Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 2, 407-419
DOI: 10.2478/amcs-2019-0030

@

THE PARALLEL TILED WZ FACTORIZATION ALGORITHM FOR
MULTICORE ARCHITECTURES

BEATA BYLINA ¢, JAROSEAW BYLINA ¢ *

“Institute of Mathematics
Marie Curie-Sktodowska University, P1. M. Curie-Sktodowskiej 5, 20-031 Lublin, Poland
e-mail: [{beata.bylina, jaroslaw.bylina}@umcs.pl

The aim of this paper is to investigate dense linear algebra algorithms on shared memory multicore architectures. The
design and implementation of a parallel tiled WZ factorization algorithm which can fully exploit such architectures are
presented. Three parallel implementations of the algorithm are studied. The first one relies only on exploiting multithreaded
BLAS (basic linear algebra subprograms) operations. The second implementation, except for BLAS operations, employs
the OpenMP standard to use the loop-level parallelism. The third implementation, except for BLAS operations, employs
the OpenMP task directive with the depend clause. We report the computational performance and the speedup of the
parallel tiled WZ factorization algorithm on shared memory multicore architectures for dense square diagonally dominant
matrices. Then we compare our parallel implementations with the respective LU factorization from a vendor implemented
LAPACK library. We also analyze the numerical accuracy. Two of our implementations can be achieved with near maximal
theoretical speedup implied by Amdahl’s law.
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1. Introduction 1990), which are important for efficient performance of
many applications. Theoretical and practical studies on
the numerical stability of the parallel LU factorization

) have been conducted in a lot of works (Donfack et al.,

2015; Dongarra et al., 2013; Buttari et al., 2009). The LU

factorization is numerically stable for strictly diagonally

dominant matrices.

Solving linear systems of the form
Ax =0,

where A € R™ "™, b € R" is a common and crucial
problem in engineering and scientific computations. The
matrix A is square, non-singular, dense, and of even
size (there is no loss of generality, in our case). Direct
methods of solving a dense linear system (1) usually
consist in a factorization of the matrix A into simpler
matrices—that is, its decomposition into a product of
matrices of a simpler structure or of some specific
properties—and then solving two (or more) simpler linear
systems. The best known factorization is the LU one.
It was implemented in the LAPACK (Linear Algebra
PACKage) library (Anderson et al., 1999), which is a

In this work, we continue to study another form of
factorization, that is, the WZ one. It was introduced
by Evans and Hatzopoulos (1979) as a new method for
solving linear systems in parallel, for SIMD (single in-
struction, multiple data (Flynn, 1972)) computers. It was
originally named the quadrant interlocking factorization
(QIF) method. @ The WZ factorization is designed
straight for parallel computers. Its advantage is that it
simultaneously evaluates two columns or two rows instead
of one column or one row as it happens with the LU

standard software library for numerical linear algebra. It
was designed to effectively exploit the caches on modern
cache-based architectures. It uses the standard set of basic
linear algebra subprograms (BLAS) (Dongarra et al.,
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factorization. Garcia et al. (1990) as well as Yalamov
and Evans (1995) showed that the WZ factorization
can solve linear systems faster than the well-known
LU factorization without pivoting for the diagonally
dominant matrices on the specific architectures. It can
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also be useful as preconditioning (Bylina and Bylina,
2007; 2009). In the works of Evans and Hatzopoulos
(1979) as well as Yalamov and Evans (1995), various
analyses of the WZ factorization have been made and
they claim essentially the same numerical stability as
that of Gaussian elimination; in particular, the algorithms
are stable if the matrix is symmetric positive definite or
diagonally dominant.

Our contribution consists in providing a parallel
tiled WZ factorization algorithm with its implementations
using multithreaded BLAS operations and the OpenMP
standard on shared memory multicore architectures.
We also compare our implementations with the LU
factorization and study the performance, the speedup, and
the numerical accuracy.

The rest of this paper is as follows. Section 2]
is devoted to related works. Section [3] recalls the WZ
factorization, Section presents the tiled WZ factorization
algorithm for a 4 x 4 matrix and describes elementary
operations for the algorithm on small matrices. Section[3]
describes the details of three parallel implementations
for multicore, shared-memory machines. One of them
relies on the use of multithreaded BLAS operations, the
second and the third one consist of the OpenMP standard
and BLAS operations. The second implementation
uses omp parallel for. The third implementation
uses the OpenMP task directive with the depend
clause. Section [@] is devoted to the results of numerical
experiments carried out on shared memory multicore
architectures and to the comparisons of the LU and WZ
factorizations. Section [7] contains conclusions of our
research and presents future plans.

2. Related works

The numerical solution of linear systems on the multicore
architecture is an important issues for high performance
computing. There is a need for parallel numerical
algorithm which would achieve high performance and
maintain the accuracy of the numerical algorithm on
the multicore architecture. =~ The issues concerning
parallel numerical algorithms and particularly Gaussian
elimination on multicore architectures were presented,
among others, by Dumas et al. (2016) and Buttari et al.
(2009).

Dumas et al. (2016) present investigations into
the parallelization of sub-cubic Gaussian elimination on
shared memory multicore architectures. They focus
on the parallelization of three sub-routines, namely,
matrix multiplication, triangular system solving and the
PLUQ factorization.  They investigate two runtime
implementations of the OpenMP standard for data flow
paradigms. In our implementations of the parallel WZ
factorization, we also use the OpenMP standard.

