
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 2, 351–362
DOI: 10.2478/amcs-2019-0026

AN ACTIVE EXPLORATION METHOD FOR DATA EFFICIENT
REINFORCEMENT LEARNING

DONGFANG ZHAO a, JIAFENG LIU a , RUI WU a, DANSONG CHENG a,∗, XIANGLONG TANG a

aSchool of Computer Science and Technology
Harbin Institute of Technology, West Dazhi Street #92, Harbin 150001, China

e-mail: cdsinhit@hit.edu.cn

Reinforcement learning (RL) constitutes an effective method of controlling dynamic systems without prior knowledge.
One of the most important and difficult problems in RL is the improvement of data efficiency. Probabilistic inference
for learning control (PILCO) is a state-of-the-art data-efficient framework that uses a Gaussian process to model dynamic
systems. However, it only focuses on optimizing cumulative rewards and does not consider the accuracy of a dynamic
model, which is an important factor for controller learning. To further improve the data efficiency of PILCO, we propose
its active exploration version (AEPILCO) that utilizes information entropy to describe samples. In the policy evaluation
stage, we incorporate an information entropy criterion into long-term sample prediction. Through the informative policy
evaluation function, our algorithm obtains informative policy parameters in the policy improvement stage. Using the policy
parameters in the actual execution produces an informative sample set; this is helpful in learning an accurate dynamic
model. Thus, the AEPILCO algorithm improves data efficiency by learning an accurate dynamic model by actively selecting
informative samples based on the information entropy criterion. We demonstrate the validity and efficiency of the proposed
algorithm for several challenging controller problems involving a cart pole, a pendubot, a double pendulum, and a cart
double pendulum. The AEPILCO algorithm can learn a controller using fewer trials compared to PILCO. This is verified
through theoretical analysis and experimental results.

Keywords: reinforcement learning, information entropy, PILCO, data efficiency.

1. Introduction

Reinforcement learning (RL) constitutes a developing
field in machine learning, which is an efficient method
for autonomous learning in robotics and control without
prior knowledge (Sutton, 1988). RL is different
from conventional supervised learning and unsupervised
learning, which typically employ static training samples,
in that it learns by interacting with an environment
autonomously. Generally, several interactions are
required to collect knowledge about an environment
before the agent’s learning to control. For a realistic
dynamic system that is sensitive to time and increases in
computation, a large number of interactions may lead to
a security risk. Thus, the required number of interactions
should be considered when RL is applied to actual robot
systems.

A reinforcement learning agent explores the
environment through interacting with it. The agent learns

∗Corresponding author

from these interactions and planning in order to achieve
a certain goal. In reinforcement learning, there are four
basic factors: the state (e.g., the position of the agent
in the environment, the posture of the agent), the action
(e.g., the magnitude of the force, the number of steps
agent forward.), the transition probability and the reward
function. The agent interacts with the environment
according to a policy. The policy controls what action
should be selected to interact. The reward function or the
cost function rate the current policy.

RL can be formalized as a Markov decision process,
consisting of the state, action, transition probability and
reward function. An agent continually executes an action
to interact with an environment and finally achieves an
explicit task. This interaction behavior makes the agent
translate from the present state to the next one according
to a transition probability model and policy. The
environment observation and feedback rewards obtained
from interaction are used for learning the transition

mailto:cdsinhit@hit.edu.cn

352 D. Zhao et al.

probability and an appropriate policy until a predefined
system target is achieved. Data efficient RL finds an
appropriate policy that can maximize cumulative rewards
with the minimal number of interactions (Deisenroth and
Rasmussen, 2011). In data efficient RL, lack of prior
knowledge about the environment is the most fundamental
challenge in achieving data efficiency. It is difficult to
select an optimal policy for the agent to control without
an accurate dynamic model. In addition, the tradeoff
between exploration and exploitation remains challenging
for control systems.

Various effective algorithms for solving data efficient
problems are available in the literature (Hayes and
Demiris, 1994; Price and Boutilier, 2003; Bagnell and
Schneider, 2001; Ng et al., 2006). Previously proposed
data efficiency algorithms mostly employ a model-based
structure since it provides a natural advantage in achieving
data efficiency compared with the model-free method.
The Dyna papers are classical works in the model-based
RL domain (Sutton, 1991; Silver et al., 2008). There
are several algorithms from the viewpoint of the model
structure and stochastic optimal control (Fabisch and
Metzen, 2014; Pan and Theodorou, 2014; Pan et al.,
2015). Alternatively, a few recent studies have combined
model-based learning with deep nets (Gruslys et al.,
2017; Finn et al., 2015; Finn and Levine, 2016; Levine
et al., 2016; Chebotar et al., 2017; Nagabandi et al., 2017;
Ebert et al., 2017). Moreover, the probabilistic inference
for learning control (PILCO) algorithm is an excellent
framework for achieving data efficiency (Deisenroth and
Rasmussen, 2011; Deisenroth et al., 2015).

PILCO uses a probability dynamic model instead of
a single determinate one. In addition, this probability
description learns the uncertainty of the dynamic model,
which is an important challenge in model-based RL
methods. However, PILCO focuses on maximizing
cumulative rewards to learn optimal policy parameters and
does not consider the accuracy of the dynamic model,
which is an important factor when learning controllers.
Moreover, in the policy improvement stage of PILCO,
an agent minimizes the mean of an accumulated cost
function to update policy parameters and then uses the
parameters to simulate a new trajectory. This policy
improvement strategy is essentially an exploitation-only
algorithm, without exploration.

Motivated by the aforementioned limitations, we
propose an active exploration PILCO (AEPILCO)
algorithm. We improve the typical PILCO by considering
the influence of a dynamic model. The key concept of
the proposed algorithm is selecting a sample set that is
helpful in training a dynamic model better. Owing to
the accurate dynamic model, optimal policy parameters
are learned and targets are achieved faster. To this
aim information entropy is introduced to describe sample
uncertainty. Samples with high uncertainty are more

helpful in training an accurate dynamic model. Thus,
data efficiency is achieved in terms of a carefully learned
dynamic model. The improved data efficient performance
of AEPILCO is verified through the simulation of several
challenging control problems.

The rest of the paper is organized as follows. The
typical PILCO framework is introduced in Section 2.
Then, the AEPILCO algorithm is presented in Section 3.
Experimental results and analysis are provided in
Section 4. Finally, the conclusions are given in Section 5.

