
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 2, 245–259
DOI: 10.2478/amcs-2019-0018

IOT SENSING NETWORKS FOR GAIT VELOCITY MEASUREMENT

JYUN-JHE CHOU a, CHI-SHENG SHIH a,∗, WEI-DEAN WANG b, KUO-CHIN HUANG c

aGraduate Institute of Networking and Multimedia
National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

e-mail: cshih@csie.ntu.edu.tw

bDepartment of Medical Education and Bioethics
National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

cDepartment of Family Medicine
National Taiwan University Hospital, No. 1, Changde St., Zhongzheng Dist., Taipei 10048, Taiwan

Gait velocity has been considered the sixth vital sign. It can be used not only to estimate the survival rate of the elderly,
but also to predict the tendency of falling. Unfortunately, gait velocity is usually measured on a specially designed walk
path, which has to be done at clinics or health institutes. Wearable tracking services using an accelerometer or an inertial
measurement unit can measure the velocity for a certain time interval, but not all the time, due to the lack of a sustainable
energy source. To tackle the shortcomings of wearable sensors, this work develops a framework to measure gait velocity
using distributed tracking services deployed indoors. Two major challenges are tackled in this paper. The first is to minimize
the sensing errors caused by thermal noise and overlapping sensing regions. The second is to minimize the data volume to
be stored or transmitted. Given numerous errors caused by remote sensing, the framework takes into account the temporal
and spatial relationship among tracking services to calibrate the services systematically. Consequently, gait velocity can be
measured without wearable sensors and with higher accuracy. The developed method is built on top of WuKong, which is
an intelligent IoT middleware, to enable location and temporal-aware data collection. In this work, we present an iterative
method to reduce the data volume collected by thermal sensors. The evaluation results show that the file size is up to 25%
of that of the JPEG format when the RMSE is limited to 0.5◦.

Keywords: Internet of things, middleware, compression, data fusion, data reduction.

1. Introduction

Walking exercises the nervous, cardiovascular,
pulmonary, musculoskeletal and hematologic systems
because it requires more oxygen to contract the muscles.
Hence, gait velocity, called walking speed (Middleton
et al., 2015), has become a valid and important metric for
senior populations (Middleton et al., 2015; Studenski et
al., 2011; 2003).

Studenski et al. (2011) published a study that tracked
gait velocity of over 34,000 seniors for periods ranging
from 6 years to 21 years in the US. The study found that
the predicted survival rate based on the age, sex, and gait
velocity was as that accurate as predicted based on the age,
sex, chronic conditions, smoking history, blood pressure,

∗Corresponding author

body mass index, and hospitalization. Consequently, it
motivated the industrial and academic communities to
develop a methodology to track and assess the risk based
on gait velocity. The following years led to many papers
that point to the importance of gait velocity as a predictor
of degradation and exacerbation events associated with
various chronic diseases including heart failure, COPD,
kidney failure, stroke, etc. (Studenski et al., 2003;
Pulignano et al., 2016; Kon et al., 2015; Kutner et al.,
2015). In the US, there are 13 million seniors who live
alone at home (Administration on Aging, 2015). Gait
velocity and stride length are particularly important in
this case since they provide an assessment of fall risk,
the ability to perform daily activities such as bathing and
eating, and hence the potential for being independent. The
assessment of gait velocity is recommended to instruct

mailto:cshih@csie.ntu.edu.tw

246 J.-J. Chou et al.

Fig. 1. Gait velocity measurement at smart homes.

the subjects to walk back and forth in a 5, 8 or 10 meter
walkway. Similar results were found in a study comparing
a 3 meter walk test to the GAITRite electronic walkway
in individuals with a chronic stroke (Peters et al., 2014).

The above approaches are employed either at clinical
institutes or designated locations. They are recommended
by physicians but are required to be conducted in a limited
time and location. Consequently, it is not trivial, if
not difficult, to observe the change in long term. It
is desirable for the elderly, their family members, and
physicians to monitor gait velocity for the elderly all the
time at any location. However, the assessment should take
into account several factors, including accuracy, privacy,
portability, robustness, and applicability.

Shih et al. (2017) proposed a sensing system to be
installed at home or a nursing institute without revealing
privacy and not using wearable devices. Given the
proposed method, one may deploy several thermal sensors
in his/her apartments, as shown in Fig. 1. In this example,
numbers of thermal sensors are deployed to increase the
coverage of the sensing signals. In large spaces such
as a living room, there will be more than one sensor in
one space; in small spaces such as a corridor, there can
be only one sensor. One fundamental question is how
many sensors should be deployed and how these sensors
work together seamlessly to provide accurate gait velocity
measurements.

To plan the number of sensors to be installed, one has
to take into account if the sensing regions should overlap
and if there is any interference. Our observations show
that the above two questions are not trivial to answer. The
first challenge is to overcome the errors caused by cone
shape sensing signals. Figure 2 illustrates such errors.

When the person walks into the covered region

shown on the left of the figure, the sensor will sense the
leg first and show the heat sources at the edge of the
cover space. Then, when the person continues to walk
toward the center of the covered region, the sensor can
sense the heat of their head, which is higher than the
legs, but continuously shows the heat sources at the edge
of the covered region. Consequently, on the heat map,
they remain at the same locations; however, the person
physically walks for 20 cm to 40 cm, depending on the
height of the subject. This effect will lead to errors in gait
velocity measurements on the edge of the covered region.

Another error is wrong location estimation,
illustrated in Fig 3. (The dark and light grey boxes
represent the heat sources whose temperature is greater
than ambient temperature. Moreover, the heat sources
marked in dark grey are hotter than the those marked
in light grey.) When the person stands in overlapping
regions of two adjacent sensors, both the sensors can

Fig. 2. Gait speed errors caused by cone-shape signals.

Fig. 3. Location errors caused by cone-shape signals.

IoT sensing networks for gait velocity measurement 247

detect him or her. When the sensor estimates the location
of the person based on the highest temperature and
assumes that it is the location of the head, the two
sensors will mark the person at two different locations.
Consequently, the heat source will be recorded twice in
the system, which is not correct.

Collaborating with neighboring thermal sensors, the
walking speed and walking length of a person can be
detected more precisely, and the detected area will become
large to cover all rooms in a house. However, the
increased number of sensors will cause a large workload
to the network and storage. Using the deployment in Fig. 1
as an example, there are fifteen thermal sensors in an
apartment. If Panasonic Grid-Eye sensors are used, each
of them will employ 2 bytes per pixel to store the data.
This will generate 1.7 GB data per day when each sensor
samples at 10 Hz and there are 64 pixels per frame. The
challenge is to reduce the amount of data transmitted over
the network and stored in the systems.
Contribution. The contribution of this work is to
enable gait velocity measurements at home and private
spaces. The developed method uses temporal and
location properties of the sensed data to eliminate the
aforementioned errors. The location framework in the
WuKong middleware simplifies the development and
maintenance overhead, which are the foundations of the
proposed methods.

