synchronization for a class of fuzzy cellular neural networks with time
varying delays. Based on the exponential dichotomy of linear differential equations, the Banach fixed point theorem and
the differential inequality technique, we obtain the existence of almost periodic solutions of this class of networks. Then,
we design a state feedback and an impulsive controller, and construct a suitable Lyapunov function to study the problem of
global exponential almost periodic synchronization for the drive-response systems considered. At the end of the paper, we
provide an example to verify the effectiveness of the theoretical results.
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1. Introduction

Neural networks have been extensively studied for their
potential applications in many engineering and scientific
fields, such as image processing, associative memory,
computing technology, nonlinear programming, and so
on (Arik, 2002b; 2002a; Sen, 2006; Cao and Liand,
2004; Xia et al., 2007; Xu and Yang, 2005). There
are many research results, especially for Hopfield neural
networks (Aouiti et al., 2017), cellular neural networks
(Park, 2009; Pan and Cao, 2011), bidirectional associative
memory neural networks (Aouiti et al., 2017) and
Cohen–Grossberg neural networks (Yang et al., 2017).
However, when using mathematical modeling to solve
real-world problems, the uncertainty of vagueness is
encountered. In order to solve the problems of vagueness,
Yang and Yang (1996) applied fuzzy logic to the
traditional cellular neural networks, which integrates
fuzzy logic into the structure of traditional cellular neural
networks and maintains local connectedness among cells.

Unlike previous cellular neural network structures,

∗Corresponding author

fuzzy cellular neural networks have fuzzy logic between
their template and input and/or output besides the “sum of
products” operation. Combing the advantages of fuzzy
operations and cellular neural networks, fuzzy neural
networks have wide applications in image processing and
pattern recognition problems. Therefore, there are a lot of
results for fuzzy cellular neural networks; see the works
of Li and Wang (2013), Yuan et al. (2006), Long and
Xu (2011) or Li and Zhang (2009) and the references
therein. Moreover, it is well known that periodicity,
anti-periodicity and almost periodicity are very important
dynamics for non-autonomous neural networks (Li et al.,
2009; Pan and Cao, 2011; Li and Fan, 2009). In addition,
in the real world, almost periodicity is more realistic and
more general than periodicity. Also, time delays are
inevitable both in biological and artificial neural networks.
Recently, the almost periodic problem of fuzzy cellular
neural networks with time delays were considered by
Huang (2017a; 2017b).

Pecora and Carroll (1990) proposed the concept
of synchronization. Its mechanism is as follows: a
chaotic system, called the driver (or master) system,
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generates a signal and sends it to a response (or slave)
system over a channel. The response system is identical
with the driver system. Then the response system uses
this signal to control itself so that it oscillates in a
manner synchronized with the drive system. Since then,
due to its wide applications in engineering such as in
secure communication, biological systems or information
processing, much attention has been attracted to this
topic. There are many synchronization strategies, such as
coupling control, state feedback control, adaptive control
and impulsive control (Heagy et al., 1994; Yang, 2001;
Cao et al, 2005; Tang et al., 2017a; 2018b; Yuan
et al., 2014). In the past few years, the problem of
periodic synchronization for systems has been extensively
investigated (see Hu et al., 2010; Hong, 2014; Cai
et al., 2015; Wu et al., 2015). Very recently, the
problems of almost periodic synchronization, almost
automorphic synchronization and pseudo almost periodic
synchronization for quaternion-valued neural networks
have been studied by Li et al. (2018b; 2018c; 2018a),
respectively.

It should be noted that the impulsive control
method has found favor with many researchers, since it
allows synchronization of systems to use the impulsive
controllers with only small impulses, generated by nodes
of the state variables of the drive and the response
systems at discrete time instants. Moreover, when
the synchronization impulses are sent to the receiving
systems at discrete time instants, this can drastically
decrease information redundancy in the transmitted signal
and increase robustness against disturbances, which can
greatly reduce control cost. Recently, some interesting
synchronization results for chaotic neural networks have
been reported using the impulsive control method, see the
works of Cao et al. (2009), Lu et al., (2013; 2018), Yang
et al. (2015; 2018), Guan (2018), Zhang et al. (2018) or
Lin and Zhang (2018) and the references therein.

Up to now, although there have been few studies on
synchronization of fuzzy cellular neural networks (Ding
and Han, 2008; Abdurahman et al., 2016; Wang, 2018;
Ding et al., 2009; Feng et al., 2011; Yang et al., 2017),
almost periodic synchronization of fuzzy cellular neural
networks via impulsive controls has not been studied. But
it is interesting and challenging.