2. PILCO framework

PILCO considers a dynamic system with continuous state
x and action u. Formally, it considers dynamic systems

xt+1 = f(xt,ut) + ω, ω ∼ N (0,Σω) (1)

with continuous-valued states xt ∈ R
D and action ut ∈

R
F , Gaussian system noise ω, and unknown transition

dynamics f . The policy search objective is to find a
policy/controller π : x �→ π(x, θ) = u, which minimizes
the expected long-term cost,

Jπ(θ) =

T∑

t=0

Ext [c(xt)], xt ∼ N (μ0,Σ0), (2)

of following π for T steps, where c(xt) is the cost of being
in state x at time t, and the cost function is defined by the
distance of current state to target one:

c(xt) = 1− exp

(
− 1

2σ2
c

d(xt,xtarget)
2

)
∈ [0, 1]. (3)

State transition is considered a Markov process.
Given state xt, a dynamic system transfers to state xt+1

with action ut according to dynamic model f , which
describes the transition probability p(xt+1|xt,ut). A
state-action vector is defined as x̃t = [xt,ut]. The set
of tuples 〈x̃t,xt+1〉 is defined as a sample. The state
transition follows a dynamic model. Using the determined
dynamic model, xt is easy to be compute once x̃t−1 is
known. The current sample can be described using the
probability of the next state p(xt), instead of x̃t−1.

Policy π is a function parameterized by θ. In PILCO,
the policy representation is a deterministic Gaussian
process with a fixed number of N basis functions. Here,
‘deterministic’ means that there is no uncertainty about
the underlying function. Therefore, the deterministic
Gaussian process is a degenerate model, which is
functionally equivalent to a regularized RBF network. Our
objective is to find a policy π∗ which minimizes Jπ(θ) in
Eqn.(2).

In PILCO, the dynamic model is implemented as
a Gaussian process, which is completely specified by
its mean and covariance functions. According to the

An active exploration method for data efficient reinforcement learning 353

definition of the Gaussian process transition probability,
when a system is in a specific state x, the predicted state
x∗ with action u follows the normal distribution,

p(x∗|x,u) = N (m(x,u),Σ(x,u)). (4)

The squared exponential kernel function is selected as the
covariance function

k(p,q) = σ2 exp
(
− ‖p− q‖2

2l2

)
+ δpqσ

2
ε , (5)

where noise variance σε, latent function variance σ and
length-scale l are Gaussian process hyper-parameters,
which must be learned. The initial training input is
D = {x̃1, . . . , x̃n}. The corresponding training target is
the next state set, {x2, . . . ,xn+1}, to which the system
transits, and δpq is the Kronecker function, which is one
if the two inputs, p,q, are equal and zero otherwise. An
increasing number of samples is added to the training data
set through constant interaction with the environment.
Thus, an agent can update the hyper-parameters by
retraining the dynamic model with the new training data
to predict the next state. Moreover, PILCO assumes that
action selection follows the normal distribution when the
system is in a specific state,

p(u|x) = N (μ(x), σ(x)). (6)

In the initialization stage, assuming that the policy
selection follows initial mean μ0 = 0 and covariance
Σ0 = 1, the system is executed in an actual environment
for initial training dataset D. Subsequently, the agent
uses this training dataset to learn the hyper-parameters
of the Gaussian process. In the policy evaluation stage,
policy parameter θ is evaluated by simulating t predicted
steps using the learned dynamic model and parameterized
policy function π(θ). Policy evaluation accumulates
the cost function value in t predicted steps and obtains
objective Jπ(θ). Then, a policy gradient method is
utilized to obtain the optimal policy parameters that
will be used in the next trial. In order to implement
the algorithm, PILCO makes certain assumptions and
simplifications including the first-order Markov process
and predicting one step forward when the agent simulates
samples. Through experiments, the authors verified that
the simplification of the calculation in PILCO would not
affect controller learning significantly.

According to the one-step prediction with specific
input derived by Deisenroth et al. (2015), the mean and
variance are given by

m(x∗) = k(x∗,xi)(K+σ2
εI)

−1y,

Σ(x∗) = k(x∗,x∗)

− k(x∗,xi)(K+σ2
εI)

−1k(xi,x∗),

(7)

where k(·, ·) is the covariance function, K is the
covariance matrix of training inputs. xi is an element of

training inputs, X = {x̃1, . . . , x̃n}, y = [x2 . . .xn+1] is
the training target, σε is noise variance, which is learned
in the dynamic model learning process, and I is the
Kronecker delta matrix.

In the policy improvement stage,
PILCO minimizes function Jπ(θ) and the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) policy
gradient method is utilized to obtain a new policy
parameter (θ∗) by computing dJπ(θ)/dθ. Then, the
current optimal policy is executed to generate new
samples and train the new dynamic model. These
processes are repeated until a predefined task is achieved.

PILCO benefits from its Gaussian process
assumption and achieves data efficiency. However,
the objective function, Jπ(θ), in the policy evaluation
stage depends only on the distance between the current
state and the target without considering the accuracy
of the dynamic model, which is an important factor for
improving data efficiency.

3. Active exploration PILCO

This section describes the AEPILCO algorithm in detail.
A typical Bayesian RL PILCO framework uses a Gaussian
process to model a dynamic system and updates the
policy parameter by minimizing the mean of accurate
rewards, which are estimated by the distance between the
current state and the target one. Then, the agent focuses
on exploiting the current existing policy parameter to
interact with the environment. However, PILCO does
not consider the accuracy of the dynamic model. To
resolve this problem, we propose the AEPILCO algorithm
to achieve data efficiency by actively selecting samples.
This is helpful for learning a more accurate dynamic
model. Specifically, information entropy is utilized to
describe long-term predicted samples. In the following
subsections, we first describe the entropy-based sample
description method and analysis. Subsequently, we
examine how to use the information entropy method
to achieve data efficiency in the policy evaluation and
improvement stages. Finally, we describe the entire
processes of the proposed algorithm and evaluate the
difference between PILCO and AEPILCO.

3.1. Entropy-based sample description. Consider
that a dynamic model is learned using interaction samples,
which depend on a parameterized policy function. The
policy parameter is updated depending on the reward
accumulated in t simulation steps. Thus, the key
to learning an accurate dynamic model is generating
informative simulated samples in the policy evaluation
stage.