The remainder of this paper is organized as follows.
Section 2 presents related works and a background for
developing the methods. Section 3 presents the system
architecture, challenges, and mechanisms developed.
Section 4 presents the evaluation results of the proposed
mechanism, and Section 5 summarizes our works.

2. Background and related works

2.1. Related works. Activity recognition and
monitoring are two fundamental metrics to understand
the health condition of patients in health care. An active
lifestyle leads to a healthy body condition and slows down
the aging, both physically and mentally. Hence there have
been a large number of works on developing methods and
technology of activity recognition and monitoring.

Many related works use wearable sensors to collect
data and recognize the type of activities. Lee and
Chung (2009) use shirts for activity monitoring. A
smart shirt which measures electrocardiogram (ECG)
and acceleration signals for continuous and real time
health monitoring is designed and developed. The shirt
mainly consists of sensors for continuously monitoring
health data and conductive fabric electrodes to get body
signals. The measured physiological ECG data and
physical activity data are transmitted in an ad-hoc network
in the IEEE 802.15.4 communication standard to a base
station and a server PC for remote monitoring. The

wearable sensor devices are designed to fit well into shirt
with a small size and low power consumption to reduce
the battery size. An adaptive filtering method to cancel
artifact noise from conductive fabric electrodes in a shirt
is also designed and tested to get clear ECG signals even
during the running or physical exercise of a person.

Milenković et al. (2006) use wearable devices to
collect vital sign signals. Although wearable, it is
not likely to wear these devices 24/7 and collect data.
In addition, the devices require clock synchronization
protocols among wearable devices, which imposes
unnecessary requirements for hardware devices and leads
to heavy power consumption. Alemdar and Ersoy (2010)
study several systems designed for health care. Many of
them rely on wearable devices to detect the location of
the subject of interest or to collect vital sign information.
The transceivers deployed in the environment forward the
received data to a central database for further analysis.
Using wearable devices to collect vital signs has its own
merits. However, this approach only works when the
subjects of interest are wearing these devices and cannot
be used as the only way to collect health-care data.
Our work proposes to deploy low-cost sensors in the
environment to collect data, which can operate 24/7 and
are not subject to users’ preference.

Gravina et al. (2017) propose an activity-as-a-service
framework to support activity recognition and monitoring
in mobility. The aim of this work is to provide a service to
collect data gathered by a body sensor network (BSN) and
high performance computing for processing the collected
sensor data. It uses mobile devices as the transmission
gateway between wearable devices and cloud services.
Fortino et al. (2015) propose a framework to collect data
from multiple body sensor networks and process the data
in a distributed manner.

Other works deploy sensors in the environment to
collect information and recognize the type of activities.
Lu and Fu (2009) design and implement a robust
location-aware activity recognition system to recognize
users’ behaviors. The average accuracy of activities
correctly detected is 92%. Although the method provides
robust data collection, it requires a specially designed
floor which can measure pressure but is extremely
expensive.

Yi et al. (2013) present a work to preserve the
privacy at wireless sensor networks. The aim of that
work is to design a lightweight encryption algorithm to
protect the communication between the sensor node and
server. In our works, we will preserve the privacy while
sensing. Gheid and Challal (2016) propose a protocol to
analyze the sensed data without revealing privacy. The
protocol consists of a cosine similarity protocol to assess
the similarity between the sensed activities and external
patterns. Bourke et al. (2016) propose to use video
analysis and a tri-axial accelerometer to recognize the

248 J.-J. Chou et al.

activity pattern. The aim is to use minimal sensors and
provide accurate detection results. However, privacy is
not preserved in this work.

Khalajmehrabadi et al. (2016), Zhao et al. (2016),
and Hsu et al. (2017) proposed to use radio signal patterns
to monitor gait velocity in rooms. Some technology
was developed to recognize the type of activities and to
measure gait velocity for multiple persons in a room. The
experimental results show that the proposed approaches
provide very accurate measurements. The average error
rates are 1.9% and 4.2% for gait velocity and the stride
length, respectively. However, the proposed approaches
require expensive signal receivers, each of which may
cost more than 2,000 USD (USRP, 2019) to measure each
subject.

2.2. Intelligent virtual runtime for IoT devices.
WuKong (Reijers et al., 2013; Shih, 2016; WuKong,
2012) is an intelligent middleware for designing and
managing large scale IoT services. It consists of
two major components to fill the gap for developing
and managing IoT applications: an intelligent run-
time environment and a flow-based developing frame-
work. The WuKong run-time environment is regarded
as a virtual middle-ware (VMW). The reasons for
this are two-fold. First, as IoT applications are
deployed at different locations and evolve over time, it
is very likely that the systems use devices (including
sensors, actuators, and computing platforms) developed
by different manufactures and communicating via
different network protocols. Having virtual devices
allows applications to run on heterogeneous devices
and networks. Second, when the system needs to be
reconfigured, the process of reprogramming devices will
be less expensive when using a virtual machine design. In
addition, the number of lines of code will be lower since
virtual devices can offer higher level primitives specific
for IoT applications.

The flow-based developing framework provides a
high level development environment to design hardware
independent IoT applications. The goal of this framework
is to allow domain experts to design their IoT applications
without complete knowledge of hardware devices and
network protocols to conduct the services. In this
framework, users compose services using a data-flow
model and pre-defined services. The framework then
generates executable code for selected devices using a
distributed computing model.

Run-time environment of WuKong devices. Most
of the IoT application development environments are
hardware dependent and require the developers to specify
hardware properties while designing IoT/Smart city
applications. For example, in the operating system, the

IoT Device (Atmel AVR)

IoT Device (ARM and Intel x86)

Operating Systems (Linux)

WuKong RunTime WuKong Run-Time

App

Darjeeling VM

Native Profiles (C)

Communication

Master Protoclol

WuKong FBP
Applications (Java and
C)

WuKong FBP
Applications (Java,
Python, and C)

Darjeeling VM

Native Profiles (C)

Communication

Master Protoclol

(a) (b)

Fig. 4. WuKong run-time on IoT devices: on MCU-based de-
vices (a), on uP-based devices (b).

CPU type and the port number for sensors should be
known. In order to reduce management overhead, the
developed system may be required to use identical devices
and platforms, or to store configuration files for each
type of platforms. It is certainly impractical in large
scale and evolving smart city systems. WuKong run-time
virtualizes IoT devices by deploying virtual machines to
these resource-limited devices. This model does not only
provide a hardware independent runtime environment, but
also enhances reliability and security for IoT devices.