In turn, Buttari et al. (2009) present a class of

parallel tiled linear algebra algorithms for multicore
architectures. In tiled algorithms, the operations are
performed on square blocks of the data which are
suitable for parallel implementations. There is also
an implementation of the parallel tiled LU factorization
in the PLASMA (parallel linear algebra for scalable
multicore architectures) framework (Agullo et al., 2009;
Kurzak et al., 2010). The authors of the PLASMA
implementation use a DAG-based scheduler for runtime
scheduling of the kernel tasks. The remainder of this
paper shows how this approach can be applied for the
parallel tile WZ factorization. A methodology similar
to PLASMA is used in the MAGMA (matrix algebra
on GPU and multicore architectures) framework (Agullo
et al., 2009). MAGMA is a set of some kernel functions
of linear algebra designed for the use with heterogeneous
architectures, namely, for multi-GPUs and multicore
systems. The hybridization methodology, in which
algorithms are divided into tasks of varying granularity, is
used in MAGMA. MAGMA and PLASMA often employ
functions of Level 3 BLAS for operations on the square
matrices. We too employ functions of Level 3 BLAS in
our implementations of the parallel WZ factorization.

FLAME (formal linear algebra method) is another
example of numerical libraries that has been designed
to achieve high performance on multicore architectures
(Marqués et al., 2011). The FLAME library approach
is based on fundamental computer science. In FLAME,
numerical algorithms of linear algebra are expressed in
formal notation, similar to the way algorithms are usually
presented. This similarity maintains the clarity of the
original algorithm and facilitates software development
with the use of modern software engineering principles. In
our implementations of the parallel WZ factorization, we
also try to use these principles, such as hiding the matrices
implementation details.

Another numerical library is the Math Kernel Library
(MKL), a closed and proprietary library provided by
Intel (2019). It is wide and highly optimized, so
that it constitutes one of the best choices for practical
use. In the work of Dumas er al. (2016), we can see
in Fig. 10 that the MKL is better than PLASMA for
32 Sandy Bridge cores (although there is also some
performance drop for some matrix sizes). However, now,
the PLASMA library undergoes a process of porting from
the QUARK task scheduler to the OpenMP task scheduler
and that can change the PLASMA performance a little,
but the stable version is still based on QUARK. On the
other hand, in the work of Yarkhan et al. (2017), we
can see in Fig. 15 that the QUARK-based PLASMA
implementation and its OpenMP version achieve almost
identical performance—both somewhat worse than the
MKL (on 20 cores of the Haswell processor, which is
similar to our environment).

Those results made us decide to compare our
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implementations with the MKL, not PLASMA (also since
our implementations are based on the OpenMP task
scheduler and OpenMP-based PLASMA is still under
development).

3. WZ factorization

Here we shortly present the usage of the WZ factorization
to solve (I). The WZ factorization is described by
Rao (1997), Evans and Hatzopoulos (1979) or Yalamov
and Evans (1995). We assume that A is a square and
nonsingular matrix of an even size n. We are to find
matrices W and Z fulfilling WZ = A. The matrices W
and Z have the structure shown in Fig. [T} where gray fields
are potential non-zeros. The matrix W is non-singular
with det W = 1. Thus, det A = det Z.

After the factorization, we can solve two linear
systems:

We =b,

Zx =c @

(where ¢ is an auxiliary intermediate vector) instead of
one (I). The cost of determining ¢ and x equals O(n?),
similarly to the LU factorization, and is much smaller than
the cost of the factorization itself, which equals O(n?).

That is why, in this paper, we are only interested in
obtaining the matrices Z and W. The first part of the
algorithm consists of setting successive parts of columns
of the matrix A to zeros. In the first step, we do that
with the elements in the first and n-th columns—from
the second row to the (n — 1)-th row. Next, we update
the matrix A. Rao (1997) showed that if the matrix A
is diagonally dominant then it has the WZ factorization
which is unique. The WZ factorization algorithm for the
matrix A € R™*" requires

2.4 7
Cwz(n) = 3V 5" 3 3

floating-point arithmetic operations (Bylina and Bylina,
2015).

4. Tiled WZ factorization

The block WZ factorization is described by Bylina (2018).
We present the design of the tiled WZ factorization

Fig. 1. Forms of the W (left side) and Z (right side) matrices.

algorithm, dividing the matrix only into 4 x 4 = 16 tiles,
and this construction can be easily generalized for r? tiles.
Let A be a nonsingular matrix (A € R™*", n divisible by
4) for which a WZ factorization exists (A = WZ). The
elements of the matrix are divided into 16 square tiles (of
the same size) in the following manner:

Ain A Az Ay

Asr Az Azz Ay @
A31 Az Aszz Az |

Ay Ap A Ay

The product of the matrices W and Z can be written as
follows:

A:

Wi 0 0 Wy
Wy Wia Wiz Wy
W31 W32 W33 W34
W41 0 0 W44

2y, Ziyy Ziz Zy
0 Zos Zos 0
0 Z3 Zs3;

2y Zys Zyz 7y

WZ =

(5)

where A;;, W;; and Z;; are s x s matrices (s = n/4) for
i,7 = 1,...,4. The matrices W and Z are nonsingular,
because det A # 0, det W = 1, which implies det Z #
0.

To compute the matrices W and Z, we have to
proceed in the following four stages.

4.1. Stagel. We build the matrix

A Ay
B = . 6
[ Ay Ap } ©

For this 2s x 2s matrix we perform the original WZ
factorization and obtain matrices

Wi1 Wy
Wg = , 7
B [ Wy Wy ] @)
Zy 7y
7y = . 8
B [ Zy Zy } ®

The matrix B is invertible. Therefore, we can
compute the matrices Wy and Zg from the factorization
theorem by Rao (1997).