We introduce information entropy to describe
simulated samples. According to the Gaussian process
assumption, transition probability p(xt+1|xt,ut),

354 D. Zhao et al.

which describes the transition of the system from state
xt to state xt+1 with action ut, follows the normal
distribution. The information entropy of predicted
state distribution p(xt+1|xt,ut) can be described as
− ∫

p(xt+1|xt,ut) log p(xt+1|xt,ut) dxt+1. This
entropy describes the uncertainty of variable xt+1. High
information entropy implies high uncertainty. Information
entropy is used to describe the predicted sample. When
predicting samples for efficient RL algorithms, the agent
should select the samples with the largest uncertainty.
Because the sample set with higher information entropy is
helpful for learning a more accurate dynamic model, the
learned model based on these high uncertainty samples
exhibits a stronger generalization ability. Therefore,
we select the sample x̃t, which can obtain the optimal
predicted state xt+1, with the largest entropy. Thus, the
information entropy criterion is

x∗
H = argmax

xt+1

{
−
∫

p(xt+1|xt,ut)

× log p(xt+1|xt,ut) dxt+1

}
, (8)

where x∗
H is the optimal sample with the highest

information entropy required for sampling, xt+1 ranges
over all possible states, p(xt+1|xt,ut) describes the
probability of state-action vector 〈xt,ut〉 yielding a
transition to state xt+1. Based on the Gaussian
process, normal distribution, and first-order Markov
process assumptions, posterior probability p(xt+1|xt,ut)
is specified by its mean and covariance function described
in Eqn. (7).

3.2. Policy evaluation. In the AEPILCO framework,
previous actual generated samples are used to learn
a basic dynamic model. Subsequently, this dynamic
model is utilized to predict a sequence of simulation
samples, x1,x2, . . . ,xt. Our objective is to maximize
the information entropy of the entire predicted state
distribution. As every predicted state follows the
normal distribution, the entropy of the multivariate
normal distribution with probability p(xt+1|xt,ut) can be
described as a continuous integration, which is given by

H(p) = −
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
t

p(xt+1|xt,ut)

× log p(xt+1|xt,ut) dxt+1 (9)

where xt+1 is an element of state set X =
(x1,x2, · · · ,xt)

′ to be yet simulated.
According to the entropy expression for the

multivariate normal distribution derived by Ahmed and
Gokhale (1989), the entropy of the sample set in Eqn. (9)

can be rewritten as

H(p) =
N

2
+

N

2
ln(2π) +

1

2
ln (|Σ|) , (10)

where Σ is the covariance matrix of the predicted sample
set, |·| denotes the determinant, and N is the number
of samples. To maximize H(X) in Eqn.(10), we only
maximize ln (|Σ(X)|). Thus, the active exploration
optimistic term is described as

JE(X) = ln (|Σ(X)|) . (11)

This term focuses on generating informative samples.
Adding this term to the policy evaluation stage is helpful
for learning an accurate dynamic model. Observe that a
typical PILCO policy evaluation objective function only
focuses on the distance between the current state and
the target one without considering the accuracy of the
dynamic model, which can contribute to improving data
efficiency. We add Eqn. (11) to the policy evaluation of
a typical PILCO. Then, the AEPILCO policy evaluation
objective function is

Jπ(θ) =

T∑

t=0

Ext [c(xt)]+α

T∑

t=0

ln [Σ (xt)], (12)

where α is parameter used to trade off exploration and
exploitation. The first item is an objective function used
in PILCO which is measured by the distance between the
current state and the target one (Deisenroth et al., 2015).
AEPILCO follows the definition of cost function c(xt) in
Eqn. (3).

The geometric distance from the state xt to the
target state xtarget is denoted by d, and the parameter
σc controls the width of the cost function according to
the setup of each scenarios. We refer to the added
optimization function item as the active exploration
term because it helps in exploration. The covariance
in Eqn. (11) contains the uncertainty information
of the dynamic model. A typical PILCO is an
exploitation-greedy algorithm. Thus, adding Eqn. (11) is
helpful for balancing exploration and exploitation.

3.3. Policy improvement. We have shown how
to achieve a policy improvement through the added
active exploration item in Eqn. (12). In AEPILCO,
the objective function in policy evaluation is the sum
of the active exploration item and typical cost function,
which is derived in PILCO. Thus, we must only compute
the derivative of Eqn. (12) with respect to the policy
parameter,

dJE(θ)

dθ
=

d ln |Σ (x)|
d |Σ (x)|

d |Σ (x)|
dθ

, (13)

where
d ln |Σ (x)|
d |Σ (x)| =

1

|Σ (x)| , (14)

An active exploration method for data efficient reinforcement learning 355

d |Σ (x)|
dθ

=
d |Σ (x)|
dΣ (x)

dΣ (x)

dθ
. (15)

The matrix derivative with respect to the matrix is

d |Σ (x)|
dΣ (x)

= |Σ|Σ−1. (16)

Thus, the derivative of the added active exploration term
with respect to policy parameter θ depends on |Σ (x)|,
|Σ|Σ−1 and ∂Σ (x)/∂θ, as derived in Eqns. (14)–(16).

The covariance of predicted samples is derived
in PILCO using the moment matching approximation
method (Deisenroth et al., 2015), which exactly computes
the first two moments of a predictive distribution.

The derivative of the covariance with respect to
the policy parameter is similar to ∂μ (x)/∂θ, which
is derived in PILCO (Deisenroth et al., 2015). For
∂Σ (x)/∂θ, we compute the following derivative:

dΣ (xt)

dθ
=

dΣ

dp(ut−1)
dp(ut−1)

dθ

=
dΣ

dμu

dμu

dθ
+

dΣ

dΣu

dΣu

dθ
,

(17)

where ∂Σ/∂μu and ∂Σ/∂Σu are propagated by
long-term prediction and computed by the moment
matching approximation method derived by Deisenroth
et al. (2015).

∂Σ/∂μu and ∂Σ/∂Σu in Eqn. (17) are the
derivatives of the mean and covariance of the action
with respect to the policy parameter. The derivation
computation of Eqn. (17) depends on the presentation
of the policy, which is introduced in PILCO. Following
PILCO, AEPILCO represents the policy as a Gaussian,
and a BFGS policy gradient method is utilized to obtain
new policy parameters.