Figure 4 shows the run-time environment on
WuKong-enabled IoT devices. Figure 4(a) presents
the runtime for micro-controller-based IoT devices such
as Arduino MEGA2560, which is powered by an
Atmel AVR ATmega2560 micro-controller. On this
type of devices, there is no operating system and the
WuKong run-time starts when the system is turned
on. WuKong runtime consists of a communication
component, a master protocol component, native profiles,
and Darjeeling JVM. The communication component is
responsible for communicating with radio interface on the
device so as to send and receive messages to/from other
devices; the master protocol component is responsible for
communicating with the WuKong master, which will be
discussed later, so as to provide device properties and
download applications from the WuKong master. Native
profiles refer to the service adapter (or the device driver)
of hardware components such as sensors and actuators.
Last, Darjeeling JVM is a Java virtual machine to execute
Java applications. Darjeeling VM supports limited Java
APIs for embedded devices and is a stack-based VM.
Different from traditional JVM, the Darjeeling VM uses
the AOT (Ahead-of-Time) compiler rather than the JIT, to
reduce the memory and storage usage requirements. The
memory footprint of DarjeelingVM is less than 80 kB and

IoT sensing networks for gait velocity measurement 249

the optimized Java executable code is only 86% slower
than the optimized native C executable code (Reijers
and Shih, 2017). (Other Java JIT compilers are from
30 to 200 times slower compared with the optimized C
implementation.)

WuKong development environment. The WuKong
development environment is a graphical programming
environment for flow-based programming. In the
WuKong development environment, users select an
appropriate pre-defined service class, called WuClass, to
compose their applications. One WuClass can represent
primitive sensing services such as temperature sensing
and motion sensing, primitive actuation services such
as buzz and display, or programmable decision services
using Python, Java, or C.

Figure 5 shows the flow-based development
environment in WuKong. In the environment, developers
drag and drop predefined service components, named
WuClass in WuKong, and data links to FBP programming
canvas presented on the right. The example shows a
smoke detector and evacuation sign application, which
detects a smoke event using ‘Smoke Sensing Services’
shown on the left and displays an evacuation route using
‘Display Services’ shown on the right. The service in
the center represents a fire agent to intelligently find
a safe evacuation route. Each WuClass has predefined
properties, which can be read-only, write-only, or
read/write. In this example, the alarm property in the
Smoke Sensing Service WuClass is a read-only property;
the content property in Display Service WuClass is
a write-only property. The directed lines between
WuClasses represent directed data flows from one
WuClass to another one.

Applications developed in the WuKong FBP
environment only define the services and logical flows
for the application. The service class can specify
the minimum requirements for hardware devices to
conduct the service. The application shown in Fig. 5

Fig. 5. Example application in the WuKong FBP environment.

Service Mapping
Process

FBP
Application

Discovery
Results

Hardware
Dependent Code

Generation

Device
Profiles

Code Upload

Fig. 6. Flow for service mapping and application deployment
on the WuKong master.

can be deployed to one edge device or multiple devices
connected by computer networks or wires. We discuss
the deployment process in the next subsection.

Deployment-time service mapping. In the WuKong
middleware, WuMaster is responsible for managing the
services and devices in an area, similarly to a wireless
access point for a wireless network. When a new device
starts, it looks for WuMaster in the network and registers
itself to WuMaster. WuMaster then starts the discovery
process to collect hardware properties from the device.
These properties will be stored on WuMaster for service
management.

The WuKong middleware explicitly separates the
deployment phase from the development phase. Figure 6
shows the process of mapping an FBP application to
hardware devices and that of deploying applications to the
devices. When the application is ready to be deployed, it
is downloaded to WuMaster from an application store on
the cloud. The first step for application deployment is to
map logical services, i.e., WuClass, to physical devices.
The service installer or developers can choose different
mapping algorithms to map WuClass in FBP applications
to meet different QoS requirements. For example, one
may ask to use a minimal number of devices; another
may ask to minimize the network traffic in the system.
WuMaster will map services to physical devices based on
the selected mapping policies. The discovery results are
used to search for capable hardware devices to conduct
WuClass. Moreover, the mapping service also creates
messaging links from the sending device to the receiving
one for each data link defined in the FBP application.

The second step generates executable code for the
devices. (Many of the edge devices are not able
to generate executable code from the source codes of
high-level programming languages.) Each IoT device
may have different physical sensing and actuation devices,
and supports different software-enabled services. These
capabilities are specified in device profiles. WuMaster
generates the code based on the device profiles. The last
step is to upload the code to the devices using computer
networks. WuMaster communicates with the master
protocol component (cf. Fig. 4) to upload the code. The
uploaded code will be executed on top of the WuKong

250 J.-J. Chou et al.

run-time environment. Note that WuClass implemented
in Python can only be uploaded to microprocessor-based
devices.

The WuKong framework provides the development
framework to integrate a number of sensing and
computation services into a coherent IoT service.
Specifically, it simplifies the development process by
reusing pre-designed services and integrating the services
by a data-flow model. Consequently, developers do
not need to duplicate the pre-designed service onto the
application. The pre-designed service has only one
version of the code and can be deployed in a number
of IoT devices. The WuKong framework also provides
location-aware services so as to configure the services
according to their location.

3. Location and temporal-aware sensing
services

Gait velocity and activity recognition require the system
to monitor the subject within a spacious area for a certain
period of time. When the monitored area is not well
controlled, there will be lots of noise in the environment,
which leads to errors in the collected data and, hence,
may reduce the accuracy and usability of the system. This
section presents observations on the causes of the errors,
and the proposed method to eliminate them.

3.1. Observations on the cause of sensing errors.
In order to study the cause of the errors and impact on
the accuracy, we conduct two sets of preliminary studies.
Figures 7 and 8 show the settings of the experiments and
their results on the errors caused by cone-shape sensing
signals. The first experiment evaluates the errors caused
by walking toward lines of sensors. The figure shows the
detected walking distance relative to the edge of sensor S1

and the path of the ground truth. The errors were caused
by the height of the person and the cone-shape of sensing
signals. Hence, when a person walks along a straight
line at a constant speed, the measured speed will not be
constant.

The most significant errors occur at the edge of the
sensing regions, which are presented at the start and the
end of the heat sources detected by each sensor. Because
there are only 8 data points on both the horizontal and
vertical axes, the walking path detected by the sensors is
not linear and is a step function. Moreover, the length
of the horizontal lines at the start and the end of the
path is much longer than other segments. The prolonged
segments are the results of cone-shaped signals. Thus, the
location remains the same and the moving distance will
be underestimated, and so is gait velocity. Fortunately,
the results also show that overlapping the sensing regions
may allow the system to eliminate the sensing errors on
the edge.

The second experiment is designed to understand the
error on location estimation on overlapping regions. In
these experiment, the person walks on a line perpendicular
to the line of the sensors. In this experiments, we set
up three sensors: S1, S2, and S3. Sensor S1, on the
left of sensor S2, has 24 (3×8) data points overlapping
with those of Sensor S2, shown as the grey area in the
figure. The person walks along three different paths,
which are 15 cm apart and are represented as P1, P2, and
P3. Figure 8(b) shows the estimated walking paths by
Sensor S1 and S2. The results show that sensor S2 returns
the correct walking path, but not Sensor S1. Sensor S1 is
misled to believe that paths P1 and P2 are identical, which
is not correct.

The above two experiments show that the error
caused by cone-shape sensing signals can be eliminated
by overlapping the sensing regions, as shown in Fig. 7(b).
However, we have to carefully design the algorithm to
fuse the sensing data on overlapping sensing regions.

3.2. Collaborative sensing between neighboring ser-
vices. To remove the aforementioned errors caused by
sensing signals and the deployment of sensors, the sensing
devices in the system have to exchange the sensed data
with their neighbors and calibrate themselves from time
to time.