4.2, Stage 2. We compute the first block column of
the matrix W (that is, the blocks W51 and W31) as well
as the fourth block column of the matrix W (that is, the
blocks Wy4 and W3y) from linear systems (which can
also be computed in parallel, because these linear systems
are independent):

{ Wai1Zy1 + WouZy = Aoy, )
Wa1Zis + WoyZyy = Aoy

and

{ W31Z11 + W3yZyy = Asy, (10)

Wi31Z1y + W3uZyy = Asy.

V.



s D)

B. Bylina and J. Bylina

4.3. Stage 3. We compute the first block row of the
matrix Z (that is, the blocks Z5 and Z13) as well as the
fourth block row of the matrix Z (that is, the tiles Z45 and
Z,3)—from linear systems (which also can be computed
in parallel):

Wi1Zio + WiuZyo = Ay, (1)
WyiZio + WyuZys = Ay

and

{ Wii1Zi3 + WiyZyz = Ays, (12)

Wyi1Zi3 + WysZy3 = Ays.

4.4. Stage 4. We compute the blocks Way, Wog,
W2, W33 and Zoy, Zio3, Z32, Z33 from

W1Zy5 + WooZoy + WozZizg + WosZyy = Agy,
W1Z13 + WooZos + WozZizz + WosZyz = Ags,
W31Z1o + W3oZos + Wi3Ziso + W3sZyo = Agg,
Wi31Z13 + W3oZos + Wi3Zss + W3sZy3 = Ass,
(13)

Thus

WooZoo + WazZss = Ay — Wa1Ziis — WoyZys,
WoZos + WazZss = Az — Wa1Zii3 — WoyZygs,
WioZoo + Wi3Zso = Azy — W31Zi1p — Wi3aZys,
W32Z23 + W33Z33z = A3z — W31Z13 — W34Zy3.
(14)
On the left-hand side of (I4), we have a matrix which is to
be factorized into the WZ factors and thus we repeat the
procedure from the beginning, but for a new matrix of a
smaller size:

AN = Agy — Wo1Zis — WayZys,
ASY = Aoz — Wa1Z13 — WauZys,
ASY = Azp — Wa1Z12 — WayZyo,
ALY = Agz — W31Z13 — WauZys.

5)

The new (n — 2s) x (n — 2s) matrix A*™°" can be
written as

(16)

Arer [ Al AL ] |

new new
A32 A33

Thus we perform only Stage 1, but for the matrix
A"V Figure [2] shows the tiles labeled with the numbers
of the stage numbers in which the tiles are computed. For
even r > 4, these stages are repeated r/2 times, for a
smaller and smaller matrix in every step. Algorithm [I]
presents the tiled WZ factorization as a list of steps for
a nonsingular matrix A divided into r2 tiles, where r is
an even number. There is no loss of generality—we can
easily extend the matrix of an odd size by one column
and one row (filled with ones with a one on the diagonal),
then we perform a WZ factorization, and next, we cut
off the last column and the last row. As a result, we get
matrices W and Z. A;;, Wy;, Z;; are s x s matrices (for
i,j=1,....,randn =r X 3).

4.5. Elementary operations for the tiled WZ factor-
ization. The tiled WZ factorization algorithm performs
most of its floating-point arithmetic operations using
Level 3 BLAS operations. Thus, the implementations
of the algorithm will be based on the following set of
elementary operations:

WZ (B, W, Z). This subroutine performs a sequential
WZ factorization for matrix B.

DTRSM (u/nonu, up/lo, 1l/r, A, X, B).
This BLAS subroutine is used to compute
X = A7!B (denoted by 1) or X = BA™!
(denoted by r), where X and B are s x s matrices,
A is a unit (u) or non-unit (nonu), upper (up) or
lower (1o) triangular matrix.

DGEMM (A, B, C). This BLAS subroutine is used to
compute A = —BC + A, where A, B, and C are
S X s matrices.

DGEMM_copy (A, B, C, D). This BLAS
subroutine is used to compute A = —BC + D,
where A, B, C, and D are s x s matrices.

Note that no extra storage is required for the matrices
W;; and Z;; since they can overwrite the corresponding
tiles A;; of the original matrix A.

Algorithm [2] presents the tiled WZ factorization
algorithm, which is expressed in terms of elementary
operations WZ, DTRSM, DGEMM, and DGEMM_ copy for
A e R™*™,

4.6. Graph-driven asynchronous execution. Gene-
rally, algorithms (including linear algebra algorithms) can
be pictured as directed acyclic graphs (DAGs). A directed
acyclic graph is a finite directed graph without cycles. It
contains a finite number of vertices and edges. Each edge
is directed from one vertex to another.

DAGs are useful in different models of parallel
programming, namely, in the task-based programming
model, where nodes are computational tasks performed
in kernel subroutines and where edges represent the
dependencies among them. The scheduler may execute
tasks in any order that respects the dependencies shown
in the DAG. This approach is presented by Buttari et al.