Algorithm 1 summarizes the entire process of
AEPILCO. Compared with a typical PILCO (Deisenroth
et al., 2015), AEPILCO adds an active exploration term
in Step 6 to the objective function in the policy evaluation
stage. The PILCO framework update policy depends
on the evaluation of predicted simulations, which is
calculated from the dynamic model. In AEPILCO, for
learning a more accurate dynamic model, we extend
the policy evaluation objective function by adding an
optimization term, which is used to describe the predicted
samples with information entropy. Moreover, adding
the optimization term is also helpful for exploration
as it can describe the sample variance. This feature
is analyzed in Section 3.2. Thus, AEPILCO can use
minimal interactions to achieve a predefined target using
the accurate dynamic model, and by balancing exploration
and exploitation.

Algorithm 1. Framework of ensemble learning for our
system.
Init: Initialize a random policy π with parameter θ ∼
N (μ0,Σ0). Execute the policy on a real system to gather
training data D.
Repeat:

learn Gaussian process dynamic model f using all
data.
Repeat:

prediction: simulate the system for
p(x1), . . . , p(xt)
policy evaluation: approximate inference; obtain

Jπ(θ) =
T∑

t=0
Ext [c(xt)]+α

T∑
t=0

ln [Σ (xt)].

policy improvement: BFGS-based policy
improvement; obtain dJπ(θ)/dθ.

Return new policy parameter θ∗ until convergence
π(θ)← π(θ∗)
Execute the policy on the actual system to gather

training data.
until the current state of reaches the target state, the task
is achieved.

4. Experiments and analysis

In this section, we evaluate the AEPILCO algorithm
on several challenging control tasks including
benchmark problems and high-dimensional state
space problems. We utilize here the simulated
scenarios provided by the PILCO software package
(http://mloss.org/software/view/508/) to
verify our algorithm. The package provides six simulators
of implemented scenarios as demonstration. All of them
focus on the fundamental of solving the differential
equations of nonlinear dynamic systems. The detailed
derivation of their physical model is provided in
the PILCO software package. We use four of these
predesigned scenarios with different dimensions of
the state space to verify our algorithm. Firstly, the
comparison experiment conducted to evaluate the
dynamic model learned by AEPILCO and PILCO is
presented in Section 4.1. The comparison is followed
by a parameter selection experiment, which is described
in Section 4.2. Lastly, the experiment and analysis
performed to examine the time required by PILCO and
AEPILCO to achieve a goal are presented in Section 4.3.
All the experiments were performed on a PC with an
i5 CPU (2.57 GHz), 8 GB RAM, and the Windows 10
operating system.

4.1. Scenarios setup and verification experiment.
The verification experiment is designed to evaluate
the effectiveness and data-efficiency of the AEPILCO
algorithm. AEPILCO learns to control four challenging

http://mloss.org/software/view/508/

356 D. Zhao et al.

��

�

inner�

�

�

outer�

inner�

inner�

outer�

outer�

�������	
 ���	
��
���	�� ��������	
��
���	��

inner�

�

outer�

�
�����

Fig. 1. Four scenarios used in our experiments.

Table 1. Dimensions of state action and policy parameter spaces.
cart pole pendubot double pendulum cart double pendulum

state space R
4

R
4

R
4

R
6

action space R R R
2

R

parameter space R
305

R
305

R
812

R
1816

problems, involving a cart pole, a pendubot, a double
pendulum, and a cart double pendulum. Figure 1
illustrates the structure of these four scenarios. The
dynamic systems consist of a cart, a single/double-link
pendulum, or both. Each scenario has a certain target,
including maintaining the balance of the pendulum,
maintaining the cart at a zero position, or both. Following
PILCO, for each task, the target is to reach certain
conditions and maintain them for at least 10 time steps.

To solve the four tasks in our experiment, a nonlinear
policy is required. Following PILCO, AEPILCO
represents the preliminary policy π̃ by

π̃(x∗) =
N∑
i=1

k(mi,x∗)(K+ σ2
πI)

−1
t = K(M,x∗)Tα, (18)

where x∗ is a test input, α = (K+ 0.01I)−1t, and
t plays the role of a Gaussian processs training targets.
M = [m1, . . . ,mN] are the centers of the (axis-aligned)
Gaussian basis functions,

k(xp,xq) = exp

(
−1

2
(xp − xq)

TΛ−1(xp − xq)

)
,

(19)
The policy representation in (18) is called a deterministic
Gaussian process with a fixed number of N basis
functions. Here, ‘deterministic’ means that there is
no uncertainty about the underlying function, that is,
varπ̃[π̃(x∗)] = 0. Therefore, the deterministic Gaussian
process is a degenerate model, which is functionally
equivalent to a regularized RBF network.

In AEPILCO, we combine the following parameters
as a policy parameter vector θ. The parameters of
the deterministic Gaussian process in (18) are the
locations M of the centers (D × N parameters), the
(shared) length-scales of the Gaussian basic function (D
length-scale parameters per target dimension), and the N

targets t per target dimension. In the case of multivariate
controls, the basic function centers M are shared. Table 1
summaries the setup of four scenarios used in this paper:
for each scenario, the dimensionality of the state and
action spaces is listed together with the dimension of
the policy space. Following PILCO, AEPILCO uses the
BFGS algorithm to realize a policy improvement. The
number of policy searches for each scenarios are 12, 30,
20 and 30, respectively. The number of basic functions for
RBF controllers are 100, 150, 100 and 200, respectively.

Tables 2–5 show the comparison of the partial final
states for four scenarios between PILCO and AEPILCO.
In the cart pole problem, the target is determined by
the cart position and the inner pendulum angle. The
target is achieved when the cart position reaches zero
and the angle of the pendulum reaches 0, ±π, or ±2π.
Table 2 shows that PILCO and AEPILCO require 7 and 8
trials to achieve the target, respectively. The cart double
pendulum problem is a combination of a cart pole and a
double pendulum. The target is achieved when the cart
position is zero and the angles of two pendulums reach 0,
±π, or ±2π. The results in Table 3 show that PILCO
and AEPILCO require 34 and 26 trials to achieve the
target, respectively. In the double pendulum problem,
two actions are applied to the inner and outer pendulums.
The target is achieved when the inner and outer pendulum
angles reach 0, ±π, or ±2π. The results in Table 4 show
that PILCO and AEPILCO achieve this target in 10 and 6
trials, respectively. In the pendubot problem, one action
is applied to the inner pendulum. Similarly to the double
pendulum, the pendubot’s final state is the one in which
the inner and outer pendulum angles reach 0,±π, or±2π.
The results in Table 5 show that PILCO and AEPILCO
require 15 and 10 trials to achieve the target, respectively.