The first part of the proposed method is to take into
account the location of the person and his/her height to
eliminate the errors. Figure 7(b) shows that overlapping
the sensing regions can eliminate the distortion on the
edge of sensing regions; however, at the same time,
Fig. 8(b) shows that it is not trivial to fuse the sensing
data in the overlapping area.

There are a number of methods to fuse the peak heat
sources detected by different sensors. For the sake of
simplicity, we assume that the real-time clock of sensing
devices is well synchronized. (We will discuss how to
synchronize the devices later.) The first step is to convert
the locations sensed by different sensors into common
coordinates. This step requires calibrating the sensed
location onto a true coordinate, which is critical to the data
points on the edge of the sensing regions.

The second step is to fuse the peak of heat sources
from multiple sensors into one peak of heat sources. After
the first step, the peak of heat sources from multiple
sensors is located in the same coordinate system. The
most intuitive way is to compute the mean of nearby
peaks as the new peak of the heat source. This method
is simple but ignores the fact that the sensing signals are
of cone shape. The peak detected by different sensors
represents different parts of the human body, as shown
in Fig. 3. A better way is to use the weighted average
based on the number of data points which are greater
than the detection threshold. (We will discuss how to
filter the data points using the threshold in a temporal

IoT sensing networks for gait velocity measurement 251

(a) (b)

Fig. 7. Errors and bias of parallel sensor deployment: walk in the direction parallel to the sensor deployment (a), location of peak
values (b).

Walking Direction

S1 S2 S3 S1

P1
P2

P3

S2

P1P2P3P2P3 P1

(a) (b)

Fig. 8. Errors at overlapping sensing regions: walk in the direction in perpendicular to the sensor deployment (a), location of beak
values (b).

domain later.) The weight of data points covered by
Sensor Si, denoted by WSi , represents the number of
pixels whose z-score is greater than the threshold in the
region of Sensor Sx. The peak of data points covered by
Sensor Si, denoted by ZSi represents the position of the
peak in the region of Sensor Si. The new location of the
peak in the overlapping regions of Sensor Si, Si+1, . . . ,
denoted by Zi, is computed by the weighted average of
the peak covered by Sensor Si, Si+1, In other words,

Zi =

∑
i ZSi ×WSi∑

iWSi

. (1)

Z-score filtering on temporal domain. To identify the
heat source correctly, the developed approach consists of
two methods. The first part is to remove the noise among
the sensed data. To distinguish a spontaneous temperature
increase from a stable temperature increase, Z-scores are
computed for each data point, and only the z-scores of
these data points that meet certain requirements, which

will be discussed later, are selected as heat sources in the
sensed space. The second part of the approach is designed
to eliminate the impact of the ambient temperature caused
by air condition, weather, and so on. Since z-score
depend on the average readings and standard deviations,
the impact can be eliminated by calibrating the average
readings from time to time. The details of these two
methods can be found in our earlier work (Shih et al.,
2017).

Walking path detection. After obtaining pixel of the
peak, we need to transfer it to a real position. The
horizontal and vertical angle of view of a sensor is 70◦.
We assume that the angles of view of every pixel are the
same, and we know the distance between the object and
the sensor. Figure 9 shows that the length of every pixels
is different. The pixel closer to the edge of the sensing
area has a wider sensing range. We can use the distance
D and the angle between the sensor and the objects and

252 J.-J. Chou et al.

the vertical line of sensor θ to calculate the position of
object P ,

P = D tan(θ). (2)

3.3. Location-aware data exchange in the WuKong
middleware. The proposed method discussed above
requires the sensing devices to exchange data with their
neighboring devices. In the deployment scenario shown
in Fig. 1, it will be labor-intensive and error-prone
to program each device to only communicate with its
neighboring devices. Moreover, it will be much difficult
to maintain the services when either repair or replacement
is needed.

WuKong middleware supports the flow-based
program development environment and the pub/sub
messaging exchange model. When the location of
each device is provided, the messaging mechanism
in the WuKong middleware will allow each device to
communicate with its neighboring devices. Figure 10
shows the application to identify the person in the space
and provide his/her height to calibrate the estimation.

Figure 10 shows the application for gait velocity
measurement. In this application, WuClass GridEye
is the service to sense thermal signals and process the
data. While processing the sensed signals, it also receives
signals from other sensors by subscribing to the data in
the neighborhood, shown as the AWSSub service. At
the same time, WuClass GridEye sends its estimates
of heat sources to WuClass GaitVelocityServer to
compute gait velocity, and publishes its sensed data to
other devices in the neighborhood, shown as the AWSPub
service. WuClass GridEye has a UserHeight
property, which is optional. This property will allow the
service to take into account the height of the person to
better estimate the location. It can be provided via manual

�����

��	
��

Fig. 9. Position of each pixel.

Fig. 10. FBP for gait velocity measurement.

inputs, configurations, and run-time detection by other
services.

3.4. Data compression/reduction. If we store a frame
from Grid-Eye in a readable format, it will need 380 bytes
and generate 328 MB data per day when it samples at 10
Hz. However, the indoor temperature environment ranges
only from 5◦ C to 40◦ C and the resolution of Grid-Eye
is 0.25◦ C. Hence, we can use one byte to present the
temperature reading for each pixel without losing the
accuracy and resolution. Consequently, we only need 64
bytes to store a frame, and the amount of sensing data will
reduce to 55 MB per day. This approach is effective and
straightforward, but limited to indoor temperature. Many
compression and reduction ones, including lossless and
lossy algorithms, have been proposed for general purposes
and are listed below.

Huffman coding. Huffman coding is a lossless data
compression coding method. The method analyzes input
raw data, computes the frequency of the symbol in the
raw data, and encodes the symbol using variable length bit
strings. The rationale is to use short bit string to present
high frequency symbols and long bit strings to present
low frequency symbols so as shorten the raw data without
ambiguity and loss.

When Huffman coding is used to encode the thermal
image sampled by Grid-Eye, it can reduce the frame
size from 64 bytes to 40.7 bytes, with a 6 byte standard
deviation. When the Huffman coding is used to encode
the thermal image sampled by FLIR ONE PRO, it can
reduce the frame size from 307 kB to 257 kB, with a
8.1 kB standard deviation. In order to preserve all the
data, the compression ratio of the Huffman coding ranges
from 1 to 3 for most input data. In the meantime, its time
complexity is O(n log n), where n is the size of the input
data.

IoT sensing networks for gait velocity measurement 253

Z-score threshold. When it is acceptable to lose
insignificant data, many compression algorithms for audio
and image data are developed. To measure gait velocity of
the elderly, only the movement of the heat sources should
be stored. Hence, it is not required to keep all the details
of the thermal images.

