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A new two-stage approach to the identification of polynomial Wiener systems is proposed. It is assumed that the linear
dynamic system is described by a transfer function model, the memoryless nonlinear element is invertible and the inverse
nonlinear function is a polynomial. Based on these assumptions and by introducing a new extended parametrization, the
Wiener model is transformed into a linear-in-parameters form. In Stage I, parameters of the transformed Wiener model are
estimated using the least squares (LS) and instrumental variables (IV) methods. Although the obtained parameter estimates
are consistent, the number of parameters of the transformed Wiener model is much greater than that of the original one.
Moreover, there is no unique relationship between parameters of the inverse nonlinear function and those of the transformed
Wiener model. In Stage II, based on the assumption that the linear dynamic model is already known, parameters of the
inverse nonlinear function are estimated uniquely using the IV method. In this way, not only is the parameter redundancy
removed but also the parameter estimation accuracy is increased. A numerical example is included to demonstrate the
practical effectiveness of the proposed approach.
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1. Introduction

The Wiener model is a block-oriented nonlinear system,
in which a linear time-invariant dynamic subsystem is
connected in series with a nonlinear memoryless block. A
large class of nonlinear systems can be approximated by
Wiener models with arbitrarily high accuracy, and Wiener
models are widely used in different areas of science and
engineering. This stems from the fact that, as was shown
by Boyd and Chua (1985), any time-invariant continuous
nonlinear operator can be approximated by a Volterra
series operator and this approximating operator can be
realized as a finite-dimensional linear dynamic system
with a nonlinear readout map, i.e., a Wiener-like model.

It is well known that many industrial processes
are inherently nonlinear and when the operating point
changes it is difficult to represent adequately a given
process by means of a linear model. Therefore, to
achieve the required system performance, advanced
control methods based on nonlinear process models are
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applied. Wiener models are very useful to represent
many real nonlinear systems, such as the pH neutralization
process in continuous flow reactors, distillation columns,
pneumatic valves, continuous-time and discrete-time
chaotic systems (Janczak, 2005). For example, Ipanaqu
and Manrique (2011) applied the nonlinear model
predictive control based on a piecewise linear Wiener
model to an experimental control of pH. A design
procedure based on nonlinear internal model control
with application to a pH neutralization case study was
presented by Kwang et al. (2012). The application of
Wiener models for the model predictive control was also
studied by Ławryńczuk (2013; 2015; 2016). A robust
model predictive control method for a distillation column
using its Wiener-like model was proposed by Figueroa et
al. (2013). Using Wiener model in a feedforward control
scheme for a simulated continuous stirred tank reactor
(CSTR) was demonstrated by Rollins et al. (2016).

Wiener system identification has been studied for
several decades (see Schoukens and Tiels, 2017). A
large number of papers have been published on the
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identification of Wiener systems, and many different
identification methods have been developed that are based
on correlation analysis (e.g., Billings and Fakhouri, 1987;
1982; Van Vaerenbergh et al., 2013), frequency analysis
(Giri et al., 2014; Brouri and Slassi, 2015), nonlinear
optimization (Wigren, 1993; Al-Duwaish et al., 1996;
Janczak, 2005; Vörös, 2007; 2015; Ławryńczuk, 2013;
Zhou et al., 2013), linear regression (Janczak, 2005;
2007; 2018; Stanisławski et al., 2014), nonparametric
regression (Greblicki, 1997; 2001), and subspace
approach (Westwick and Verhaegen, 1996; Gómez and
Baeyens, 2002, 2005; Ase and Katayama, 2015).