Inspired by the above analysis, in this paper, we
are concerned with the following fuzzy cellular neural
network with time-varying delays:

x′i(t) = −ai(t)xi(t) +
n∑

j=1

bij(t)fj(xj(t))

+

n∑

j=1

cij(t)gj
(
xj(t− σij(t))

)

+

n∑

j=1

dij(t)μj(t) +

n∧

j=1

Tij(t)μj(t)

+

n∧

j=1

αij(t)hj
(
xj(t− τij(t))

)

+

n∨

j=1

βij(t)hj
(
xj(t− ηij(t))

)

+

n∨

j=1

Sij(t)μj(t) + Ii(t),

(1)

where i ∈ {1, 2, . . . , n} := Π, n corresponds to
the number of units in a neural network, xi(t) is the
state variable of the i-th neuron at time t; ai(t) >
0 represents the rate with which the i-th neuron will
reset its potential to the resting state in isolation when
disconnected from the networks and external inputs;
αij , βij , Tij , Sij are elements of the fuzzy feedback
MIN template, fuzzy feedback MAX template, fuzzy
feedforward MIN template, fuzzy feedforward MAX
template, respectively;

∧
,
∨

denote the fuzzy AND
and OR operation, respectively; bij , dij are elements of
the feedback and free-forward template; cij denotes the
weight strength of the i-th neuron at time t; μi denotes an
input of the ith neuron; Ii(t) denotes the external input
to the ith neuron at time t; fj , gj , hj : R → R are
the activation functions of signal transmission; σij(t) >
0, τij(t) > 0, ηij(t) > 0 correspond to transmission
delays.

Throughout the paper, for convenience, for a
bounded continuous function, we use the notation

f+ = sup
t∈R

|f(t)|, f− = inf
t∈R

|f(t)|.

The initial conditions associated with the system (1)
are of the form

xi(s) = ϕi(s), s ∈ [−θ, 0], i ∈ Π,

where

θ = max{σ, τ, η}, σ = max
1≤i,j≤n

{σ+
ij},

τ = max
1≤i,j≤n

{τ+ij }, η = max
1≤i,j≤n

{η+ij},

and ϕi(·) is a real- valued bounded continuous function
defined on [−θ, 0].

The main purpose of this paper is to study the
problem of almost periodic synchronization of (1) via
state-feedback and impulsive control. To the best of our
knowledge, this is the first paper to study almost periodic
synchronization for fuzzy cellular neural networks. Our
results are completely new and our methods can be
used to study the problem of almost periodic and almost
automorphic synchronization for other types of neural
networks.
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Remark 1. Following ideas similar to those
used by Cai et al. (2015), Hu et al. (2010) or
Li et al. (2018b; 2018a; 2018c), in this paper,
drive-response synchronization of systems with almost
periodic coefficients and almost periodic solutions is
called almost periodic synchronization.

We organize the paper as follows. In Section 2,
we introduce the notation and definitions, and state some
preliminary results which are needed in further sections.
In Section 3, sufficient conditions for the existence of
almost periodic solutions of system (1) are obtained. In
Section 4, the exponential synchronization is investigated.
In Section 5, the effectiveness and feasibility of the
developed methods are shown with a numerical example.
The paper ends with a brief conclusion in Section 6.

2. Preliminaries

In this section, we shall recall some fundamental
definitions and lemmas.

Definition 1. (Fink, 1974) Let f ∈ BC(R,Rn); then f is
said to be almost periodic if, for any ε > 0, it is possible
to find a real number l = l(ε) > 0, such that for any
interval of length l(ε), there exists a number τ = τ(ε) in
this interval satisfying |f(t+ τ)− f(t)| < ε for all t ∈ R.

We denote by AP (R,Rn) the set of all almost
periodic functions from R to R

n.

Lemma 1. (Diagana, 2013) If f, g ∈ AP (R,Rn), then
f + g, fg ∈ AP (R,Rn).

Consider the following linear homogenous system:

x′(t) = A(t)x(t) (2)

and the linear non-homogenous system

x′(t) = A(t)x(t) + f(t), (3)

whereA(t) is an almost periodic matrix function and f(t)
is an almost periodic vector function.

Definition 2. (Fink, 1974) The system (2) is said to admit
an exponential dichotomy if there exist a projection P and
positive constants α, β such that the fundamental solution
matrix X(t) satisfies

|X(t)PX−1(s)| ≤ βe−α(t−s), t ≥ s,

|X(t)(I − P )X−1(s)| ≤ βe−α(s−t), t ≤ s.

Lemma 2. (Fink, 1974) If the linear system (2) admits an
exponential dichotomy, then the system (3) has a unique
almost periodic solution

x(t) =

∫ t

−∞
X(t)PX−1(s)f(s) ds

−
∫ +∞

t

X(t)(I − P )X−1(s)f(s) ds,

where X(t) is the fundamental solution matrix of (2).

Lemma 3. (Fink, 1974) Let ai be an almost periodic func-
tion on R and

M [ai] := lim
T→∞

1

T

∫ t+T

t

ai(s) ds > 0, i ∈ Π.

Then the linear system

x′(t) = diag(−a1(t),−a2(t), . . . ,−an(t))x(t)
admits an exponential dichotomy on R.

Lemma 4. (Yang nad Yang, 1996) Let xj , yj, αij , βij ∈
R, fj : R → R be continuous functions where i, j ∈ Π;
then we have

∣∣∣∣
n∧

j=1

αijfj(xj)−
n∧

j=1

αijfj(yj)

∣∣∣∣

≤
n∑

j=

|αij ||fj(xj)− fj(yj)|,
∣∣∣∣

n∨

j=1

βijfj(xj)−
n∨

j=1

βijfj(yj)

∣∣∣∣

≤
n∑

j=

|βij ||fj(xj)− fj(yj)|.

Similarly to the proof by Huang (2017b,
Remark 2.2), we have the following result.

Lemma 5. For i, j ∈ Π, let xj , μj , τij , ηij , αij ,
βij , Tij , Sij ∈ AP (R,R) and (A2) hold; then we
have

∧n
j=1 αij(·)hj(xj(·−τij(·))),

∨n
j=1 βij(·)hj(xj(·−

ηij(·))),
∧n

j=1 Tij(·)μj ,
∨n

j=1 Sij(·)μj ∈ AP (R,R).