We can only send the locations of heat sources since
the thermal sensors are mostly used to detect heat source.
The z-score is defined as z = (χ− μ)/σ, where χ is
the value of the temperature, μ is the average of the
temperature in the covered area, and σ is the standard
deviation of the temperature. The z-score provides a
dynamic threshold to detect heat sources because the
average temperatures change from one frame to another,
and are not sensitive to changes in ambient temperature.
In our earlier work (Shih et al., 2017), we used the z- score
instead of a static threshold to detect humans because
the background temperature may have a 10◦ C difference
between day and night, and when people walk through
the sensing area covered by Grid-Eye, the temperature
reading will only increase from 2◦ C to 3◦ C. Hence, it
is impossible to use a static threshold to detect a human.

In the work of Shih et al. (2017), the pixels with
significant data points only if the z-score is higher than
two. Hence, we can reduce the frame size by dropping
all pixels with low z-scores. The file size can be reduced
from 64 B to 12.6 B with a 2.9 B standard deviation by the
z-score threshold 2. Its compression ratio is greater than
five.

Gaussian function fitting. Since the temperature
readings of a human body in thermal data from Grid-Eye
look like a signal cone, we may use a Gaussian function
to fit the thermal data. A Gaussian function y =
Ae−(x−B)2/2C2

has three parameters: A, B and C.
Parameter A refers to the height of the cone, B refers to
the position of the cone’s peak, and C refers to the width
of the cone. We use the pixel with the highest temperature
as the peak of the cone, so we only need to adjust A and
C to fit the thermal data. Guo (2011) provides a fast way
to fit a Gaussian function. In our testing, it will have a
0.5◦ C root-mean-square error on the average, and it only
needs five bytes to store the position of the peak and two
parameters. Its compression ratio is greater than ten.

3.5. Parameterized data reduction algorithm. We
propose a parameterized data reduction algorithm to
eliminate insignificant data collected by thermal sensors.
The proposed algorithm can be applied to meet the
requirements of a file size or minimal sampling errors.

The input data are the thermal images, represented
by 8 × 8 thermal arrays. The number of heat sources in
each image is limited, usually less than 3, in the targeted
applications. The goal is to reduce the size of thermal

images subject to the mobility and shape of the human
subjects. The reduction process will be conducted on IoT
platforms with limited computation, storage and network
capabilities. The first metric to evaluate the compressed
file is the root-mean-square errors (RMSEs) between the
input and output data. The second metric is the size of the
compressed file.

Observations on data reduction. The observation
shows that the nearby pixels usually have similar values,
except at the edge of objects. Hence, we can divide an
image into several regions, and the pixels in the same
region have a similar value, so we can use the average
value to represent them and this will not lead to too
many errors. However, precisely dividing an image into
some polygon regions needs a lot of computation power,
and it is difficult to describe the edge of each region.
Also, determining the number of regions is a challenge.
Hence, to effectively describe regions, we assume that
every region most be a rectangle, and every region can
be divided into four regions by cutting in the middle along
the horizontal and vertical lines . The image will start with
only one region, and three regions will be added per round
since we divide the region into four pieces.

Data structure and the region selection algorithm. To
determine which region is to be divided, we assign every
region a score, and put them into a heap. For each
iteration, the algorithm picks the region with the highest
score, divides it into four subregions, calculates the score
of subregions, and puts them onto the heap. We use the
sum of square errors of pixels in the region R as the score
of this region:

μ = E(R),

Score =
∑

X∈R

(X − μ)2 =
∑

X∈R

X2 − |R|μ2.

By the equation above, we need the sum of
squared errors and the sum of all data points in the
region to calculate the score of the region. We use a
four-dimensional segment tree as a container to store all
possible regions and their scores. Since the segment tree
is complete, the size of the tree is less than the doubled
number of pixels. For each node of the segment tree, it
records the range on both width and height it covered, sum∑

X∈R X , and sum of square
∑

X∈R X2 of pixels in the
region. The root of the segment tree starts in node number
0, and each node i has four children from node numbers
from i×4+1 to i×4+4. Hence, we only need to allocate
a large array and recursively process from the root without
the cost of generating the links of nodes. The algorithm of
the tree segmentation pre-process, listed in Algorithm 1,
shows how we generate the tree and calculate the sum of
squared errors and the sum of all nodes.

254 J.-J. Chou et al.

Algorithm 1. Tree segmentation pre-process algorithm.
INPUT: Sensing data Frame and its width and height.
OUTPUT: Segment tree with squared errors of all
regions.

1: Tree= new Array(max2(Frame.Width, Frame.Height)×
2)

2: Function{setTreeNode}{x, left, right, top, bottom}
3: if left = right top = bottom then
4: Tree[x].Sum = Frame[left][top]
5: Tree[x].SquareSum = Frame[left][top]2

6: else
7: setTreeNode(4x + 1, left, (left+right)/2, top,

(top+bottom)/2)
8: setTreeNode(4x + 2, (left+right)/2, right, top,

(top+bottom)/2)
9: setTreeNode(4x + 3, left, (left+right)/2,

(top+bottom)/2, bottom)
10: setTreeNode(4x + 4, (left+right)/2, right,

(top+bottom)/2, bottom)

11: Tree[x].Sum =
4x+4∑

i=4x+1

Tree[i].sum

12: Tree[x].Average = Tree[x].Sum
(right-left+1)×(bottom-top+1)

13: Tree[x].SquareSum =
4x+4∑

i=4x+1

Tree[i].SquareSum

14: end if
15: Tree[x].SquaredError = Tree[x].SquareSum −

Tree[x].Sum2

(right-left+1)×(bottom-top+1)
16: EndFunction
17: setTreeNode(0, 0, Frame.Width, 0, Frame.Height)

In order to select the region properly, we use a
priority queue to retrieve the region with the highest score.
The priority queue is made by the heap, and starts with
only the root of the segment tree. For each round, the
priority queue pops the item with the highest score and
pushes all its child in to the queue.

The size of compressed data depends on the numbers
of iterations of region division. The compressed data size
will be one plus the number of iterations times four bytes.
The algorithm of data-driven data compression, listed
in Algorithm 2, shows how we divide regions until a
specified data size.

The error rate of the compressed data is the sum of
the squared errors of regions in the priority queue. We
can update the RMSE for each iteration by computing the
difference of the squared error between the divided region
and its sub-regions. The algorithm error rate driven data
compression, listed in Algorithm 3, shows how we divide
regions until specified RMSE requirements are met.

After the region dividing completes, we will generate
the data string to be sent. The string is generated by

Algorithm 2. Data size driven data compression
algorithm.
INPUT: Pre-processed segment tree.
OUTPUT: List of separated regions.

1: separatedRegions = new Array(sizeOf(Frame))
2: PriorityQueue = new Heap(sizeOf(Frame))
3: PriorityQueue.Push(Tree[0].SquaredError, 0)
4: CurrentDataSize = 1
5: while CurrentDataSize < SpecifiedDataSize do
6: value, x = PriorityQueue.Pop()
7: separatedRegions.push(x)
8: for j ← 1 to # of subregions do
9: PriorityQueue.Push(Tree[4x+ j].SquaredError,

4x+ j)
10: end for
11: CurrentDataSize + = # of subregions
12: end while

performing a depth-first search on the segment tree. For
each node, if it is in the separatedRegions array, it
returns a reminder β and visits its children. Otherwise,
it returns the average temperature value and will not visit
its children. The algorithm data string generating, listed
in Algorithm 4, shows how we generate the data string
after the region dividing completes. After the data string
is generated, it will be compressed by Huffman coding as
a final step.