Polynomials (Westwick and Verhaegen, 1996;
Janczak, 2005; Stanisławski et al., 2014; Tiels
and Schoukens, 2014; Ding et al., 2015; Jansson
and Medvedev, 2015; Xiong et al., 2015; Mahataa
et al., 2016; Bottegal et al., 2017; Kazemi and
Arefi, 2017; Schoukens and Tiels, 2017; Janczak, 2018),
Legendre polynomials (Ase and Katayama, 2015),
piecewise-linear functions (Dong et al., 2009; Fan and
Lo, 2009), cubic splines (Aljamaan et al., 2016),
least-squares support vector machine models
(Ławryńczuk, 2016), sets of basis functions (Gómez
and Baeyens, 2002; 2005; Schoukens and Tiels, 2011;
Yang et al., 2017), multilayer perceptrons (Al-Duwaish
et al., 1996; Janczak, 2005; Ławryńczuk, 2013),
kernel expansions (Van Vaerenbergh et al., 2013), or
nonparametric representations (Greblicki, 1997; 2001)
are commonly used for modeling the static nonlinear
element or its inverse. The linear dynamic subsystem is
usually represented by a transfer function (Janczak, 2005;
Dong et al., 2009; Schoukens and Tiels, 2011; 2017;
Ławryńczuk, 2013; 2016; Ding et al., 2015; Xiong et al.,
2015; Mahataa et al., 2016; Bottegal et al., 2017; Kazemi
and Arefi, 2017; Yang et al., 2001), impulse response
model (Greblicki, 1997; 2001), a finite impulse response
model (Fan and Lo, 2009; Van Vaerenbergh et al., 2013),
a state-space model (Westwick and Verhaegen, 1996;
Gómez and Baeyens, 2002; 2005), Laguerre orthonormal
basis functions (Stanisławski et al., 2014; Jansson and
Medvedev, 2015), or generalized orthonormal basis
functions (Tiels and Schoukens, 2014).

In polynomial Wiener models, the linear part is
represented by a transfer function and the nonlinear
element or its inverse is described by a polynomial of
a known degree. An online algorithm for identification
of polynomial Wiener systems in the presence of output
colored noise was proposed by Kazemi and Arefi (2017).
Their method is based on the extended recursive least
squares algorithm, and an unknown intermediate signal is
estimated by using an inner iterative algorithm. Zhou et al.
(2013) proposed a gradient based iterative identification
algorithm to estimate parameters of a discrete transfer
model and a polynomial model of nonlinearity using

the key-term separation principle. The identification
of Wiener time-delay systems with the output data
contaminated with outliers was considered by Yang et
al. (2017). In this approach, the parameter estimation
problem is solved in the framework of the expectation
maximization (EM) algorithm and the time-delay and
outliers are handled simultaneously. Both the time-delay
and other unknown model parameters are estimated
iteratively. The EM-based identification algorithm was
also applied by Xiong et al. (2015) for the identification
of Wiener systems with missing output data.

System parameters of a nonlinear cascade system
with output hysteresis were estimated by Vörös (2015)
based on the key-term separation principle and using
a least squares based iterative algorithm with internal
variable estimation. The polynomial representation of an
inverse nonlinear function and a transfer function model
of a linear dynamic system were considered by Ding
et al. (2015). In their approach, system parameters
are estimated using the recursive least squares method,
in which unmeasurable variables are replaced by their
estimates but the prediction error is still nonlinear in
parameters. The strategy for modeling and identification
of fractional-order discrete-time Wiener systems was
proposed by Stanisławski et al. (2014). In this approach,
discrete-time Laguerre filters are uniquely embedded in
the modeling of the fractional-order dynamics, resulting
in a linear regression formulation of parameter estimation
problem.

It was shown by Janczak (2005; 2007; 2018) that
by introducing a new extended parametrization it is
possible to transform the polynomial Wiener model
with inverse nonlinearity described by a polynomial
into a linear-in-parameters form. Unfortunately, in this
case, some regressors are correlated with the system
disturbance and the least squares (LS) parameter estimates
are inconsistent. To obtain consistent parameter estimates,
the instrumental variables (IV) method is used. This
simple non-iterative approach, however, has two serious
inconveniences. One is an increased parameter variance
error, i.e., the part of the model error that is due to
a deviation of estimated parameters from their optimal
values, as the number of parameters of the transformed
Wiener model is much greater than that of parameters of
the original one. The other is parameter redundancy, as
there is no unique relationship between the transformed
Wiener model and the original one, i.e., there are many
combinations of the original inverse nonlinear function
model parameters that can be obtained from transformed
Wiener model parameters. The parameter redundancy
problem was addressed by Janczak (2018) in a single
stage estimation procedure in which parameters of an
inverse nonlinear function are calculated via solving
an overdetermined system of equations, calculating the
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average values of redundant parameters or calculating
parameters from sums of transformed Wiener model
parameters.