Throughout the paper, we make the following
assumptions:

(A1) Function ai ∈ AP (R,R+) with M [ai] > 0,
bij , cij , dij , αij , βij , Sij , Tij , μi, Ii ∈ AP (R,R),
σij , τij , ηij ∈ C1(R,R+) ∩ AP (R,R) with

γ = inf
t∈R

{1− σ′
ij(t)} > 0,

ρ = inf
t∈R

{1− τ ′ij(t)} > 0,

� = inf
t∈R

{1− η′ij(t)} > 0,

where i, j ∈ Π.

(A2) For any u, v ∈ R, there exist positive constants
Lf
j , L

g
j , L

h
j such that

|fj(u)− fj(v)| ≤ Lf
j |u− v|,
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|gj(u)− gj(v)| ≤ Lg
j |u− v|,

|hj(u)− hj(v)| ≤ Lh
j |u− v|

and fj(0) = gj(0) = hj(0) = 0, where j ∈ Π.

(A3) There exists a positive constant r such that

max
i∈J

{
Pi

a−i

}
:= r < 1,

where i ∈ Π and

Pi =

n∑

j=1

[
b+ijL

f
j + c+ijL

g
j + α+

ijL
h
j + β+

ijL
h
j

]
.

3. Existence of almost periodic solutions

In this section, we shall state and prove sufficient
conditions for the existence and uniqueness of almost
periodic solutions of the system (1).

Set Y =
{
ϕ = (ϕ1, ϕ2, . . . ϕn)

T : ϕi ∈
AP (R,R), i ∈ Π

}
and equip it with the norm ‖ϕ‖ =

maxi∈Π

{
supt∈R

|ϕi(t)|
}

. ThenY is a Banach space. Let

ϕ0(t) =
(
ϕ0
1(t), ϕ

0
2(t), . . . , ϕ

0
n(t)

)T
,

where

ϕ0
i (t) =

∫ t

−∞
e−

∫ t
s
ai(u) du

[ n∑

j=1

dij(s)μj(s)

+

n∧

j=1

Tij(s)μj(s) +

n∨

j=1

Sij(s)μj(s) + Ii(s)
]
ds,

i ∈ Π and L be a constant satisfying L ≥ ‖ϕ0‖.

Theorem 1. Let (A1)–(A3) hold. Then the system (1) has
a unique almost periodic solution in Y

∗ = {ϕ ∈ Y|‖ϕ −
ϕ0‖ ≤ rL/(1− r)}.

Proof. For any givenϕ ∈ Y, consider the following linear
system:

x′i(t) = −ai(t)xi(t) + Fi(t, ϕ(t)) + Ei(t), i ∈ Π, (4)

where

Fi(t, ϕ(t)) =

n∑

j=1

bij(t)fj(ϕj(t)) +

n∑

j=1

cij(t)

× gj((ϕj(t− σij(t)))

+
n∧

j=1

αij(t)hj(ϕj(t− τij(t)))

+

n∨

j=1

βij(t)hj(ϕj(t− ηij(t))),

Ei(t) =

n∑

j=1

dij(t)μj(t) +

n∧

j=1

Tij(t)μj(t)

+

n∨

j=1

Sij(t)μj(t) + Ii(t).

From Assumption A1 and Lemma 3 it follows that the
linear system

x′i(t) = −ai(t)xi(t), i ∈ Π,

admits an exponential dichotomy. By Lemma 2, we have
that the system (4) has a unique almost periodic solution
xϕ = (xϕ1 , x

ϕ
2 , . . . x

ϕ
n), where

xϕi (t) =

∫ t

−∞
e−

∫ t
s
ai(u)du

[
Fi(s, ϕ(s))

+ Ei(s)
]
ds, i ∈ Π.

For every ϕ ∈ Y
∗, we find

‖ϕ‖ ≤ ‖ϕ0‖+ ‖ϕ− ϕ0‖ ≤ L+
rL

1− r
=

L

1− r
.

Now we define a mapping Φ : Y∗ → Y
∗ by setting Φϕ =

xϕ, ϕ ∈ Y
∗.

First, we will prove that, for any ϕ ∈ Y
∗, Φϕ ∈ Y

∗.
In fact, we have

|Fi(s, ϕ(s))|

=

∣∣∣∣
n∑

j=1

bij(s)fj(ϕj(s)) +
n∑

j=1

cij(s)

× gj(ϕj(s− σij(s)))

+

n∧

j=1

αij(s)hj(ϕj(s− τij(s)))

+

n∨

j=1

βij(s)hj(ϕj(s− ηij(s)))

∣∣∣∣

≤
n∑

j=1

b+ij
∣∣fj(ϕj(s)) − fj(0)

∣∣

+

n∑

j=1

c+ij
∣∣gj(ϕj(s− σij(s))) − gj(0)

∣∣

+

n∑

j=1

α+
ij

∣∣hj(ϕj(s− τij(s))) − hj(0)
∣∣

+

n∑

j=1

β+
ij

∣∣hj(ϕj(s− ηij(s))) − hj(0)
∣∣

≤
n∑

j=1

b+ijL
f
j

∣∣ϕj(s))
∣∣ +

n∑

j=1

c+ijL
g
j

∣∣ϕj(s− σij(s))
∣∣

+

n∑

j=1

α+
ijL

h
j

∣∣ϕj(s− τij(s))
∣∣
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+

n∑

j=1

β+
ijL

h
j

∣∣ϕj(s− ηij(s))
∣∣, i ∈ Π.