The complexity of our algorithm can be divided into
three parts. The first is to initialize the segment tree. The
size of the segment depends on that of the frame. If the
number of pixels in a frame is N , the height of the segment
tree is O(N log(N)), and the number of nodes will be
O(N). The time complexity of initialization is O(N).
The second part is loading the thermal data. It will need
to traverse the entire tree, from the leaf to the root. Since
the segment tree can be stored in an array, it also takes
O(N) time to load the thermal data. The third part is to
divide regions. For each round, we pop an element from
the heap and push four elements into a heap. If there are
K iterations, the size of the heap will be 3K+1. The time
complexity of each pop and push operation isO(log(K)).
Because there are K pops and 4K pushes, the total times
will be O(K log(K)).

4. Performance evaluation

4.1. Location aware service. To evaluate the
effectiveness of the proposed method, we repeat the
experiments discussed earlier. In the experiments, three
sensors are deployed on one straight line. The distance
between two adjacent sensors is 2.4 m and the height of
the deployed sensors is 2.7 m from the floor. A person
walks along the line of the deployed sensors, shown in

IoT sensing networks for gait velocity measurement 255

Algorithm 3. Error rate driven data compression
algorithm.
INPUT: Pre-processed segment tree.
OUTPUT: The list of separated regions.

1: separatedRegions = new Array(sizeOf(Frame))
2: PriorityQueue = new Heap(sizeOf(Frame))
3: PriorityQueue.Push(Tree[0].SquaredError, 0)
4: SquaredError = Tree[0].SquaredError
5: while

√
(SquaredError/FrameSize) >

SpecifiedRMSE do
6: value, x = PriorityQueue.Pop()
7: separatedRegions.push(x)
8: SquaredError−= value
9: for j ← 1 to # of subregions do

10: PriorityQueue.Push(Tree[4x+ j].SquaredError,
4x+ j)

11: SquaredError += Tree[4x+ j].SquaredError
12: end for
13: end while

Fig. 7.
The experiments measure the difference between

the fused walk path according to the sensing data and
the walk path of the ground truth. Specifically, the
difference is measured for overlapping sensing regions
and non-overlapping sensing regions. We evaluate two
algorithms: average peak and weighted average peak,
to evaluate their accuracy on fusing the walk path. The
root-mean-square errors are also computed to compare the
accuracy of these two algorithms.

Figure 11 shows the fused walk paths using the
average peak and weighted average peak algorithms when
there are two non-overlapping sensors, which are S1 and
S3, shown in Fig. 7. The true walking path is shown as
the ground truth for comparison. According to the results,
both the algorithms estimate the location of the peak
even though there are no overlapping regions between

Fig. 11. Location estimated by two sensors and location-aware
fusion.

Algorithm 4. Data string generating algorithm.
INPUT: The list of separated regions.
OUTPUT: Compressed data string.

1: DataString = new Vector()
2: Function{DfsSegmentTree}{NodeId}
3: if NodeId ∈ separatedRegions then
4: DataString.append(β)
5: DfsSegmentTree(4× NodeId + 1)
6: DfsSegmentTree(4× NodeId + 2)
7: DfsSegmentTree(4× NodeId + 3)
8: DfsSegmentTree(4× NodeId + 4)
9: else

10: DataString.append(Tree[NodeId].Average)
11: end if
12: EndFunction
13: DfsSegmentTree(0)

the two sensors. The average peak algorithm estimates
the location of the peak based on the discrete results
from the non-overlapping sensors and can only give a
low resolution estimate. On the other hand, the weighted
average peak algorithm takes into account the number
of pixels on each sensor to eliminate the errors on the
location on the edge and, hence, can estimate the location
of the peak at a higher resolution. Thus, the results
produced by the weighted average peak algorithm (thin
solid line) are much closer to the ground truth walk path
(dotted line).

Figure 12 shows the walk path of the ground truth
and fused walk path using average peak and weighted
average peak algorithms when there are three sensors,
which are S1, S2, and S3, and the distance between
sensors shortened to 1.2 m, and the sensing regions
overlap. The fused walk path by the weighted average
peak algorithm is shown as the thick light line and that
by the average peak algorithm is shown as the thick dark
line. When these two walk paths overlap, only that by the

Fig. 12. Location estimated by three sensors and location-aware
fusion.

256 J.-J. Chou et al.

weighted average peak algorithm is shown.

For the sake of presentation, the path plotted by the
readings from individual sensors is not shown. Again, the
weighted average peak algorithm estimates the walk path
with a better accuracy by taking into account the number
of data points having higher z-scores.

To quantify the accuracy for these two algorithms,
we compute the root-mean-square errors of these two
experiments. Figure 13 shows the root-mean-square
errors of the path fused by the average peak and weighted
average peak algorithms.

The results show that the weighted average peak
algorithm causes much fewer errors by taking into account
the number data points detected by the neighboring
sensors in both experiments. When the sensing regions of
the sensors overlap, the weighted average peak algorithm
outperforms the average peak algorithm almost twice.
When the sensing regions do not overlap, the weighted
average peak algorithm also outperforms the average peak
one more than twice. The average peak is very sensitive to
whether the sensing regions overlap to provide sufficient
sensing data points. However, the algorithm can tolerate
the missing data points from the non-overlapping regions.

We can also use the same model to detect the walking
path of a person with a different height. Figure 14 shows
the detection result of a shorter user. The slope of data
is lower and the tail of the curve is shorter since the
distance between the user and the sensor is closer to the
limited detection range of sensor, and the errors caused
by the persons’ height are less frequent. Figure 15 shows
the walking path of the ground truth and the fused walk
path of a 150 cm person by the weighted and unweighted
algorithms. The segments with a difference between
these two lines are on the edge of the sensing area of
S2 where the unweighted algorithm cannot recognize the
reliability of each sensor. Figure 16 shows that the line
of the weighted algorithm follows the ground truth more
smoothly. Figure 17 shows the root-mean-square errors of
the paths overlapped by more than one sensor.

Fig. 13. Root-mean-square errors of the average and weighted
average algorithms.

4.2. Parameterized data reduction. To evaluate
the effectiveness of the parameterized data reduction
algorithm, we measure two performance metrics, the
RMSE and file size, of the compressed thermal images.
These two metrics are also measured when a JPEG
compression algorithm is used. It is the most popular
lossy image compression algorithm. The output of the
thermal sensor is a numerical matrix, but it is similar
to an RGB image. Both of them are two-dimensional
data, and most digital image processing algorithms can
also be applied to the data from thermal sensors (e.g.,
edge detection, affine transformations). Hence, the data
from the thermal sensor can be transformed to gray scale
images. Thus, image compression algorithms can be
applied to compress thermal images. We use zlib as the
baseline of the compression algorithm. It is a portable and
lossless data-compression library.