This paper presents a new two-stage approach that
outperforms the single stage solution as it contains an
additional estimation step, in which parameters of the
inverse nonlinear function are determined uniquely using
the IV method based on the assumption that parameters of
the linear dynamic model are already known. The Wiener
model determined in this way is not overparameterized
and a higher parameter estimation accuracy can be
achieved.

Many common Wiener systems have invertible
nonlinearities that cannot be described accurately by a
polynomial, and the assumption that the inverse nonlinear
function can be expressed by the polynomial of a given
degree is a very restrictive one. However, there are
many inverse nonlinear functions that are both continuous
and invertible on a given closed interval. In this
case, according to the Stone–Weierstrass approximation
theorem, they can be uniformly approximated as closely
as desired by a polynomial function. Therefore, using
the proposed approach, a polynomial approximation of
the inverse nonlinear function can be obtained with an
arbitrary high accuracy.

The structure of the paper is as follows. The
polynomial representation of the true Wiener system is
introduced in Section 2. Then the transformation of
the polynomial Wiener model into a linear-in-parameters
form is shown in Section 3, which also contains details
of the LS and IV estimation of transformed model
parameters. The IV estimation of nonlinear function
parameters is described in Section 4. The effectiveness
of the proposed approach is illustrated with a numerical
example in Section 5. Finally, conclusions are presented
in Section 6.

2. Polynomial Wiener system
representation

We assume that the Wiener system to be identified (Fig. 1)
is composed of a linear dynamic system described by the
transfer function followed by an invertible static nonlinear
element. The output vi of the linear dynamic system to the
input ui at time i,

vi =
B0(q

−1)

A0(q−1)
ui + εi, (1)

is the input to the memoryless nonlinear element

yi = f0(vi), (2)

where

A0(q
−1) = 1 + a01q

−1 + · · ·+ a0na
q−na , (3)
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Fig. 1. Wiener system.

B0(q
−1) = b01q

−1 + · · ·+ b0nb
q−nb , (4)

and f0(·) is the nonlinear element characteristic, q−1 is
the backward shift operator, a01,. . ., a0na

, b01,. . ., b0nb
are

the unknown parameters of linear dynamic system, and εi
is the system disturbance.

The following assumptions are made about the
Wiener system and the system input:

(A1) The linear dynamic system is casual and
asymptotically stable.

(A2) f0(vi) is a real, continuous, bounded, and strictly
monotonic nonlinear function over the restricted
domain [vmin, vmax].

(A3) The inverse function of f0(vi) is a polynomial of
degree r,

f−1
0 (yi) = γ0

0 + γ0
1yi + γ0

2y
2
i + · · ·+ γ0

ry
r
i . (5)

(A4) The first degree term in (5) is nonzero. Without loss
of generality, we assume γ0

1 = 1.

(A5) The polynomial degrees na, nb, and r are known.

(A6) The input ui is bounded and persistently exciting of
order nb.

(A7) The input ui is chosen in a such way that vi covers
the full domain of f0(vi).

The identification problem is formulated as follows.
Given the sequence of the Wiener system input and
output measurements {ui, yi}, i = 1, 2, . . . , N, estimate
parameters of the linear dynamic system and the inverse
nonlinear element minimizing the following criterion:

JN (θ) =
1

2

N∑

j=1

e2i (θ), (6)

where
ei(θ) = yi − ŷi (7)

is the equation error, ŷi is the Wiener model output, and θ
is the model parameter vector.
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3. Stage I: Least squares and instrumental
variables parameter estimation of
a transformed Wiener system

The polynomial Wiener system is nonlinear in parameters,
and to estimate its parameters, nonlinear optimization
methods are commonly used (e.g., Bottegal et al., 2017).
In this section, we show that by introducing—a new
extended parametrization, the Wiener model (1)–(5) can
be transformed into a linear-in-parameters form. Then
consistent parameter estimates of this transformed model
can be obtained using the combined least squares and
instrumental variables identification procedure.