From this and the definition of Φ it follows that

sup
t∈R

|(Φϕ)i(t)− ϕ0
i (t)|

= sup
t∈R

∣∣∣∣

{ ∫ t

−∞
e−

∫
t
s
ai(u) duFi(s, ϕ(s))

}
ds

∣∣∣∣

≤ 1

a−i

n∑

j=1

[
b+ijL

f
j + c+ijL

g
j + α+

ijL
h
j + β+

ijL
h
j

]
‖ϕ‖

≤ r‖ϕ‖ ≤ rL

1− r
, i ∈ Π,

which implies Φϕ ∈ Y
∗. Thus, the mapping Φ is a

selfmapping from Y
∗ to Y

∗.
Next, we will show that Φ is a contraction mapping

in Y
∗. For any ϕ, ψ ∈ Y

∗, we have

|Fi(s, ϕ(s))− Fi(s, ψ(s))|

≤
n∑

j=1

b+ij
∣∣fj(ϕj(s))− fj(ψj(s))

∣∣

+

n∑

j=1

c+ij
∣∣gj(ϕj(s− σij(s)))

− gj(ψj(s− σij(s)))
∣∣+

n∑

j=1

α+
ij

∣∣hj(ϕj(s

− τij(s)))− hj(ψj(s− τij(s)))
∣∣

+

n∑

j=1

β+
ij

∣∣hj(ϕj(s− ηij(s)))

− hj(ψj(s− ηij(s)))
∣∣

≤
n∑

j=1

b+ijL
f
j

∣∣ϕj(s))− ψj(s))
∣∣

+

n∑

j=1

c+ijL
g
j

∣∣ϕj(s− σij(s))− ψj(s− σij(s))
∣∣

+
n∑

j=1

α+
ijL

h
j

∣∣ϕj(s− τij(s)) − ψj(s− τij(s))
∣∣

+

n∑

j=1

β+
ijL

h
j

∣∣ϕj(s− ηij(s))

− ψj(s− ηij(s))
∣∣, i ∈ Π.

From the above inequality and the definition of Φ, we
obtain

sup
t∈R

|(Φϕ)i(t)− ϕ0
i (t)(Φψ)i(t)|

≤ sup
t∈R

{∫ t

−∞
e−

∫
t
s
ai(u) du

n∑

j=1

[
b+ijL

f
j + c+ijL

g
j

+ α+
ijL

h
j + β+

ijL
h
j

]
‖ϕ− ψ‖ ds

}

≤ Pi

a−i
‖ϕ− ψ‖, i ∈ Π.

Therefore, we get

‖Φϕ− Φψ‖ ≤ r‖ϕ− ψ‖.

By AssumptionA3, Φ is a contraction mapping. Based on
the Banach fixed theorem, we obtain that Φ has a unique
fixed point in Ω, which means that the system (1) has
a unique almost periodic solution in Y

∗. The proof is
complete. �

4. Almost periodic synchronization via
state-feedback and impulsive control

In this section, by utilizing some analytic techniques
and constructing a suitable Lyapunov function, we will
investigate the exponential synchronization problem of
fuzzy cellular neural networks with time-varying delays
and almost periodic coefficients. For this purpose, we
consider the system (1) as the drive system, and the
response system is designed as

y′i(t) = −ai(t)yi(t) +
n∑

j=1

bij(t)fj
(
yj(t)

)

+

n∑

j=1

cij(t)gj
(
yj(t− σij(t))

)

+

n∑

j=1

dij(t)μj(t) +

n∧

j=1

Tij(t)μj(t)

+

n∧

j=1

αij(t)hj
(
yj(t− τij(t))

)

+

n∨

j=1

βij(t)hj
(
yj(t− ηij(t))

)

+

n∨

j=1

Sij(t)μj(t) + Ii(t)

+ ui(t), i ∈ Π,

(5)

where ui(t) is the control input to be designed. The initial
condition of (5) is as follows:

yi(s) = ψi(s), s ∈ [−ν, 0], i ∈ Π,

where ν = max{σ, τ, η, ξ}, ξ = max1≤i,j≤n{ξ+ij},
and ψi(·) is a real-valued continuous function defined on
[−ν, 0].

Let zi(t) = yi(t) − xi(t) be the synchronization
error; then we can obtain the following error dynamical
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system of (1) and (5):

z′i(t) = −ai(t)zi(t) +
n∑

j=1

bij(t)Fj

(
zj(t)

)

+

n∑

j=1

cij(t)Gj

(
zj(t− σij(t))

)

+

n∧

j=1

αij(t)Hj

(
zj(t− τij(t))

)

+
n∨

j=1

βij(t)Ĥj

(
zj(t− ηij(t))

)

+ ui(t), i ∈ Π,

(6)

where Fj

(
zj(t)

)
� fj

(
yj(t)

) − fj
(
xj(t)

)
, Gj

(
zj(t −

σij(t))
)

� gj
(
yj(t − σij(t))

) − gj
(
xj(t − σij(t))

)
,

Hj

(
zj(t − τij(t))

)
� hj

(
yj(t − τij(t))

) − hj
(
xj(t −

τij(t))
)
, Ĥj

(
zj(t − ηij(t))

)
� hj

(
yj(t − ηij(t))

) −
hj
(
xj(t− ηij(t))

)
.