Tables 3 and 5 show the results for trials 20 to 40
and trials 6 to 20, respectively, because the first 5 trials

An active exploration method for data efficient reinforcement learning 357

and first 20 trials did not achieve the target. We use fixed
parameter α in the experiments. In general, Tables 2–5
illustrate that the AEPILCO algorithm can successfully
learn a good controller. For all tasks, AEPILCO requires
fewer trials to achieve a target compared to PILCO and
shows higher data efficiency. This is mainly because
AEPILCO can learn a more accurate dynamic model,
which is helpful for learning a controller. In contrast,
PILCO focuses on minimizing the distance between
the current state and the target without considering the
accuracy of the dynamic model.

4.2. Dynamic model efficiency experiment. This
experiment is designed to evaluate the dynamic model

Table 2. Partial final state of 13 trials for the cart pole problem.
PILCO and AEPILCO require 8 and 7 trials to achieve
the target, respectively.

trials xPILCO θPILCO xAEPILCO θAEPILCO

trial 1 -16.4025 -0.38489 0.3049 -32.5808
trial 2 -0.0564 29.7306 0.6000 0.9902
trial 3 -0.1085 -0.6726 -0.0007 -0.1164
trial 4 -0.5821 -1.1992 0.9461 1.0190
trial 5 0.9344 6.2919 -0.0591 -3.1533
trial 6 0.06493 -0.7787 1.5453 -18.5497
trial 7 0.1033 9.0462 -0.0204 -3.1587
trial 8 0.0245 3.0963 -0.0072 -3.1240
trial 9 -0.0502 3.0353 -0.0324 -3.1560

trial 10 -0.0218 3.1531 -0.0245 -3.1662
trial 11 -0.00651 3.1522 0.0158 -3.1099
trial 12 -0.0202 3.1308 0.0193 -3.1345
trial 13 -0.0512 3.0613 0.0066 -3.1706

Table 3. Partial final state of trials 6C20 for the pendubot prob-
lem. PILCO and AEPILCO require 15 and 10 trials to
achieve the target, respectively.

trials θPILCO
inner θPILCO

outer θAEPILCO
inner θAEPILCO

outer

trial 6 5.6452 -16.8567 0.1561 3.3439
trial 7 11.3038 -19.7802 -5.2519 -12.1740
trial 8 10.0991 -11.3890 0.1596 2.3933
trial 9 5.9804 -10.7086 1.2819 -4.9990

trial 10 1.1569 -1.3637 -0.0100 -0.0279
trial 11 -0.1333 -2.6692 0.0496 -0.0111
trial 12 3.8198 -3.1530 0.0526 -0.0348
trial 13 3.8299 -4.9931 -0.0358 0.0506
trial 14 5.5205 -0.0449 -0.1157 0.0875
trial 15 6.0558 0.0308 -0.0182 0.0245
trial 16 6.0670 0.0311 -0.0593 0.0559
trial 17 6.1244 0.0211 -0.0732 0.0562
trial 18 6.1470 -0.0106 -0.0128 0.0323
trial 19 6.1727 0.0190 -0.0672 0.0390
trial 20 6.2578 -0.0083 -0.1000 0.0958

learned by AEPILCO. As the simulated samples are
generated by the learned dynamic model and the actual
executed samples are based on the actual dynamic
model, the difference between the cost function values
of the simulated and actual executed samples can reflect
the similarity between the dynamic models. A small
difference implies that the learned dynamic model is
closer to the actual one.

Figure 2 shows the comparison of the cost function
values for the cart pole, pendubot, double pendulum, and
cart double pendulum problems. The cost function is
defined by c(x) in Eqn. (12). Following PILCO, the cost
function is defined by the distance between the current
state and target one. The predicted cost function value
is computed using simulated samples in the simulation
stage. The real cost function value is computed using
the actual executed samples in a real execute stage.
The horizontal axes in Fig. 2 represent the steps of the
AEPILCO convergent trial. The vertical axes in Fig. 2
represent the corresponding cost function value at each
step. We show the cost function values at each step
in the convergent trial. The solid round and pentagram
lines indicate the PILCO predicted mean simulation and
actual executed cost function values, respectively. The
hollow circle and left triangle lines indicate the AEPILCO
predicted mean simulation and actual executed cost
function values, respectively. In particular, as simulated
samples depend on the mean and covariance, the predicted
mean simulated values shown in Fig. 2 are the mean
cost values of the simulated samples. In general, Fig. 2
intuitively shows that the hollow circle and left triangle
lines are more similar compared to the solid round and
pentagram lines. This implies that the dynamic model
corresponding to the hollow circle and left triangle lines

Table 4. Partial final state of 15 trials for the double pendulum
problem. PILCO and AEPILCO require 10 and 6 trials
to achieve the target, respectively.

trials θPILCO
inner θPILCO

outer θAEPILCO
inner θAEPILCO

outer

trial 1 3.9865 1.8907 3.3673 5.7589
trial 2 5.3460 91.3749 3.4925 -3.8871
trial 3 1.7860 46.7438 -10.7224 -8.7774
trial 4 2.6169 0.5521 -2.8829 -12.8506
trial 5 3.8508 15.3192 -0.3987 0.3444
trial 6 4.2038 2.2230 0.0430 0.0353
trial 7 3.8352 10.7600 -0.0407 0.0519
trial 8 3.5209 12.6124 -0.0396 0.0427
trial 9 5.6984 6.4812 -0.0538 0.0309
trial 10 6.0211 6.4821 -0.0221 0.0253
trial 11 6.1460 6.3697 -0.0421 0.0159
trial 12 6.1922 6.3447 -0.0469 0.0212
trial 13 6.2463 6.3320 -0.0052 0.0241
trial 14 6.2501 6.2999 -0.0258 0.0112
trial 15 6.2124 6.3446 -0.0650 0.0582