3.1. Least squares parameter estimation. Assume
that the following Wiener model is given:

ŷi = f

[
B(q−1)

A(q−1)
ui

]
, (8)

with

A(q−1) = 1 + a1q
−1 + · · ·+ anaq

−na , (9)

B(q−1) = b1q
−1 + · · ·+ bnb

q−nb , (10)

where f(·) is the model nonlinear function, A(q−1),
B(q−1) are the linear model polynomials, and a1,. . ., ana ,
b1,. . ., bnb

are the parameters of a linear dynamic model.
If f(·) is invertible, (8) can be written as

f−1(ŷi) =
B(q−1)

A(q−1)
ui. (11)

We assume that the function f−1(·) is a polynomial of the
r-th degree, i.e.,

f−1(ŷi) = γ0 + γ1ŷi + γ2ŷ
2
i + · · ·+ γrŷ

r
i . (12)

Assume also that γ1 �= 0. Without the loss of generality,
we can assume that γ1 = 1. Then substituting (12) into
(11), the model output can be expressed as

ŷi =
B(q−1)

A(q−1)
ui −Δf−1(ŷi), (13)

where

Δf−1(ŷi) = γ0 + γ2ŷ
2
i + γ3ŷ

3
i + · · ·+ γr ŷ

r
i . (14)

The model (13) can be written as

ŷi =
[
1−A(q−1)

]
ŷi +B(q−1)ui

−A(q−1)Δf−1(ŷi).
(15)

Replacing ŷi with yi on the right-hand side of (15), the
following modified series-parallel model can be obtained
(Janczak, 2005):

ŷi =
[
1−A(q−1)

]
yi +B(q−1)ui

−A(q−1)Δf−1(yi)
(16)

or, equivalently,

ŷi = −
na∑

m=1

amyi−m +

nb∑

m=1

bmui−m − γ0

−
r∑

j=2

γjy
j
i −

na∑

m=1

am

(
γ0 +

r∑

j=2

γjy
j
i−m

)
.

(17)

Introducing a new extended parametrization, the
model (17) can be transformed into the following
linear-in-parameters form:

ŷi = −
na∑

m=1

amyi−m +

nb∑

m=1

bmui−m − α0,0

−
r∑

j=2

na∑

m=0

αj,myri−m,

(18)

where

α0,0 =
(
1 +

na∑

m=1

am
)
γ0 (19)

and

αj,m

=

{
γj , j = 2, 3, . . . , r, m = 0,

amγj , j = 2, 3, . . . , r, m = 1, 2, . . . , na.

(20)

Thus, the model (18) can be written as

ŷi = xT
i θ, (21)

with the model parameter vector

θ =
[
a1 . . . ana b1 . . . bnb

α0,0 α2,0 . . . α2,na

. . . αr,0 . . . αr,na

]T (22)

and the regressor vector

xi =
[− yi−1 . . .− yi−na ui−1 . . . ui−nb

1

− y2i . . .− y2i−na
. . .− yri . . .− yri−na

]T
.

(23)

Minimizing (6) using the LS method, the following
parameter vector estimate can be obtained:

θ̂LS
N =

[
1

N

N∑

i=1

xix
T
i

]−1[
1

N

N∑

i=1

xiyi

]
. (24)

Note that the number of parameters in (21) is na + nb +
(r − 1)(na + 1) + 1, while the number of parameters of
A(q−1), B(q−1), and f(·) is na + nb + r. Moreover,
there are na + 1 values of parameter estimates γj , j =
2, 3, . . . , r, that can be calculated from (20). The overall
number of combinations of parameter estimates γj that
can be obtained from parameter estimates αj,k, j =
2, 3, . . . , r., m = 0, 1, . . . , na is (na + 1)r−1.
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3.2. Inconsistency of the least squares Wiener sys-
tem parameter estimator. It can be shown that the LS
estimate of θ0 is inconsistent, i.e., θ̂LS