The impulsive controller ui(t) is designed as

ui(t) =

∞∑

k=1

Jik(zi(t))δ(t − tk)− κi(t)zi(t)

+

n∑

j=1

eij(t)lj(zj(t− ξij(t))), i ∈ Π, (7)

where k ∈ Z
+, δ(·) is the Dirac impulsive function.

With the impulsive controller (7), similarly to the
proof by Zhang et al. (2018) and using the property of
δ(·), the error system (5) becomes the following

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′i(t) = −ai(t)zi(t) +
n∑

j=1

bij(t)Fj

(
zj(t)

)

+
n∑

j=1

cij(t)Gj

(
zj(t− σij(t))

)

+
n∧

j=1

αij(t)Hj

(
zj(t− τij(t))

)

+
n∨

j=1

βij(t)Ĥj

(
zj(t− ηij(t))

)

−κi(t)zi(t) +
n∑

j=1

eij(t)

×lj(zj(t− ξij(t))), t �= tk,
	zi(tk) = zi(t

+
k )− zi(t

−
k )

= Jik(zi(t
−
k )), t = tk,

zi(s) = ψi(s)− ϕi(s), s ∈ [−ν, 0],

(8)

where i ∈ Π, k ∈ Z
+, Δzi(tk) denotes the state jumping

at impulsive time instant t = tk, while zi(t
+
k ) and zi(t

−
k )

are the right-hand and left-hand limits of function zi(t) at
tk. Moreover, zi(t

+
k ) = zi(tk) and

Jk(zi(t
−
k ))

=
(
J1k(z1(t

−
k )), J2k(z2(t

−
k )), . . . , Jnk(zn(t

−
k ))

)T

represents impulsive perturbation of the i-th neuron at tk.
Set B =

{{tk} : tk ∈ R, tk < tk+1, k ∈
Z
+, limk→±∞ tk = ±∞}

. For {tk} ∈ B, let PC(R,Rn)
be the space formed by all bounded piecewise continuous
functions ϕ : R → R

n such that ϕ(·) is continuous at t
for any t /∈ {tk} and ϕ(tk) = ϕ(t+k ) for all k ∈ Z

+.

Definition 3. (Stamov, 2012) The function ϕ ∈
PC(R,Rn) is said to be almost periodic if the following
holds:

(i) {tk} constitutes a uniformly almost periodic
sequence.

(ii) For any ε > 0, there exists a positive number δ =
δ(ε) such that, if the points t′ and t′′ belong to the
same interval of continuity of ϕ(t) and |t′ − t′′| < δ,
then ‖ϕ(t′)− ϕ(t′′)‖ < ε.

(iii) For every ε > 0, there exists a relatively dense set T
such that, if τ ∈ T , then ‖ϕ(t+τ)−ϕ(t)‖ < ε for all
t ∈ R satisfying the condition |t− tk| > ε, k ∈ Z

+.

Definition 4. The response system (5) and the drive
system (1) are said to be globally exponentially synchro-
nized if there exist positive constants M > 0 and λ > 0
such that

‖y(t)− x(t)‖ ≤M‖ψ − ϕ‖0e−λt,

where

‖y(t)− x(t)‖ = max
i∈Π

{|yi(t)− xi(t)|
}
,

‖ψ − ϕ‖0 = max
i∈Π

{
sup

t∈[−ν,0]

|ψi(t)− ϕi(t)|
}
.

Theorem 2. Let (A1)–(A3) hold and suppose further the
following:

(A4) κi ∈ PC(R,R+), eij ∈ PC(R,R) and ξij ∈
PC1(R,R+) with ς = inft∈R{1 − ξ′ij(t)} > 0 are
almost periodic, where i, j ∈ Π.

(A5) For any u, v ∈ R, there exists a positive constant Ll
j

such that

|lj(u)− lj(v)| ≤ Ll
l|u− v|

and lj(0) = 0, where j ∈ Π.

(A6) The impulsive operator Jik(zi(t
−
k )) satisfies

Jik(zi(t
−
k )) = −λik(zi(t−k ))), 0 < λik < 2, i ∈ Π,

k ∈ Z
+.
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(A7) There exists a positive constant ω such that

max
i∈Π

{
ω − (a−i + κ−i ) +

n∑

j=1

b+ijL
f
j

+
eωσ

γ

n∑

j=1

c+ijL
g
j +

eωτ

ρ

n∑

j=1

α+
ijL

h
j

+
eωη

�

n∑

j=1

β+
ijL

h
j +

eωξ

ς

n∑

j=1

e+ijL
l
j

}
< 0.

Then the drive system (1) and the response system (5) are
globally exponentially synchronized.