358 D. Zhao et al.

15 20 25 30 35 40
steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
st

 fu
nc

tio
n

va
lu

e

PILCO simulated mean
PILCO realCost
AEPILCO simulated mean
AEPILCO realCost

(a) cart pole

30 35 40 45 50 55 60
steps

0

0.2

0.4

0.6

0.8

1

co
st

 fu
nc

tio
n

va
lu

e

PILCO predicted
PILCO realCost
AEPILCO predicted
AEPILCO realCost

(b) pendubot

5 10 15 20 25 30
steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
st

 fu
nc

tio
n

va
lu

e PILCO predicted
PILCO realCost
AEPILCO predicted
AEPILCO realCost

(c) double pendulum

30 40 50 60 70 80 90 100
steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
st

 fu
nc

tio
n

va
lu

e
on

 p
en

du
lu

m
PILCO predicted
PILCO realCost
AEPILCO predicted
AEPILCO realCost

(d) cart double pendulum

Fig. 2. Comparison in terms of the cost function value at the convergence trial with AEPILCO for the cart pole (trial #7) (a), pendubot
(trial #10) (b), double pendulum (trial #6) (c) and cart double pendulum (trial #26) (d). The predicted cost function values
are produced by simulation samples and the real cost function values are produced by real execute samples. The hollow circle
and left triangle lines are more similar than the solid round and pentagram lines, which means the dynamic model producing
the hollow circle and left triangle lines is more accurate.

is more accurate. Moreover, in Figs. 2(a)–2(c), even
though the distance between the simulated and actual
cost function values is larger for PILCO compared with
AEPILCO, the solid round and pentagram lines show a
common trend of change. In contrast, in Fig. 2(d),
the actual cost function values obtained using PILCO are
not smooth when the agent tends to convergence using
AEPILCO. In addition, in Figs. 2(a)–2(b), the largest
distance between the cost function values indicated by the
pentagram and solid round lines is smaller than 0.2. In
contrast, in Fig. 2(b), this distance is larger than 0.5 at
most steps.

We use the Euclidean distance to quantitatively
evaluate the distance between the predicted simulation
and the actual executed cost function values. The
comparison of the results of the high-dimensional
problems is shown in Table 6. The results illustrate
the distance between the actual executed cost and the

simulated cost obtained using PILCO and AEPILCO,
respectively. For all control problems, AEPILCO
provides better performance in learning the dynamic
model. This is mainly because our algorithm considers
the accuracy of the dynamic model and adds the active
exploration item in the policy evaluation stage. Assume
that the dynamic model is learned using actual interaction
samples, which depend on the policy. In the policy
improvement stage, policy parameters are calculated
according to the objective function, which is determined
by the rewards of the simulation samples. In AEPILCO,
the simulation samples are most informative owing to
the information entropy criterion. Thus, we can obtain
informative simulation samples and policy parameters;
this is helpful in learning an accurate dynamic model.

4.3. Parameter selection experiment. This reported
experiment is designed to analyze how parameter α in

An active exploration method for data efficient reinforcement learning 359

Table 5. Partial final state of trials 20C40 for the cart double pendulum problem. PILCO and AEPILCO require 34 and 26 trials to
achieve the target, respectively.

trials xPILCO θPILCO
inner θPILCO

outer xAEPILCO θAEPILCO
inner θAEPILCO

outer

trial 20 3.2609 3.4022 15.9468 -1.2791 3.0429 6.7714
trial 21 1.3206 3.5573 12.2109 -0.3146 0.2328 6.7714
trial 21 1.3206 3.5573 12.2109 -0.3146 0.2328 6.7714
trial 22 5.5277 3.4187 17.6096 -1.0893 5.3714 18.9294
trial 23 -2.0459 28.4699 -11.0816 -3.1812 -0.2534 5.8586
trial 24 5.5352 -17.5292 -11.8798 -0.1901 0.0484 6.2956
trial 25 4.2886 -17.3491 -9.0522 0.2354 -1.4979 -9.1185
trial 26 -5.6026 -5.2180 -2.4510 0.0789 0.0057 6.2793
trial 27 -2.8028 -3.2240 -29.2524 -0.0100 -0.0549 6.2614
trial 28 3.5142 -7.3158 -24.5851 -0.0754 -0.0597 6.2410
trial 29 3.9468 -0.3432 7.7067 -0.0147 -0.1223 6.2110
trial 30 3.2102 11.8316 7.2682 -0.0111 -0.0093 6.2726
trial 31 1.0757 9.0261 17.5730 -0.0128 -0.0680 6.2313
trial 32 3.3246 -5.3086 10.0210 -0.0447 0.0304 6.2628
trial 33 2.3570 -4.3986 2.0568 -0.0899 0.0025 6.2457
trial 34 0.0908 -0.0207 6.1098 -0.0166 -0.0047 6.2522
trial 35 -0.0544 -0.0180 6.2091 -0.0101 -0.0902 6.2397
trial 36 0.0133 0.0185 6.3278 -0.0133 -0.0747 6.2313
trial 37 0.0221 0.0485 6.3555 -0.0517 0.0038 6.2743
trial 38 0.0129 0.0776 6.3229 -0.0136 -0.0892 6.2479
trial 39 0.0179 0.0367 6.3224 -0.0109 -0.1102 6.2198
trial 40 0.0021 0.0034 6.2780 -0.0165 -0.0483 6.2157

Eqn. (12) affects convergence speed, to select appropriate
parameters for each scenario, and evaluate the data
efficiency of AEPILCO.

We evaluate the effect of parameter α for four
scenarios. We select a fixed α for each task. Figure 3
shows the comparison of convergence speed for different
values of α for the cart pole pendubot, double pendulum,
and cart double pendulum problems. The horizontal axes
represent the number of trials. The vertical axes represent
the mean cost value for the last several steps at each trial.
The solid round lines show PILCO with no exploration.
Other lines denote the results obtained using AEPILCO
with fixed α. The mean cost decreases as the number of
trials increases. The agent achieves the target state once
the mean cost in the last few steps of each trial approaches
zero.

Figure 3(a) shows the mean cost for the final 16 steps
of the trials with α = 0, 0.1, 0.2, 0.3, and 0.4. When
α equals 0.3, the cart pole agent can achieve the target
in 4 trials while it cannot do so even within 15 trials for
other cases. Figure 3(b) shows the mean cost for the final
30 steps of the trials with α = 0, 0.002, 0.004, 0.005,
and 0.006. When it equals 0.005, the pendubot agent
can achieve the target in approximately 10 trials, while
it achieves the target in more than 20 trials for other cases.
Figure 3(c) shows the mean cost for the final 20 steps of
the trials with α = 0, 0.0005, 0.001, 0.0015, and 0.002.
When α equals 0.001 and 0.0015, the double pendulum

agent can achieve the target in 6 and 11 trials, respectively,
while it cannot achieve the target within 20 trials in other
cases. Figure 3(d) shows the mean cost for the final 70
steps of the trials with α = 0, 0.001, 0.0001, 0.0002, and
0.0005. The last three parameters in Fig. 3(d) are better
than α = 0. The cart double pendulum agent cannot do so
within 40 trials when α = 0.001.