N does not converge
(with probability 1) to the true parameter vector θ0 even if
the linear part is the autoregressive with exogenous input
(ARX) system and the additive disturbance εi is

εi =
εi

A0(q−1)
, (25)

where εi is the discrete white noise.
The output yi of the Wiener system, defined by

(1)–(5) and (25), is

yi =
[
1−A0(q

−1)
]
yi +B0(q

−1)ui

−A0(q
−1)Δf−1

0 (yi) + εi,
(26)

where Δf−1
0 (yi) = f−1

0 (yi)− yi.
Introducing the true parameter vector θ0,

θ0 =
[
a01 . . . a

0
na

b01 . . . b
0
nb

α0
0,0 α

0
2,0 . . . α

0
2,na

. . . α0
r,0 . . . α

0
r,na

]T
,

(27)

where

α0
0,0 =

(
1 +

na∑

m=1

a0m
)
γ0
0 , (28)

α0
j,m=

{
γ0
j , j = 2, 3, . . . , r, m = 0,

a0mγ0
j , j = 2, 3, . . . , r, m = 1, 2, . . . , na,

(29)

the system output can be expressed as

yi = xT
i θ0 + εi. (30)

From (24) and (30), it follows that

θ̂LS
N = θ0 +

[
1

N

N∑

i=1

xix
T
i

]−1[
1

N

N∑

i=1

xiεi

]
. (31)

It follows immediately for the estimate θ̂LS
N to be

consistent, i.e., to converge in probability to θ0, that the
following two conditions should be fulfilled:

lim
N→∞

1

N

N∑

i=1

xix
T
i must be nonsingular, (32)

lim
N→∞

1

N

N∑

i=1

xiεi = 0. (33)

Condition (32) requires the persistency of excitation and
it can be fulfilled easily. Condition (33) is not fulfilled, as
the regressors y2i , y

3
i , . . . , y

r
i are correlated with εi, i.e.,

E
[
y2i εi

] �= 0,. . . ,E
[
yri εi

] �= 0, and thus E
[
xiεi

] �= 0.

3.3. Instrumental variables parameter estimation.
To obtain consistent parameter estimates, the regression
vector should be uncorrelated with the noise. This is
not the case if we use a transformed model (18). The
instrumental variables method is a well-known remedy
for such a situation. Using the IV method, the parameter
estimation can be performed according to the following
four step scheme:

1. Estimate parameters using the LS method.

2. Simulate the linear dynamic model

ŝi =
B(q−1)

A(q−1)
ui. (34)

3. Choose instrumental variables vector zi uncorellated
with the noise.

4. Estimate parameters using the IV method with the
instrumental variables vector zi.

The choice of instrumental variables is an important
design problem in any IV approach. Clearly, the best
choice would be the undisturbed system outputs, but these
are not available for measurement. Instead of the system
outputs in (23), we can use the outputs of the linear model
obtained using the LS method, and define the instrumental
variables vector as

zi =
[− ŝi−1 . . .− ŝi−na ui−1 . . . ui−nb

1

− ŝ2i . . .− ŝ2i−na
. . .− ŝri . . .− ŝri−na

]T
.

(35)

The instrumental variables vector zi is uncorrelated with
the system noise, i.e., E[ziεi] = 0. The IV estimate of θ0
is given by

θ̂IVN =

[
1

N

N∑

i=1

zix
T
i

]−1[
1

N

N∑

i=1

ziyi

]
. (36)

The IV parameter estimates are calculated based on
the simulated linear dynamic model output (34), which
is uncorrelated with the noise but can be far from the
linear dynamic system output as θ̂LS

N is inconsistent.
Therefore, the estimation process can be further improved
by repeating Steps 2–4 and using in Step 2 of each
iteration the IV parameter estimates from the previous
iteration. As such a procedure converges very fast, two
or three iterations are commonly enough.