Proof. For t > 0, and t �= tk, k ∈ Z
+, we have

|z′i(t)| = |y′i(t)− x′i(t)|

=

∣∣∣∣− ai(t)
[
yi(t)− xi(t)

]
+

n∑

j=1

bij(t)

× [
fj(yj(t))− fj(xj(t))

]

+
n∑

j=1

cij(t)
[
gj(yj(t− σij(t)))

− gj(xj(t− σij(t)))
]

+

n∧

j=1

αij(t)
[
hj(yj(t− τij(t)))

− hj(xj(t− τij(t)))
]

+
n∨

j=1

βij(t)
[
hj(yj(t− ηij(t)))

− hj(xj(t− ηij(t)))
] − κi(t)zi(t)

+

n∑

j=1

eij(t)lj(zj(t− ξij(t)))

∣∣∣∣

≤ −(a−i + κ−i )|zi(t)|+
n∑

j=1

b+ijL
f
j |zj(t)|

+

n∑

j=1

c+ijL
g
j |zj(t− σij(t)))|

+
n∑

j=1

α+
ijL

h
j |zj(t− τij(t))|

+
n∑

j=1

β+
ijL

h
j |zj(t− ηij(t))|

+

n∑

j=1

e+ijL
l
j|zj(t− ξij(t))|, i ∈ Π.

Also, for t = tk, k ∈ Z
+, we obtain

zi(t
+
k ) = zi(t

−
k )− λik(zi(t

−
k ))

= (1− λik)(zi(t
−
k )), i ∈ Π. (9)

Then, by (A6) and (9), we obtain

|zi(t+k )| ≤ |zi(t−k )|, k ∈ Z
+, i ∈ Π.

With Wi(t) = eωt|zi(t)|, for t �= tk, we have

W ′
i (t) ≤ ωWi(t) + eωt|z′i(t)|, i ∈ Π

and for t = tk, we have

Wi(t
+
k ) = eωt+k |zi(t+k )| ≤ eωt−k |zi(t−k )|

=Wi(t
−
k ), k ∈ Z

+, i ∈ Π.

Let us construct a Lyapunov function V (t) as
follows:

V (t) =

n∑

i=1

{
Wi(t) + Λi(t)

}
,

where i ∈ Π and

Λi(t) =
eωσ

γ

n∑

j=1

c+ijL
g
j

∫ t

t−σij(t)

|zj(s)|eωs ds

+
eωτ

ρ

n∑

j=1

α+
ijL

h
j

∫ t

t−τij(t)

|zj(s)|eωs ds

+
eωη

�

n∑

j=1

β+
ijL

h
j

∫ t

t−ηij(t)

|zj(s)|eωs ds

+
eωξ

ς

n∑

j=1

e+ijL
l
j

∫ t

t−ξij(t)

|zj(s)|eωs ds.

For t �= tk, calculating the Dini right-hand derivative of
V (t) along the solutions of the error system (6), we obtain

D+V (t)

≤
n∑

i=1

{
ωWi(t) + eωt|z′i(t)|+

eωσ

γ

n∑

j=1

c+ij

× Lg
j |zj(t)|eωt − eωσ

γ

n∑

j=1

c+ijL
g
j

× |zj(t− σij(t))|eω(t−σij(t))(1− σ′
ij(t))

+
eωτ

ρ

n∑

j=1

α+
ijL

h
j |zj(t)|eωt

− eωτ

ρ

n∑

j=1

α+
ijL

h
j |zj(t− τij(t))|

× eω(t−τij(t))(1− τ ′ij(t)) +
eωη

�

n∑

j=1

β+
ij

× Lk
j |zj(t)|eωt − eωη

�

n∑

j=1

β+
ijL

h
j |zj(t
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− ηij(t))|eω(t−ηij(t))(1− η′ij(t))

+
eωξ

ς

n∑

j=1

e+ijL
l
j |zj(t)|eωt − eωξ

ς

n∑

j=1

e+ijL
l
j

× |zj(t− ξij(t))|eω(t−ξij(t))(1− ξ′ij(t))
}

≤
n∑

i=1

{
ωWi(t) + eωt

[
− (a−i + κ−i )|zi(t)|

+

n∑

j=1

b+ijL
f
j |zj(t)|+

n∑

j=1

c+ijL
g
j |zj(t− σij(t))|

+

n∑

j=1

α+
ijL

h
j |zj(t− τij(t))|+

n∑

j=1

β+
ijL

h
j |zj(t

− ηij(t))| +
n∑

j=1

e+ijL
l
j|zj(t− ξij(t))|

]

+
eωσ

γ

n∑

j=1

c+ijL
g
j |zj(t)|eωt − eωσ

γ

n∑

j=1

c+ijL
g
j

× |zj(t− σij(t))|eω(t−σij(t))(1− σ′
ij(t))

+
eωτ

ρ

n∑

j=1

α+
ijL

h
j |zj(t)|eωt − eωτ

ρ

n∑

j=1

α+
ijL

h
j

× |zj(t− τij(t))|eω(t−τij(t))(1− τ ′ij(t))

+
eωη

�

n∑

j=1

β+
ijL

h
j |zj(t)|eωt − eωη

�

n∑

j=1

β+
ijL

h
j

× |zj(t− ηij(t))|eω(t−ηij(t))(1− η′ij(t))

+
eωξ

ς

n∑

j=1

e+ijL
l
j |zj(t)|eωt − eωξ

ς

n∑

j=1

e+ijL
l
j

× |zj(t− ξij(t))|eω(t−ξij(t))(1− ξ′ij(t))
}

≤
n∑

i=1

{
Wi(t)

[
ω − (a−i + κ−i ) +

n∑

j=1

b+ijL
f
j

+
eωσ

γ

n∑

j=1

c+ijL
g
j +

eωτ

ρ

n∑

j=1

α+
ijL

h
j

+
eωη

�

n∑

j=1

β+
ijL

h
j +

eωξ

ς

n∑

j=1

e+ijL
l
j

]}
. (10)