R IN|IN|PRP
Wl W
Wlh|~|W
R ININ|PEP

Fig. 2. Order of computing tiles in TWZ for 4 x 4 tiles.
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Algorithm 1. Tiled WZ factorization for even r.
Require: A, r
Ensure: W, Z

1: for k< 1,r/2—1do

22 ke r—k+1

3:  The WZ factorization for the corner blocks of A.:

STAGE 1

Apr A
B« 2
[ Ak Agyk, }

5: [VVB7 ZB] — ’LUZ(B)

Wi Wi,
+— Wg,
[ Wioke Wiy, B

Zyr  Zgk,
[ Ziyi Ly, } ~Zs

7. Computing the k-th and ko-nd columns of W:
STAGE 2

8: ZpiD Zkk2

9:  Computing a lower triangular matrix E

10: E —Zksz + Zk2k2

11: fori+ k+1,ky—1do

12: Wi, E=—-A;:D+ Ay,

13: WiZiyr = —Win, Zip . + A

14:  end for

15:  Computing the k-th and kond rows of Z.: STAGE 3

16: DWy,, szk

17:  Computing an upper triangular E (with Is on its
diagonal)

18: E —DWkk2 + Wk2k2

190 fori<«k+ 1,k —1do

20: EZin = —-DA;; + Aky

21: WiZii = —Wipy Ly + Ags

22:  end for

23:  The update of the matrix A.: STAGE 4

24: forj<«k+1,ko—1do

25: fori<k+1,ky—1do

26: Aij = —WirZyj — Wig, Zi,j + Ay

27: end for

28:  end for

29: end for

30: B« [ Ars  Apgn }

Asiis Asyizn
31: [WB,ZB] — wz(B)
Wi Woga }

= {Wngl,;' W41 © Wa.

[ Zss L ]  Zp
Zi+rs Zzirzn

(2009) for tiled linear algebra algorithms. A critical path
can be identified in the DAG as the one that connects all
the nodes which must be carried out sequentially, allowing
all possible parallelism. Algorithm 2] can be represented
as a DAG.

DAGs are independent of hardware architectures and
can be implemented with the use of different technologies.

Algorithm 2. Tiled WZ factorization algorithm for even
r based on four elementary operations.

Require: A, r
Ensure: W, Z
1: for k< 1,7/2—1do

2:
3:

21:
22:
23:
24:

26:

]fg —r—k+1

The WZ factorization for the corner blocks of A:
STAGE 1

B« { Arr Agk, ]

A Akoks
Wz(B, Wg, Zp)
Wi Wik,
~— Wg,
Wit Wik, B
Zi Ly,
— 7
[Zm Zy,k, B

Computing the k-th and ko-nd columns of W:
STAGE 2
DTRSM (nonu, up, 1, Zg., D, Zkkz )
Computing a lower triangular matrix E
DGEMM_copy (E, Zka , D, Zk2k2 )
fori <« k+1,ky—1do

DGEMM (Aikg , A, D)

DTRSM (nonu, lo, r, E, Wy,

Air,)

DGEMM (Air, Wik, , Ziyk);

DTRSM (nonu, up, r, Zix, Wik,

Air)
end for
Computing the k-th and ko-nd rows of Z: STAGE 3

DTRSM(u, lo, r, Wi, D, Wgu)
Computing an upper triangular E (with Is on its
diagonal)
DGEMM_copy (E, D, Wik, , Wi,k,)
fori < k+1,ky—1do
DGEMM (Aj,i, D, Agi);
DTRSM (u, up, 1, E, Zk,:, Ak,)
DGEMM (Agi, Wik, Zigyi)s
DTRSM(u, lo, 1, Wi, Z;, Aw)
end for
The update of the matrix A: STAGE 4
forj«< k+ 1,k —1do
fori< k+1,ky —1do
DGEMM (A;j, Wik, Zgj);
DGEMM (Aij . Wik, Zkzj)
end for
end for

end for
B « 22 2°2

Ar» A-r r41
Aziiz Asiizn

{ Wes  Wion } “ Wa.

Wit Witign

{ Zss  Zign } « 7n
Zipr: Zijizn

@ -



s D)

B. Bylina and J. Bylina

Figure [3] shows the DAG for the tiled WZ factorization
when Algorithm[2]is executed for a 4 x 4 tiled matrix (see
Fig. D). The bold lines denote one of critical paths.

5. Parallel implementations

5.1. Data structure. The MKL library implements
routines from LAPACK and uses the standard interface
for this package. In LAPACK, the matrices are stored
as one-dimensional arrays. Two methods of storing
matrices in memory are considered, namely, the column
major order and the row major order. Because we
want to compare our implementations of the tiled WZ
factorization without pivoting with the implementation of
the LU factorization from LAPACK, we chose the column
major order (denoted by LAPACK_COL_MAJOR) for our
two implementations. Additionally, most users store their
matrices in the standard column major layout, common to
Fortran and LAPACK.

However, the block technique can improve the
performance if the data are organized in square blocks
(tiles), the fact first featured in the work of Gustavson
(1997), where the layout is referred to as a square block
format. In our work, we refer to it as tiled layout,
similarly as Buttari et al. (2009). In the tile layout, the
matrices are represented as small square tiles of data
contiguous in memory so that each core operates on
individual tile independently. Any tile can be cached and
fully processed, which helps to minimize the number of
cache misses. We use the task-based model available in
the OpenMP standard, i.e., we employ the tile layout.