4. Stage II: Estimation of nonlinear system
parameters

It is clear that there is no unique relationship between
the parameters of the transformed model and those of the
inverse nonlinear function as

α̂IV
j,m=

{
γ̂j , j = 2, 3, . . . , r, m = 0,
âIVm γ̂j , j = 2, 3, . . . , r, m = 1, 2, . . . , na,

(37)
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where α̂IV
j,m and âIVm denote IV parameter estimates

obtained in Stage I. In other words, there is a
parameter redundancy as na + 1 different values of
γ̂j , j = 2, 3, . . . , r can be calculated from α̂IV

j,m, m =
0, 1, . . . , na. Note that the parameter estimate γ̂0 can be
calculated uniquely from

α̂IV
0,0 =

(
1 +

na∑

m=1

âIVm
)
γ̂0. (38)

To avoid this inconvenience, an additional estimation step
is proposed in which parameter estimates of the inverse
nonlinear function are calculated uniquely. We assume
that parameters of the linear dynamic model (17) are
already known and they are equal to their IV estimates,
i.e., am = âIVm and bm = b̂IVm .

Define the following parameter vector:

θ̂IV1 =
[
âIV1 . . . âIVna

b̂IV1 . . . b̂IVnb

]T
, (39)

the vector

x̃i =
[− yi−1 . . .− yi−na ui−1 . . . ui−nb

]T
(40)

and the auxiliary variable

s̃i = x̃T
i θ̂

IV
1 , (41)

where âIV1 , . . . , âIVna
and b̂IV1 , . . . , b̂IVnb

are IV parameter
estimates obtained in Stage I. Define also the parameter
vector

θ2 =
[
γ0 γ2 γ3 . . . γr

]T
, (42)

the regressor vector

x̄i =
[
1 +

na∑

m=1

âIVm y2i +

na∑

m=1

âIVm y2i−m y3i

+

na∑

m=1

âIVm y3i−m . . . yri +

na∑

m=1

âIVm yri−m

]T
(43)

and the instrumental variables vector

z̄i =
[
1 +

na∑

m=1

âIVm s̃2i +

na∑

m=1

âIVm s̃2i−m s̃3i

+

na∑

m=1

âIVm s̃3i−m . . . s̃ri +

na∑

m=1

âIVm s̃ri−m

]T
.

(44)

Then the nonlinear component of (17) can be
expressed as

v̄i = x̄T
i θ2. (45)

Define the criterion

JN (θ2) =
1

2

N∑

j=1

e2i (θ2), (46)

where

ei(θ2) = y∗i − v̄i (47)

and y∗i = yi − s̃i. The consistent estimate of θ2 can be
obtained using the IV method,

θ̂IV2,N =

[
1

N

N∑

i=1

z̄ix̄
T
i

]−1[
1

N

N∑

i=1

z̄iy
∗
i

]
. (48)

5. Simulation example

The Wiener system composed of the linear dynamic
system:

B0(q
−1)

A0(q−1)
=

0.3631q−1 − 0.3160q−2

1− 1.6253q−1 + 0.6592q−2
, (49)

and the nonlinear function

yi =
5
√
5vi + 1 (50)

is used in the simulation example. The function (50) is
strictly monotonic, and it has neither undefined points nor
domain constraints. The inverse nonlinear function of (50)
is the following polynomial:

f−1
0 (yi) = −0.2 + yi − 2y2i + 2y3i − y4i + 0.2y5i . (51)

The input sequence {ui} contains 105 pseudo-random
numbers uniformly distributed in [−1, 1]. The additive
system disturbance is given by

εi =
1

A0(q−1)
εi, (52)

where {εi} is the Gaussian pseudo-random sequence
N (0, 0025).