The JPEG images are generated by OpenCV 3.3.0,
which uses libjpeg version 9, dated on 13-Jan-2013,
and has image quality ranging from 1 to 99, where lower
image qualities refer to a better compression ratio but a
poor RMSE. The zlib file is generated by the Python
built-in library using the slowest compression level.

Since JPEG is a general-purpose image format, it
embeds image information in its header, which is the
overhead of the compression algorithm. If we generate
a JPEG image for each 8 × 8 pixel frame, the outcome of
JPEG will be even worse than that of zlib on both the
error and compression rate. To have a fair comparison, we
combine 16 original 8 × 8 frames into one 32 × 32 pixel
frame. The size of one frame becomes 1024 bytes.

Figure 18 shows a detailed comparison of the
parameterized data reduction algorithm and JPEG. The
former leads to lower RMSEs and better compression
rates compared with JPEG compression. The size of a
single 8 × 8 frame is 64 bytes. The average size of
images compressed by zlib on compressing a single
frame is about 50.5 bytes and that on compressing 16
frames together is 30 bytes. Hence, the compression ratio
of zlib for a single frame is 0.8 and that for 16 frames is
0.5.

The file size of JPEG formats range from 22 bytes
to 48 bytes. Hence, the compression ratio ranges from
0.34 to 0.75. However, the RMSE becomes more
than 0.6◦ when the compression ratio is 0.34. The
parameterized method outperforms the JPEG one in all
tolerable RMSEs. The RMSEs of the files compressed
by the proposed methods never exceed 0.6◦. When the
frames are compressed one by one, the compression ratio
will be lowered due to the overhead of each frame, shown
as PDR-1 in the figure. When 16 frames are merged into
one file and compressed, the compression ratio becomes
higher, ranging from 30 bytes to almost zero bytes.

IoT sensing networks for gait velocity measurement 257

Elapsed Time (s)

D
is

ta
n

c
e

 (
c

m
)

50

150

250

350

450

550

0 20 40 60

Sensor S1 Sensor S2 Sensor S3 Ground Truth

Fig. 14. Location of 150 cm person with a 170 cm model.

Elapsed Time (s)

D
is

ta
n

c
e

 (
c

m
)

50

150

250

350

450

550

0 20 40 60

Unweighted Weighted Ground Truth

Fig. 15. Location estimated by three sensors of a 150 cm person
and location-aware fusion.

Elapsed Time (s)

D
is

ta
n

c
e

 (
c

m
)

50

15

0

25

0

35

0

45

0

55

0

0 20 40 60

Unweighted Weighted Ground Truth

Fig. 16. Location estimated by two sensors of a 150 cm person
and location-aware fusion.

5. Conclusion

This paper presented the design, implementation, and
evaluation of distributed sensing services using temporal
and location properties of sensed data points. The
proposed approach was designed to eliminate the errors
caused by cone shape sensing signals and the height of the
person, which are common for the sensors deployed on
the ceiling and to detect human mobility. The proposed
approach takes advantage of the location framework in
WuKong middleware to use one single application for all
the sensing devices in smart homes. It not only measures
gait velocity at a high accuracy, but also reduces the
development and management overhead for distributed
sensing services at smart homes.

Acknowledgment

This research was supported in part by the Ministry
of Science and Technology of Taiwan (MOST
106-2633-E-002-001, MOST 106-2627-M-002-022-),
National Taiwan University (NTU-107L104039), Intel
Corporation, Delta Electronics, and Advantech.

References
Administration on Aging (2015). A Profile of Older Amer-

icans: 2015, US Department of Health and Human
Services, https://books.google.com.tw/book
s?id=B4hEnQAACAAJ.

Alemdar, H. and Ersoy, C. (2010). Wireless sensor
networks for healthcare: A survey, Computer Networks
54(15): 2688–2710.

Bourke, A.K., Ihlen, E.A., Van de Ven, P., Nelson, J. and
Helbostad, J.L. (2016). Video analysis validation of a
real-time physical activity detection algorithm based on a
single waist mounted tri-axial accelerometer sensor, IEEE
38th Annual International Conference of the Engineering
in Medicine and Biology Society (EMBC), Orlando, FL,
USA, pp. 4881–4884.

Fortino, G., Galzarano, S., Gravina, R. and Li, W. (2015). A
framework for collaborative computing and multi-sensor
data fusion in body sensor networks, Information Fusion
22: 50–70.

Gheid, Z. and Challal, Y. (2016). Novel efficient and
privacy-preserving protocols for sensor-based human
activity recognition, 13th International Conference on
Ubiquitous Intelligence and Computing (UIC 2016),
Toulouse, France.

Gravina, R., Ma, C., Pace, P., Aloi, G., Russo, W., Li, W.
and Fortino, G. (2017). Cloud-based activity-aaservice
cyber-physical framework for human activity monitoring
in mobility, Future Generation Computer Systems 75:
158–171.

Guo, H. (2011). A simple algorithm for fitting a Gaussian
function [DSP tips and tricks], IEEE Signal Processing
Magazine 28(5): 134–137.

Hsu, C.-Y., Liu, Y., Kabelac, Z., Hristov, R., Katabi, D. and
Liu, C. (2017). Extracting gait velocity and stride length
from surrounding radio signals, Proceedings of the 2017
CHI Conference on Human Factors in Computing Sys-
tems, CHI’17, Denver, CO, USA, pp. 2116–2126, DOI:
10.1145/3025453.3025937.

Khalajmehrabadi, A., Gatsis, N., Pack, D. and Akopian, D.
(2016). A joint indoor WLAN localization and outlier
detection scheme using lasso and elastic-net optimization
techniques, IEEE Transactions on Mobile Computing
PP(99): 1–1.

Kon, S.S.-C., Jones, S.E., Schofield, S.J., Banya, W., Dickson,
M.J., Canavan, J.L., Nolan, C.M., Haselden, B.M.,
Polkey, M.I., Cullinan, P. and Man, W.D.-C. (2015). Gait
speed and readmission following hospitalisation for acute
exacerbations of COPD: A prospective study, Thorax

https://books.google.com.tw/books?id=B4hEnQAACAAJ
https://books.google.com.tw/books?id=B4hEnQAACAAJ

258 J.-J. Chou et al.

70(12): 1131–1137, http://thorax.bmj.com/con
tent/early/2015/08/17/thoraxjnl-2015-2
07046.

Kutner, N.G., Zhang, R., Huang, Y. and Painter, P. (2015). Gait
speed and mortality, hospitalization, and functional status
change among hemodialysis patients: A US renal data
system special study, American Journal of Kidney Diseases
66(2): 297–304.

Lee, Y.-D. and Chung, W.-Y. (2009). Wireless sensor network
based wearable smart shirt for ubiquitous health and
activity monitoring, Sensors and Actuators B: Chemical
140(2): 390–395.

Lu, C.H. and Fu, L.C. (2009). Robust location-aware activity
recognition using wireless sensor network in an attentive
home, IEEE Transactions on Automation Science and En-
gineering 6(4): 598–609.