From Assumption A6, we can calculate the right limits
of Lyapunov functional V at impulsive moments tk as
follows:

V (t+k ) =
n∑

i=1

{
Wi(t

+
k ) +

eωσ

γ

n∑

j=1

c+ijL
g
j

×
∫ t+k

t+k −σij(t
+
k )

eωs|zj(s)| ds+ eωτ

ρ

n∑

j=1

α+
ij

× Lh
j

∫ t+k

t+k −τij(t
+
k )

eωs|zj(s)| ds

+
eωη

�

n∑

j=1

β+
ijL

h
j

∫ t+k

t+k −ηij(t
+
k )

eωs|zj(s)| ds

+
eωξ

ς

n∑

j=1

e+ijL
l
j

∫ t+k

t+k −ξij(t
+
k )

|zj(s)|eωs ds

}

≤
n∑

i=1

{
Wi(t

−
k ) +

eωσ

γ

n∑

j=1

c+ijL
g
j

×
∫ t−k

t−k −σij(t
−
k )

eωs|zj(s)| ds

+
eωτ

ρ

n∑

j=1

α+
ijL

h
j

∫ t−k

t−k −τij(t
−
k )

eωs|zj(s)| ds

+
eωη

�

n∑

j=1

β+
ijL

h
j

∫ t−k

t−k −ηij(t
−
k )

eωs|zj(s)| ds

+
eωξ

ς

n∑

j=1

e+ijL
l
j

∫ t−k

t−k −ξij(t
−
k )

|zj(s)|eωs ds

}

= V (t−k ), k ∈ Z
+. (11)

In view of Assumption A7, (10) and (11), we obtain

D+V (t) ≤ 0,

which implies V (t) ≤ V (0) for all t ≥ 0.
On the other hand, we have

V (0) =

n∑

i=1

{
Wi(0) +

eωσ

γ

n∑

j=1

c+ijL
g
j

×
∫ 0

−σij(0)

eωs|zj(s)| ds+ eωτ

ρ

n∑

j=1

α+
ijL

h
j

×
∫ 0

−τij(0)

eωs|zj(s)| ds+ eωη

�

n∑

j=1

β+
ijL

h
j

×
∫ 0

−ηij(0)

eωs|zj(s)| ds

+
eωξ

ς

n∑

j=1

e+ijL
l
j

∫ 0

−ξij(0)

|zj(s)|eωs ds

}

≤
n∑

i=1

[
1 +

eωσ − 1

ωγ

n∑

j=1

c+ijL
g
j

+
eωτ − 1

ωρ

n∑

j=1

α+
ijL

h
j

+
eωη − 1

ω�

n∑

j=1

β+
ijL

h
j

+
eωξ − 1

ως

n∑

j=1

e+ijL
l
j

]
‖ψ − ϕ‖0.
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It is easy to check that

‖y(t)− x(t)‖ ≤ V (t)e−ωt ≤ V (0)e−ωt

≤Me−ωt‖ψ − ϕ‖0, t ≥ 0,

where

M =

n∑

i=1

[
1 +

eωσ − 1

ωγ

n∑

j=1

c+ijL
g
j

+
eωτ − 1

ωρ

n∑

j=1

α+
ijL

h
j +

eωη − 1

ω�

n∑

j=1

β+
ijL

h
j

+
eωξ − 1

ως

n∑

j=1

e+ijL
l
j

]
> 0.

Therefore, the drive system (1) and the response system
(5) are globally exponentially synchronized. The proof is
complete. �

Remark 2. Li et al. (2018b; 2018a) considered almost
periodic synchronization and pseudo almost periodic
synchronization for quaternion-valued cellular neural
networks with time-varying delays, but the controllers in
those works are only state feedback ones, not the state
feedback and the impulsive controller. In addition, the
networks considered in these works are deterministic,
rather than fuzzy networks. Therefore, Theorem 2 is new.

5. Numerical example

In this section, an example is given to show the
effectiveness of the result obtained in this paper.

Example 1. Consider the following fuzzy cellular neural
networks as the drive system:

x′i(t) = −ai(t)xi(t) +
2∑

j=1

bij(t)fj(xj(t))

+

2∑

j=1

cij(t)gj(xj(t− σij(t)))

+

2∑

j=1

dij(t)μj(t) +

2∧

j=1

Tij(t)μj(t)

+

2∧

j=1

αij(t)hj(xj(t− τij(t)))

+
2∨

j=1

βij(t)hj(xj(t− ηij(t)))

+

2∨

j=1

Sij(t)μj(t) + Ii(t). (12)

The corresponding response system is given by

y′i(t) = −ai(t)yi(t) +
2∑

j=1

bij(t)fj(yj(t))

+
2∑

j=1

cij(t)gj(yj(t− σij(t)))

+

2∑

j=1

dij(t)μj(t) +

2∧

j=1

Tij(t)μj(t)

+

2∧

j=1

αij(t)hj(yj(t− τij(t)))

+

2∨

j=1

βij(t)hj(yj(t− ηij(t)))

+
2∨

j=1

Sij(t)μj(t) + Ii(t) + ui(t), (13)

and the controller is as follows:

ui(t) =

∞∑

k=1

Jik(zi(t))δ(t− tk)− κi(t)zi(t)