5.2. Implementation using only multithreaded BLAS
routines (TWZ(r)). One of the ways to parallelize the
code is to use a multithreaded optimized library such
as the MKL . The application of standardized functions
makes the code more portable. In this implementation
(which is denoted by TWZ(r)) of Algorithm 2l we
use multithreaded functions from the MKL, namely,
Level 3 BLAS routines, which perform matrix-matrix
operations. This methodology implies a fork-join model.
We use two routines: cblas_dgemm, which computes

Fig. 3. DAG for the parallel tiled WZ factorization of a 4 x 4
tiled matrix. The bold lines denote a critical path.

a scalar-matrix-matrix product, and adds the result to a
scalar-matrix product and cblas_dtrsm, which solves
a triangular matrix equation. These multithreaded Level 3
BLAS routines use pThreads and the OpenMP standard
for parallelization.

In this implementation, each tile is supported by
a number of threads set in the OMP_NUM_THREADS
environment variable. In each tile, we can see the
fork-join model. The end of each executed BLAS routine
becomes an implicit synchronization point. If we use only
multithreaded Level 3 BLAS functions from the MKL, we
come across the problem of excess synchronization as in
LAPACK. This implementation uses the LAPACK layout
as the data structure for matrices.

5.3. Implementation using BLAS routines and
the OpenMP standard (TWZ(r)-fork-join). To better
show the profit of tiling, we modify this implementation.
We additionally employ the OpenMP standard with the
fork-join model using loop-level parallelism and the
BLAS routines for matrices’ operations. We call this
implementation TWZ(r)-fork-join.

The inner loops in Algorithm [2] (starting in lines 10
and 17) have no dependencies. The result of one iteration
does not depend on the result of any other. This means that
two different iterations could be executed simultaneously
by two different processors. We parallelize these loops
using the directive #pragma omp parallel for.
OpenMP is responsible for distributing the iteration
between threads. Each thread works on a different part
of the matrix, and this does not lead to a race condition.
For our implementation of the tiled WZ factorization, we
choose the dynami c loop scheduling. Loop iterations are
divided into chunks of size 1. When a thread finishes, it
is dynamically assigned to another piece. The dynamic
scheduling allows achieving a balanced load on each
processor and keeps location data so as to minimize
the overhead associated with the collection of the data.
OpenMP allows using nested parallelism. In lines 22 and
23 we have nested loops and we collapse inner loops using
the OpenMP clause collapse (2).

Each tile is supported by exactly one thread, but
one thread can perform the calculation for more than one
tile. This solution improves the location of data between
threads. The disadvantage of this implementation is a
barrier after each loop and the fact that it takes a lot of
the time to create, run and manage threads.

Despite the choice of using the OpenMP standard,
the presented approach may also be implemented using
other technologies, for example, the pThreads standard.
This implementation uses the LAPACK layout as the data
structure for matrices.
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5.4. Implementation using BLAS routines and a task
(TWZ(r)-task). To better show the profit of tiling, we
modify our implementation further. We employ the
OpenMP task directive and the BLAS routines for matrix
operations. We call this implementation TWZ(r)-task.
The use of tasks with a depend clause instead of
the fork-join model from a OpenMP standard (since
standard 4.0) should delete a big number of unnecessary
synchronizations and make the implementation more
asynchronous. Moreover, the use of tasks will
cause higher concurrency and scalability.  Such an
implementation will be more suitable for multicore
architectures.

Attempts have been made to rewrite the
implementation which simply consists of omp
parallel for into the implementation including
the tasks. However, tasks are not independent, and the
DAG of the algorithm describes their dependencies.
These have to be defined in an OpenMP application with
the use of the depend clause. Namely, the #pragma
omp task depend clause is used to announce the
compiler so that the next code block is executed as a new
task. This task is bound to a thread from the current team
of threads. The execution of the new task can be instant
or delayed according to the task schedule and availability
of threads. The depend clause enforces additional
limitations concerning task scheduling. The OpenMP
runtime provides a dynamic scheduler of the tasks while
avoiding data hazards by keeping track of dependencies.
The dynamic scheduler means that the tasks are queueing
and executed as quickly as possible. This implementation
uses the tile layout as the data structure for matrices.

5.5. Theoretical speedup. We compute a maximal
theoretical speedup of the algorithm from Amdahl’s law.
First, we have to compute the cost of Algorithm [

Stage 1 is a WZ factorization of a square matrix of
2s rows. The computational cost of Stage 1 is (cf. (3)

Ci1(s) =Cwz(2s) = ?53 - gs —3. (17)

Stage 2 is finding some blocks of the matrix W.
Here we have a couple of operations: a matrix-matrix
multiplication and finding an inverse of the matrix (by
solving triangular systems). The cost of Stage 2 in the
k-th step is (n = rs, here and below)

Ca(k,r, s)
r—k
=3s"+ 7+ Y (65° +257) (18)
i=k+1

=35 + 5% 4 (65° + 25%)(r — 2k).

The number of operations for Stage 3 (in the k-th
step) is the same as for Stage 2.

Stage 4 comprises two matrix-matrix multiplications
and two matrix-matrix additions, for (r—2k)? blocks. The
cost of Stage 4 in the k-th step is

C4(k7 T, S)
r—k r—k
=Y > (@s®+2s?) (19)
i=k+1 j=k+1

= (453 +25%)(r — 2k)2.