We consider the cost for the final few steps at each
trial because the agent requires a few steps to achieve the
target, and the number of required steps is different in
each problem. Moreover, AEPILCO does not normalize
the active exploration optimization item. Therefore, the
optimal α is different for different problems.

According to the derivation of AEPILCO in Section
3, a larger α represents more exploration. However,
excessive exploration may lead to divergence. Therefore,
we use the following adaptive parameter selection
function:

α = α0e
−ωt, (20)

where α0 is the initial value of α, t is the number of
trials, and ω is set according to different scenarios. This
adaptive parameter selection function allows more agent
exploration in the first few trials and more exploitation
when the agent approaches the target. Here, we set α0 =
0.1, and the parameters ω for the four scenarios are 0.2,
500, 100 and 1000, respectively.

Table 7 shows the trials required to achieve the
targets in each scenario. The bold numbers are the trials

360 D. Zhao et al.

Table 6. Comparison of dynamic model distances on four high dimension problems.
cart pole pendubot double pendulum cart double pendulum

PILCO (Deisenroth et al., 2015) 0.3874 0.3433 1.7250 1.9974
AEPILCO 0.1013 0.0635 0.0787 0.2946

Table 7. Results of convergent trials obtained using a typical PILCO, AEPILCO with fixed α, and AEPILCO with variable α for four
high-dimensional problems.

cart pole pendubot double pendulum cart double pendulum

PILCO (Deisenroth et al., 2015) 8 15 10 34
AEPILCO with fixed α 7 10 6 26

AEPILCO with variable α 4 9 5 24
best improvement 50% 40% 50% 29%

Table 8. Comparison of the total times between the PILCO and AEPILCO algorithms (first two rows). Comparison of the average
times for each trial between the PILCO and AEPILCO algorithms (last two rows).

cart pole pendubot double pendulum cart double pendulum

PILCO total ≈27 s ≈56 s ≈ 38 s ≈ 134 s
AEPILCO total ≈ 18 s ≈ 41 s ≈ 23 s ≈ 112 s
PILCO average ≈3.4 s ≈3.7 s ≈ 3.8 s ≈ 3.9 s

AEPILCO average ≈ 4.5 s ≈ 4.6 s ≈ 4.6 s ≈ 4.7 s

0 5 10 15

trials

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

n
co

st
 a

t 2
5~

40
 s

te
ps

=0
=0.1
=0.2
=0.3
=0.4

(a) cart pole

0 5 10 15 20 25 30

trials

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

n
co

st
 a

t 3
0~

60
 s

te
ps

=0
=0.002
=0.004
=0.005
=0.006

(b) pendubot

0 2 4 6 8 10 12 14 16 18 20

trials

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

n
co

st
 a

t 1
0~

30
 s

te
ps

=0
=0.0005
=0.001
=0.0015
=0.002

(c) double pendulum

0 5 10 15 20 25 30 35 40

trials

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
ea

n
co

st
 a

t 3
0~

10
0

st
ep

s

=0
=0.001
=0.0001
=0.0002
=0.0005

(d) cart double pendulum

Fig. 3. Comparison of parameter α for the cart pole (a), pendubot (b), double pendulum (c) and cart double pendulum (d). Subfigures
show the mean cost function values in each trial.

An active exploration method for data efficient reinforcement learning 361

required by AEPILCO. The first row shows the results
of PILCO. They illustrate that the AEPILCO algorithm
performs better than PILCO, which is a no-exploration
algorithm. In addition, AEPILCO with variable α
achieves better performance compared with other cases
in all scenarios. Moreover, data efficiency is reflected
in Fig. 2. In Figs. 2(a), 3(c), and 2(d), when the
cost function value obtained using PILCO jumps from
0.01 to 1, AEPILCO has already achieved the problem
target state and the cost function value tends to 0. In
Fig. 2(b), AEPILCO achieves the convergence state for
the pendubot problem, while the cost function value
obtained using PILCO has not converged yet. The last
row in Table 7 summarizes the best improvement scale
compared with a typical PILCO.

In general, for all scenarios, AEPILCO with variable
α provides the best performance. This is mainly
because our algorithm selects informative simulations and
policy parameters at each trial, which results in learning
an accurate dynamic model. Moreover, the adaptive
parameter selection method increases agent exploration
at the beginning of interaction and increases exploitation
when the agent approaches the target. In terms of
computational efficiency, the computational complexity of
AEPILCO does not increase significantly compared with
a typical PILCO because adding the active exploration
term to the policy evaluation stage corresponds to
computing one more inverse of the covariance matrix in
Eqn. (11). Considering the small size of the matrix,
computational complexity does not increase significantly.
The comparison results of the time required by PILCO
and AEPILCO to achieve a goal are shown in Table 8.
The first two rows show the total time required to achieve
the target in each scenario. The average time for each trial
is shown in the last two rows. Even though the average
time required by AEPILCO is larger than that required by
PILCO, the total time required by AEPILCO is smaller
compared to PILCO owing to the high data efficiency of
AEPILCO.

5. Conclusions

In this paper, AEPILCO, which is an active exploration
version of the data-efficient PILCO framework, was
proposed to further improve data efficiency. Our
algorithm utilizes an information entropy criterion
to select the most informative sample set to learn
a more accurate dynamic model. Compared with
the data-efficient PILCO framework, our algorithm
considers the accuracy of the dynamic model. This
is helpful for improving data efficiency in a controller
learning task. Moreover, the AEPILCO algorithm
can balance exploration and exploitation because the
active exploration item in the policy evaluation objective
function consists of the covariance of predicted samples,

which describes the amount of exploration. In summary,
the contribution of AEPILCO includes a more accurate
dynamic model and a higher balance between exploration
and exploitation. These can effectively improve data
efficiency. The simulation results obtained for several
challenging control problems verify the effectiveness and
data efficiency of the AEPILCO algorithm.