+
n∑

j=1

eij(t)lj(zj(t− ξij(t))), (14)

where i = 1, 2, and the coefficients are

f1(x) = f2(x) = 0.3 sinx,

g1(x) = g2(x) = 0.2 tanhx,

h1(x) = h2(x) = 0.5(|x+ 1|+ |x| − 1),

l1(x) = l2(x) = 0.4|x|,

a1(t) = sin
√
2t+ 3, a2(t) = cos 2t+ 4,

I1(t) = 0.1 sin2t, I1(t) = 0.1 sin
√
3t,

μ1(t) = sin t, μ2(t) = cos t,

b11(t) = 0.1 sin5t, b12(t) = 0.2 cos 2t,

b21(t) = 0.4 sin t, b22(t) = 0.5 cos t,

c11(t) = 0.3 sin7t, c12(t) = 0.1 cos t,

c21(t) = 0.4 cos 3t, c22(t) = 0.2 sin
√
2t,

d11(t) = 0.5 sin
√
2t, d12(t) = 0.5 sin 5t,

d21(t) = 0.4 cos
√
3t, d22(t) = 0.5 sin t,

α11(t) = 0.25 cos t, α12(t) = 0.5 sin 2t,

α21(t) = 0.6 sin5t, α22(t) = 0.3 sin
√
3t,

β11(t) = 0.2 cos
√
3t, β12(t) = 0.1 sin

√
5t,

β21(t) = 0.3 cos t, β22(t) = 0.45 sin t,

T11(t) = 0.3 sin2t, T12(t) = 0.4 cos t,
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T21(t) = sin
√
2t, T22(t) = cos

√
3t,

S11(t) = 0.5 sin t, S12(t) = 0.6 cos t,

S21(t) = sin 3t, S22(t) = sin
√
3t,

κ1(t) = cos
√
2t+ 3, κ2(t) = sin t+ 4,

e11(t) = 0.1 sin
√
2t, e12(t) = 0.2 sin t,

e21(t) = 0.3 sin2t, e22(t) = 0.2 cos
√
3t,

σij(t) = 0.4 sin2 t, τij(t) = 0.2 cos2 t,

ηij(t) = 0.3| sin t|, ξij(t) = 0.5| cos t|.
By simple calculation, we obtain

a−1 = 2, κ−1 = 2, a−2 = 3, κ−2 = 3,

Lf
1 = Lf

2 = 0.3, Lg
1 = Lg

2 = 0.2,

Lh
1 = Lh

2 = 1, Ll
1 = Ll

2 = 0.4,

b+11 = 0.1, b+12 = 0.2, b+21 = 0.4, b+22 = 0.5,

c+11 = 0.3, c+12 = 0.1, c+21 = 0.4, c+22 = 0.2,

d+11 = 0.5, d+12 = 0.5, d+21 = 0.4, d+22 = 0.5,

α+
11 = 0.25, α+

12 = 0.5, α+
21 = 0.6, α+

22 = 0.3,

β+
11 = 0.2, β+

12 = 0.1, β+
21 = 0.3, β+

22 = 0.45,

T+
11 = 0.3, T+

12 = 0.4, T+
21 = 1, T+

22 = 1,

S+
11 = 0.5, S+

12 = 0.6, S+
21 = 1, S+

22 = 1,

I+1 = I+2 = 0.1, μ+
1 = μ+

2 = 1,

e+11 = 0.1, e+12 = 0.2, e+21 = 0.3, e+22 = 0.2,

σ = 0.4, τ = 0.2, η = 0.3, ξ = 0.5,

P1 = 1.22, P2 = 2.04.

Then we obtain

max

{
P1

a−1
,
P2

a−2

}
≈ max{0.61, 0.68} = 0.68 < 1,

and therefore all the conditions of Theorems 1 are
satisfied, so the drive system (12) has an almost periodic
solution. Moreover, take tk = 0.5 + 2(k − 1)π, k ∈ Z

+

and impulsive functions Jik(zi) = −(1+ 1
3 sin(2+k))zi,

i = 1, 2, ω = 1, γ = 0.6, ρ = 0.8, � = 0.7, ς = 0.5; then
we get

max
i=1,2

{
ω − (a−i + κ−i ) +

n∑

j=1

b+ijL
f
j

+
eωσ

γ

n∑

j=1

c+ijL
g
j +

eωτ

ρ

n∑

j=1

α+
ijL

h
j

+
eωη

�

n∑

j=1

β+
ijL

h
j +

eωξ

ς

n∑

j=1

e+ijL
l
j

}

≈ max{−0.5918,−0.8198}
= −0.5918 < 0.

Thus, Assumption A7 is also satisfied. Therefore, the
systems (12) and (13) can be globally exponentially
synchronized (see Figs. 1–6).

6. Conclusion

In this paper, we considered the problem of almost
periodic synchronization of fuzzy cellular neural networks
with time-varying delays via state-feedback and impulsive
control. By applying the Banach fixed point theorem,
constructing a suitable Lyapunov function and designing a
state-feedback and impulsive control, we obtained that the
drive-response structure of fuzzy cellular neural networks
with almost periodic coefficients realize exponential
synchronization. We know that almost periodic
synchronization for fuzzy cellular neural networks with
time-varying delays via state-feedback and impulsive
control is new. Our results are completely original and
our methods can be used to study the problem of almost
periodic and automorphic synchronization for other types
of neural networks.

�
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