The number of floating-point arithmetic operations for the
tiled WZ factorization Algorithm[Iis

C(n,s)

T

2

= (Ci(s) +2Co(k, 7, 5) + Ca(k, 7, 5))

k=1
n3(4s + 2) + 6n2s% + n(6s3 — 252 — 7s — 9)
Gs '

(20)

The complexity of the tiled WZ factorization is
greater than that of the non-tiled WZ factorization. It
depends on both the matrix size (n) and the tile size (s).
The smallest complexity of the WZ factorization is for
s = n/2, and it is exactly the same as for the non-tiled WZ
factorization (3). The greatest complexity is n® + O(n?)
for s = 1, which means that it is about %n?’ (50%) bigger
than the complexity of the sequential WZ factorization
(3). In this case, the extra cost comes from Stage 4, where
we perform operations on 1 x 1 matrices (in line 24 of
the algorithms) in the tiled algorithm, which increases the
number of operations from 1 to 2. In other cases, where
1 < s < n/2, we can estimate +n® < C(n, s) < n® and
note C(n, s) = O(n®). We have to carefully choose the
correct values for s because too high or too small values
may deteriorate the performance of the level 3 BLAS
operations used in Algorithm 2.

To foresee the maximum theoretical speedup of
the parallel tiled WZ factorization algorithm with the
use of p threads, we apply Amdahl’s law. Let Pg
denote the percentage of the sequential part of the whole
algorithm—that is, the part which is not parallelized. In
Algorithm[T] only Stage 1 is not parallel. The number of
floating-point arithmetic operations of Stage 1 is given by
the formula (I7). Stage 1 is executed r/2 times, and the
cost of the whole Algorithm[I]is given by (20). Thus

Ps(n, s)
% X Cl(S)
C(n,s) (21)
_ 165° — 7s — 9
- n2(4s+2) +6ns2+ 683 — 252 —Ts— 9’

Let Pr(n, s) denote the percentage of the parallelized part
of the algorithm. Obviously, Pg(n,s) =1 — Ps(n, s).
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In consequence, according to Amdahl’s law
(Amdahl, 1967), the best theoretical speedup for the
parallel tiled WZ factorization algorithm (Algorithm [I))
with the use of p threads is

1

Pr(n,s)’
PS(nv S) + D

S(pin,s) =

(22)

where n X n is the matrix size.

6. Numerical experiments

In this section, we test the performance and the speedup
of the parallel tiled WZ factorization algorithm presented
in Section @l  Our intention was to investigate the
properties of the implementations of the parallel tiled
WZ factorization described in Section[3 and to check the
parallel behavior of the WZ factorization against the LU
one.

In this paper, we tested the multithreaded
LAPACKE_mkl_dgetrfnpi and LAPACK_dgetrf
routines from the MKL. The former computes the
complete LU factorization of a general matrix without
pivoting, and the latter computes the complete LU
factorization of a general matrix with partial pivoting. In
our case, the matrices are square of the size n X n. In the
implementation of the LAPACKE_mkl_dgetrfnpi
routine, the panel factorization (factorization of a block
of columns of LAPACK) is used along with the Level 3
BLAS routines DTRSM and DGEMM and the OpenMP
fork-join model.

We compared five applications for shared memory
multicore architectures. These applications are as follows:

e the parallel tiled WZ factorization algorithm with
use of the multithreaded Level 3 BLAS (denoted by
TWZ(r));

o the parallel tiled WZ factorization algorithm with the
BLAS operations and the fork-join model with the
OpenMP standard with dynamic scheduling (denoted
by ‘“TWZ(r)-fork-join’);

o the parallel tiled WZ factorization algorithm with
BLAS operations and the task with the OpenMP
standard with dynamic scheduling (denoted by
‘TWZ(r)-task’);

e the dgetrfnpi routine from the MKL which
is a multithreaded implementation of the LU
factorization without pivoting (in the sequel, it is
denoted by ‘LU no-pivoting’);

e the dgetrf routine from the MKL, which
is a multithreaded implementation of the LU
factorization with partial pivoting (in what follows,
it is denoted by ‘LU part. piv.’).

Table 1. Hardware used in the experiments.

CPU: Intel®) Xeon E5-2670 v.3 (Haswell)
# sockets x # cores x # threads: 2x12x2
Clock speed: 2.30 GHz
Level 1 instruction cache: 32 kB per core
Level 1 data cache: 32 kB per core
Level 2 cache: 256 kB per core
Level 3 cache: 30 MB
Host memory: 128 GB

Intel icc 16.0.0
MKL 2016.0.109

Compiler:
BLAS library, LAPACK:

Table [[ shows the hardware specification used in the
numerical experiment. We also conducted some tests with
a newer ICC compiler and MKL (both in version 19), and
the results were practically the same. All floating point
calculations were performed in double precision. The
input matrices were generated (by the authors). They were
dense, random matrices, with a dominant diagonal of an
even size of 128,256,512, 1024m (form € {1,...,14}).
Various numbers of tiles were tested; namely, each matrix
was divided into r = 16, 32, 64, 128 tiles for each side
(both for the rows and the columns). The performance
times were measured with the use of a standard function,
namely, dsecnd (). We set the number of OpenMP
threads using the OMP_NUM_THREADS environmental
variable.

6.1. Performance. In our experiments, as a metric, we
use the number of floating-point operations per second
(flops). The number of floating point operations for
both the LU factorization and the WZ factorization [3]
of the matrix of the size n x n is 2n® + O(n?), so it
approximately equals §n3.

Thus, to obtain the metric in Gflops (= 109 flops),
we use the following formula:

2n3

_ 2
3xT x 109’ (23)

where T is the execution time of a measured
implementation. ~ This metric allows comparing all
implementations with the same measure.