Also, AEPILCO has some limitations. The Gaussian
process model is hard to scale to high dimensions. When
a dimension is large, the computation is demanding.
The policy function form, policy parameters and the
reward function form are specific in AEPILCO. These
limitations result from the Gaussian process. A Bayesian
neural network is a good substitute. The simulation
process should be derived carefully with a Bayesian neural
network model. This is a prospective future research
direction.

Acknowledgment

This work was supported by the National Science
Foundation Council of China under the grants 61672190
and 61370162.

References
Ahmed, N.A. and Gokhale, D. (1989). Entropy expressions and

their estimators for multivariate distributions, IEEE Trans-
actions on Information Theory 35(3): 688–692.

Bagnell, J.A. and Schneider, J.G. (2001). Autonomous
helicopter control using reinforcement learning policy
search methods, IEEE International Conference on
Robotics and Automation, Seoul, South Korea, Vol. 2,
pp. 1615–1620.

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal,
S. and Levine, S. (2017). Combining model-based and
model-free updates for trajectory-centric reinforcement
learning, arXiv:1703.03078.

Deisenroth, M.P., Fox, D. and Rasmussen, C.E. (2015).
Gaussian processes for data-efficient learning in robotics
and control, IEEE Transactions on Pattern Analysis and
Machine Intelligence 37(2): 408–423.

Deisenroth, M. and Rasmussen, C.E. (2011). PILCO:
A model-based and data-efficient approach to policy
search, Proceedings of the 28th International Conference
on Machine Learning (ICML-11), Bellevue, WA, USA,
pp. 465–472.

Ebert, F., Finn, C., Lee, A.X. and Levine, S. (2017).
Self-supervised visual planning with temporal skip
connections, arXiv:1710.05268.

Fabisch, A. and Metzen, J.H. (2014). Active contextual
policy search, Journal of Machine Learning Research
15(1): 3371–3399.

Finn, C. and Levine, S. (2016). Deep visual foresight for
planning robot motion, arXiv:1610.00696.

362 D. Zhao et al.

Finn, C., Tan, X.Y., Duan, Y., Darrell, T., Levine, S. and Abbeel,
P. (2015). Deep spatial autoencoders for visuomotor
learning, arXiv:1509.06113.

Gruslys, A., Azar, M.G., Bellemare, M.G. and Munos, R.
(2017). The reactor: A sample-efficient actor-critic
architecture, arXiv:1704.04651.

Hayes, G. and Demiris, J. (1994). A robot controller using
learning by imitation, International Symposium on Intel-
ligent Robotic Systems 676(5): 1257–1274.

Levine, S., Finn, C., Darrell, T. and Abbeel, P. (2016).
End-to-end training of deep visuomotor policies, Journal
of Machine Learning Research 17(1): 1334–1373.

Nagabandi, A., Kahn, G., Fearing, R.S. and Levine, S.
(2017). Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning,
arXiv:1708.02596.

Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J.,
Tse, B., Berger, E. and Liang, E. (2006). Autonomous
inverted helicopter flight via reinforcement learning, in
M.H. Ang Jr. and O. Khatib (Eds.), Experimental Robotics
IX, Springer, Berlin/Heidelberg, pp. 363–372.

Pan, Y. and Theodorou, E.A. (2014). Probabilistic differential
dynamic programming, Advances in Neural Information
Processing Systems 3: 1907–1915.

Pan, Y., Theodorou, E.A. and Kontitsis, M. (2015). Sample
efficient path integral control under uncertainty, Ad-
vances in Neural Information Processing Systems
2015: 2314–2322.

Price, B. and Boutilier, C. (2003). Accelerating reinforcement
learning through implicit imitation, Journal of Artificial In-
telligence Research 19: 569–629.

Silver, D., Sutton, R.S. and Müller, M. (2008). Sample-based
learning and search with permanent and transient
memories, International Conference on Machine Learn-
ing, Helsinki, Finland, pp. 968–975.

Sutton, R.S. (1988). Learning to predict by the methods of
temporal differences, Machine Learning 3(1): 9–44.

Sutton, R.S. (1991). Dyna, an integrated architecture for
learning, planning, and reacting, ACM Sigart Bulletin
2(4): 160–163.

Dongfang Zhao received the BSc degree from
Southwest University, Chongqing, China, in
2012, and the MSc degree from the Harbin In-
stitute of Technology, China, in 2015. She is
currently a PhD candidate at the School of Com-
puter Science and Technology, Harbin Institute
of Technology. Her research interests is model
based reinforcement learning.

Jiafeng Liu received his PhD degree from the
Harbin Institute of Technology, China, in 1996.
He is currently an associate professor at the
School of Computer Science and Technology,
Harbin Institute of Technology. His research in-
terests cover image and video analysis, optimal
character recognition, pattern recognition, ma-
chine learning and artificial intelligence. He has
published over 40 papers in refereed international
journals.

Rui Wu is an associate professor. He received
the PhD degree in computer application technol-
ogy from the Harbin Institute of Technology in
2010. His a research interests include computer
vision, character recognition, robot intelligence,
and embedded systems.

Dansong Cheng received the BSc and PhD de-
grees from the Harbin Institute of Technology,
China, in 1997 and 2009, respectively, and the
MSc degree in communication engineering from
the Chiba Institute of Technology, Chitanma,
Japan, in 2001. Since 2002, he has been with
the Harbin Institute of Technology, where he be-
came an associate professor in 2012. His current
research interests include machine learning, med-
ical image processing, and pattern recognition.

Xianglong Tang received his PhD degree from
the Harbin Institute of Technology, China, in
1995. He is currently a professor at the School
of Computer Science and Technology and the di-
rector of the Research Center of Pattern Recogni-
tion, both in the Harbin Institute of Technology.
His main research interests are focused on Chi-
nese character recognition, medical imaging and
biometrics, computer vision and pattern recogni-
tion. He has published over 80 papers in refereed

international journals.

Received: 18 July 2018
Revised: 28 December 2018
Re-revised: 31 January 2019
Accepted: 31 January 2019

	Introduction
	PILCO framework
	Active exploration PILCO
	Entropy-based sample description
	Policy evaluation
	Policy improvement

	Experiments and analysis
	Scenarios setup and verification experiment
	Dynamic model efficiency experiment
	Parameter selection experiment

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