Middleton, A., Fritz, S.L. and Lusardi, M. (2015). Walking
speed: The functional vital sign, Journal of Aging and
Physical Activity 23(2): 314–322.

Milenković, A., Otto, C. and Jovanov, E. (2006). Wireless
sensor networks for personal health monitoring: Issues
and an implementation, Computer Communications
29(13–14): 2521–2533.

Peters, D.M., Middleton, A., Donley, J.W., Blanck, E.L. and
Fritz, S.L. (2014). Concurrent validity of walking speed
values calculated via the gaitrite electronic walkway and
3 meter walk test in the chronic stroke population, Phys-
iotherapy Theory and Practice 30(3): 183–188, DOI:
10.3109/09593985.2013.845805.

Pulignano, G., Del Sindaco, D., Di Lenarda, A., Alunni, G.,
Senni, M., Tarantini, L., Cioffi, G., Tinti, M., Barbati, G.,
Minardi, G. and Uguccioni, M. (2016). Incremental value
of gait speed in predicting prognosis of older adults with
heart failure: Insights from the IMAGE-HF study, JACC
Heart Failure 4(4): 289–298.

Reijers, N., Lin, K.-J., Wang, Y.-C., Shih, C.-S. and Hsu, J.Y.
(2013). Design of an intelligent middleware for flexible
sensor configuration in M2M systems, Proceedings of the
2nd International Conference on Sensor Networks (SEN-
SORNETS), Barcelona, Spain, pp. 1–6.

Reijers, N. and Shih, C.-S. (2017). Ahead-of-time compilation
of stack-based JVM bytecode on resource-constrained
devices, Proceedings of 2017 International Conference on
Embedded Wireless Systems and Networks (EWSN), Upp-
sala, Sweden, pp. 1–12.

Shih, C.-S. (2016). WuKong Release Document 0.4, https:/
/www.gitbook.com/book/wukongsun/wukong
-release-0-4/details.

Shih, C.-S., Chou, J.-J., Chuang, C.-C., Wang, T.-Y., Chuang,
Z.-Y., Lin, K.-J., Wang, W.-D. and Huang, K.-C. (2017).
Collaborative sensing for privacy preserving gait tracking
using IoT middleware, 2017 International Conference on
Research in Adaptive and Convergent Systems (RACS
2017), Krakow, Poland, pp. 152–159.

Studenski, S., Perera, S., Patel, K., Rosano, C., Faulkner, K.,
Inzitari, M., Brach, J., Chandler, J., Cawthon, P., Connor,

Fig. 17. Root mean square errors of average and weighted
average algorithms on a 150 cm person.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

RM
SE

 (
�

)

Average Frame Size (Byte)

PDR-1
PDR-16
JPG-16

zlib-1
zlib-16

Fig. 18. Comparison of error rates and the compression ratio.

E.B., Nevitt, M., Visser, M., Kritchevsky, S., Badinelli,
S., Harris, T., Newman, A.B., Cauley, J., Ferrucci, L.
and Guralnik, J. (2011). Gait speed and survival in
older adults, Journal of the American Medical Association
305(1): 50–58.

Studenski, S., Perera, S., Wallace, D., Chandler, J.M.,
Duncan, P.W., Rooney, E., Fox, M. and Guralnik,
J.M. (2003). Physical performance measures in the
clinical setting, Journal of the American Geriatrics Society
51(3): 314–322, DOI: 10.1046/j.1532-5415.2003.51104.x.

USRP N210 (2019). Software Defined Radio (SDR), Ettus
Research, https://www.ettus.com/product/de
tails/UN210-KIT.

WuKong (2012). Software repository, https://github.co
m/wukong-m2m/wukong-darjeeling.

Yi, X., Willemson, J. and Nait-Abdesselam, F. (2013).
Privacy-preserving wireless medical sensor network, 2013
12th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, Melbourne,
Australia, pp. 118–125.

http://thorax.bmj.com/content/early/2015/08/17/thoraxjnl-2015-207046
http://thorax.bmj.com/content/early/2015/08/17/thoraxjnl-2015-207046
http://thorax.bmj.com/content/early/2015/08/17/thoraxjnl-2015-207046
https://www.gitbook.com/book/wukongsun/wukong-release-0-4/details
https://www.gitbook.com/book/wukongsun/wukong-release-0-4/details
https://www.gitbook.com/book/wukongsun/wukong-release-0-4/details
https://www.ettus.com/product/details/UN210-KIT
https://www.ettus.com/product/details/UN210-KIT
https://github.com/wukong-m2m/wukong-darjeeling
https://github.com/wukong-m2m/wukong-darjeeling

IoT sensing networks for gait velocity measurement 259

Zhao, M., Adib, F. and Katabi, D. (2016). Emotion recognition
using wireless signals, Proceedings of the 22nd Annual
International Conference on Mobile Computing and Net-
working, MobiCom’16, New York, NY, USA, pp. 95–108,
DOI: 10.1145/2973750.2973762.

Chi-Sheng Shih received his BSc in engineer-
ing science and his MSc in computer science
from National Cheng Kung University in 1993
and 1995, respectively. He joined National Tai-
wan University in 2004 and has been a professor
since 2018. His main research interests include
embedded systems, hardware/software codesign,
real-time systems, and database systems. Specif-
ically, his main research interests focus on real-
time operating systems, real-time scheduling the-

ory, embedded software, and software/hardware co-design for system-
on-a-chip. His research results have won several awards. He has also
served on steering committees of several international conferences and
on editorial boards of international journals.

Jyun-Jhe Chou received his Bachelor’s degree
in computer science and information engineer-
ing at National Taiwan University in 2014, and
is now a PhD candidate. His research interests
include the Internet of things, data quality, and
cyber-physical systems.

Wei-Dean Wang received his MD degree
from Taipei Medical University, Taiwan, in 1982
and his PhD degree in medical education from
National Taiwan Normal University in 2003.
He completed the residency training in family
medicine at the Kansas University Medical Cen-
ter in 1989, and has been the Diplomate of Fam-
ily Medicine of the American Board of Family
Medicine since 1989. His research interests are
mainly in medical education, family medicine,

elderly care, and international medicine. His current research covers
various issues regarding medical and home care for dwelling elderly at
home.

Kuo-Chin Huang has been the superintendent
of the National Taiwan University Hospital, Bei-
Hu Branch, Taipei, Taiwan, since 2015 and a pro-
fessor with the Department of Family Medicine,
College of Medicine, National Taiwan Univer-
sity, Taipei, since 2009. He holds MD and PhD
degrees from National Taiwan University, and
had conducted his post doc at the University of
Sydney.

Received: 1 July 2018
Revised: 11 March 2019
Accepted: 21 March 2019

	Introduction
	Background and related works
	Related works
	Intelligent virtual runtime for IoT devices

	Location and temporal-aware sensing services
	Observations on the cause of sensing errors
	Collaborative sensing between neighboring services
	Location-aware data exchange in the WuKong middleware
	Data compression/reduction
	Parameterized data reduction algorithm

	Performance evaluation
	Location aware service
	Parameterized data reduction

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