Figure Ml presents the performance (in Gflops) of
TWZ(r), TWZ(r)-fork-join and TWZ(r)-task for a matrix
of the size 14 336 for four different numbers of tiles (r =
16, 32,64, 128) as a function of the number of threads.
Figure [3] presents the performance (in Gflops) of TWZ(r),
TWZ(r)-fork-join and TWZ(r)-task for 24 threads for
four different numbers of tiles (r = 16,32,64,128) as
a function of the matrix size.

Figures [ and provide roughly the same
information. For TWZ(r) implementation we achieve the
best performance for » = 16, regardless of the number
of threads and the matrix size. This is caused by the fact
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Fig. 4. Performance in Gflops of the parallel tiled WZ fac-
torization algorithms (TWZ(r), TWZ(r)-fork-join and
TWZ(r)-task) for a matrix of size 14 336 for four dif-
ferent r (16, 32, 64, 128) as a function of the number of
threads.

that, every time we call any Level 3 BLAS routine, the
operating system creates and manages threads, and at the
end of each routine, there must be a barrier. It causes a big
overhead. Thus, the lower the value of r, the smaller the
overhead caused by managing the threads, and the parallel
computations are executed on bigger data portions at once,
because submatrices are bigger.

Conversely, for  the second (that is,
TWZ(r)-fork-join) and the third implementation (that
is, TWZ(r)-task), we achieve the best performance
for r = 64 or r = 128, depending on the number of
threads and the matrix size. The threshold for the matrix
size equals 10 240. Such behavior is caused by the

CPU, TWZ(r), 24 threads

350 : ‘ ‘
r=16 ——
300 | r=32 ——
250 -
v 200 -
a
o
=
O 150
100 -
50 -
0 Il I I I I
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matrix size
CPU, TWZ(r)-fork-join, 24 threads
600

T
r=16 ——
r=32 —=—
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% A Il Il Il I I
0 2048 4096 6144 8192 10240 12288 14336
matrix size

CPU, TWZ(r)-task, 24 threads
600 T . : . .

500 rf

400

300 |~

Gflops

100

0 2048 4096 6144 8192 10240 12288 14336

matrix size

Fig. 5. Performance in Gflops of the parallel tiled WZ fac-
torization algorithms (TWZ(r), TWZ(r)-fork-join and
TWZ(r)-task) for 24 threads for four different r (16, 32,
64, 128) as a function of the matrix size.

parallelization of the loops with the use of OpenMP using
the fork-join model or tasks. Thus, the bigger the value
of r, the smaller the overhead caused by managing the
threads.

The TWZ(r)-task implementation achieves
better performance (more than 500 Gflops) than
TWZ(r)-fork-join (500 Gflops) and TWZ(r) (only about
350 Gflops).

Figure compares the performance of the
best cases of all implementations of the parallel
tiled WZ  factorization  algorithm  (TWZ(16),
TWZ(64/128)-fork-join and TWZ(128)-task), and
the LU factorization without pivoting and with partial
pivoting (the LAPACK block algorithms from the MKL).
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The graph on the left-hand side reports the impact of the
number of threads on the performance for a fixed total
problem size. The graph on the right-hand side shows
the performance using the maximum numbers of cores
available on the system (24) with respect to the problem
size.

The best performance is achieved for the
TWZ(r)-task implementation for » = 128, and it is
over 500 Gflops. The worst performance is achieved for
the TWZ(16) implementation. All our implementations
scale well with the number of threads and somewhat
worse with the matrix size. Using tasks becomes usable
for large size matrices and a big number of threads.

The LU implementations (both with partial pivoting
and without pivoting) from the MKL are somewhat
sensitive to the number of threads and the matrix size.
They scale very well up to 23 threads for the matrix size
14 336. For the number of threads from 1 to 23, the
performance of the LU implementations from the MKL is
higher than in the case of our three WZ implementations
(Fig. [6).

The issue with 24 threads is exceptional because of

CPU, matrix size = 14 336

T
TWZ(16) —+—
TWZ(128)-fork-join —=—
TWZ(128)-task —*—

LU no piv. —s—
LU part. piv. —=—

600

500 rf

400

Gflops

300 |

200

100

0 4 8 12 16 20 24
number of threads

CPU, 24 threads

T T
700 - TWZ(16) —— 4
TWZ(128)-fork-join —=—
TWZ(128)-task —*—

LU no piv. —s—

LU part. piv. —=—

500

400

Gflops

300 |-

200

100

s i i i i i
0 2048 4096 6144 8192 10240 12288 14336
matrix size

Fig. 6. Performance of all the implementations of the parallel
tiled WZ factorization algorithm (TWZ(16), TWZ(128)-
fork-join and TWZ(128)-task) and of both the imple-
mentations of the LU factorization (with partial pivoting
and without pivoting—the LAPACK block algorithms
from the MKL).

the fact that the machine frequency is not always the same
(thanks to turbo boost mode it is higher when the machine
is less loaded and lower when it is more loaded). Also, it
can seen that the breakdown should be somewhat earlier,
but we do not know the real frequencies used (apart
from the fact that they are between a producer-specified
minimum and maximum). It is also worth noting that the
TWZ(r) implementations perform poorly for 24 threads,
and the loss is dramatic, However, for TWZ(r)-fork-join
and TWZ(r)-task, the drop is small or even none (besides
23 threads).

Also, for smaller matrices and 24 threads, the MKL
implementations of the LU factorization with pivoting and
without it provide better results than our implementations
of the WZ factorization. For bigger problems, LU
without pivoting has a performance comparable with our
implementations.

Both the implementations (with partial pivoting and
without pivoting) of the LU factorization from the MKL
produce similar results because the diagonally dominant
matrices were tested, which means that the pivoting was
not done even once. At every step, the pivot was searched,
which slightly influenced the performance time of the LU
factorization.

6.2. Speedup. In our proposed implementations only
Stage 1 is not parallelized. In this section, we investigate
the influence of this sequential part on the speedup
possibilities.

Let T}, be the time to perform the computation using
p threads. Speedup for p threads is defined as

Sp = 24)

Ty
T,

Figures [JH8] show the theoretical and experimental
speedup as a function of the number of threads (1-24
threads) for a matrix of the size 14 336. Figure [
reports the theoretical speedup from Amdahl’s law
@2) for different values of r.  Figure presents
the speedup of the TWZ(16), TWZ(128)-fork-join and
TWZ(128)-task implementations (the best ones from
all kinds of implementations), both implementations of
the LU factorization with partial pivoting and without
pivoting and the best theoretical speedup (that is, for
r = 128).

The theoretical speedup grows with the growth
of r. The best experimental speedup is achieved for
TWZ(128)-task and TWZ(128)-fork-join, and it is very
close to the theoretical speedup. The speedup of the
MKL LU implementations is not regular and depends
significantly on the matrix size and the number of threads.
Moreover, for a bigger number of threads, it is lower than
the speedup of our implementations.
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6.3. Numerical accuracy. The purpose of this section
is not to perform a full study of the numerical stability and
accuracy of the tiled WZ algorithm, but only to justify that
the tile WZ algorithm can be used in practice. To study the
numerical behavior of our implementations, we conducted
numerical experiments. We used all the earlier matrices
(we analyzed only dense square diagonally dominant
matrices, as earlier), but here we show only the results for
n = 4096, which represent the numerical performance
trends for all other matrix sizes.

Table [2| shows the absolute error norms of our
implementations which were computed as ||A — WZ|| .
However, the matrices W and Z were computed with the
use of the respective manners:

e W, and Z, are matrices from the sequential
factorization described in Section3}

CPU, Amdahl's law, matrix size = 14 336

N
FS

T
r=16 ——
r=32 —— @
H r=64 —x— & -
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N
o
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T
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T

0 4 8 12 16 20 24
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Fig. 7. Theoretical speedup according to Amdahl’s law as a
function of the number of threads for different values
of r.

CPU, matrix size = 14 336
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T T T
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TWZ(128)-task —&—
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Fig. 8. Speedup of the parallel tiled WZ factorization algo-
rithms (TWZ(r), TWZ(r)-fork-join and TWZ(r)-task)
and both implementations of the LU factorization (with
partial pivoting and without pivoting) (the LAPACK
block algorithm from the MKL) compared with the best
theoretical speedup for a matrix of size 14 336 for vari-
ous numbers of threads.

Table 2. Numerical accuracy of parallel implementations of the
tiled WZ factorization algorithms for n = 4096.

[JA = W) Zoy oo r=16 | 4.58¢ — 06
r=32 | 4.68¢ — 06

r=64 | 4.35¢ — 06

r=128 | 4.37e — 06

[A = WpriZprlleo | 7=16 | 4.58 — 06
r=32 | 4.68¢ — 06

r=64 | 4.35¢ — 06

r=128 | 4.37e — 06

[A = LU[|- — 1.22¢ — 05

e Wr() and Zp(,) are matrices from the ftiled
factorization described in Section HE] in the
implementation shown in Section (the norm
does not depend on the number of threads);

e Wpr() and Zppy are matrices from the
tiled factorization described in Section Ml in the
implementation shown in Section[5.4] (the norm does
not depend on the number of threads);

e L and U are matrices from the LU factorization.

For the numerical results presented here, we used the
number of tiles described in Table 2l All the results are
for double real precision.

The number of threads does not influence the
accuracy, and neither does the implementation. The
factorization seems stable. The norm is the same
for the sequential implementation, and various tiled
implementations so the tiled WZ algorithm sustains the
accuracy of the numerical algorithm. It seems that the WZ
factorization is a little more accurate than the LU one.

7. Conclusion

In this article, we studied the decomposition of a matrix
A into factors W and Z, for a nonsingular, dense,
square matrix of an even size. Such a problem has
a computationally intensive nature. To reduce the
computing time significantly and to use contemporary
computer architectures, we considered a partition of
the matrix A into 72 tiles. Such a tiled algorithm is
implemented on a shared memory multicore system. Our
implementations used a tiled WZ factorization algorithm.
They employ Level 3 BLAS routines and the OpenMP
standard with dynamic scheduling using both approaches,
namely the fork-join model and the task-based model.
Our implementations scale well with the growth of the
number of threads and with the problem size. It is
important that the parameter r influences the performance.
The TWZ(r)-task implementation achieves a little higher
performance than the TWZ(r)-fork-join implementation
for bigger matrix sizes and a bigger number of threads.
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The TWZ(r)-task implementation is better scalable than
the dgetrfnpi routine (the LU factorization without
pivoting) and the dgetrf one (the LU factorization
with partial pivoting) from the MKL. A similar result for
dgetrf from the MKL is presented by Dumas et al.
(2016).

In future works, we plan to investigate a recursive
version of the tiled WZ factorization (similarly as
Dongarra et al. (2013)) algorithm and to use the tile layout
(Gustavson, 1997) and the OpenMP runtime system for
data flow paradigms on different multicore and manycore
architectures. Moreover, we plan to implement the WZ
factorization usable for practical problems, particularly
for sparse matrices, which often come from real-life
applications.
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