The LS and IV parameter estimation was performed
assuming γ1 = 1, na = 2, nb = 2 and r = 5. First,
in Stage I, the LS and IV parameter estimates of the
transformed Wiener model were calculated. The LS and
IV parameter estimates of transformed Wiener model (18)
given in Table 1, the inverse nonlinear function and its LS
and IV estimates shown in Fig. 2, and the estimation error
of the inverse nonlinear function shown in Fig. 3 confirm
both the inconsistency of LS estimates and the consistency
of IV estimates. Then, Stage II was performed to estimate
parameters of the inverse nonlinear function uniquely.
For comparison, the unique values of inverse nonlinear
function parameters were also calculated solving the
overdetermined set of equations (37) (Janczak, 2018).

Parameter estimates γ̂j , j = 2, 3, . . . , r, of
the inverse nonlinear function obtained using the LS
method, applying the IV approach and solving the
overdetermined set of equations (OVIV), and performing
a two-stage estimation procedure (2SIV), are given in
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Table 2. To compare the estimation accuracy, 50
different input-output data sets were generated, and
the identification experiment was performed for each
input-output data set. For the parameter estimation
accuracy comparison, the following mean square error
index is used:

MSE =
1

5

[
(γ0 − γ̂0)

2 +

5∑

j=2

(γj − γ̂j)
2
]
. (53)

The MSE values for the LS, OVIV, and 2SIV
parameter estimates are shown in Fig. 4, and the
corresponding mean values and variances of the MSE
index are given in Table 3. The obtained results
demonstrate that the two-stage estimation procedure
makes it possible to achieve a higher parameter estimation
accuracy in comparison with the one-stage IV procedure.

Table 1. Parameter estimates of the transformed Wiener model.

Parameter True LS IV

b̂2 0.3168 0.2294 0.3160
â1 −1.6253 −1.4469 −1.6276
â2 0.6592 0.5441 0.6615
α̂2,0 −2.0000 −1.5129 −1.9940
α̂2,1 3.2506 2.4444 3.2374
α̂2,2 −1.3185 −0.9867 −1.3098
α̂3,0 2.0000 1.1838 1.9981
α̂3,1 −3.2506 −2.0777 −3.2467
α̂3,2 1.3185 0.8843 1.3165
α̂4,0 −1.0000 −0.5500 −1.0010
α̂4,1 1.6253 0.9709 1.6284
α̂4,2 −0.6592 −0.4153 −0.6619
α̂5,0 0.2000 0.1146 0.2004
α̂5,1 −0.3251 −0.1966 −0.3261
α̂5,2 0.1318 0.0826 0.1326

Table 2. Parameter estimates of the inverse nonlinear function.

Parameter LS OVIV 2SIV

γ̂0 −0.1151 −0.2139 −0.1994
γ̂2 −1.5129 −1.9893 −1.9986
γ̂3 1.1838 1.9951 1.9998
γ̂4 −0.5500 −1.0007 −1.0009
γ̂5 0.1146 0.20004 0.2003

Table 3. Comparison of inverse nonlinear function parameter
estimation accuracy.

Method Mean(MSE) Var(MSE)

LS 1.21× 100 4.41× 10−5

OVIV 1.37× 10−3 3.44× 10−6

2SIV 2.49× 10−4 7.00× 10−8
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Fig. 2. Inverse nonlinear function f−1
0 (yi) and its LS and two-

stage (2SIV) estimates.
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6. Conclusions

This paper described a two-stage instrumental variables
approach to identification of polynomial Wiener systems.
It was assumed that the linear dynamic part is given by a
transfer function model and the inverse nonlinear element
is described by a polynomial. In a more practical case,
in which the nonlinear function is not a polynomial but
a continuous and invertible function on a given closed
interval, parameters of polynomial approximation of the
inverse nonlinear function can be obtained.

The proposed identification procedure consists of
two stages. In Stage I, introducing a new extended
parametrization, the polynomial Wiener model is
transformed into a liner-in-parameters form and its
parameters are estimated using the combined LS and IV
method. It is shown that the LS parameter estimates of
the transformed Wiener model are inconsistent. To avoid
the inconsistency problem, the IV method is employed, in
which the model of the linear dynamic system obtained
with the LS method is used to generate instrumental
variables. An obvious inconvenience of such an approach
is that there is no unique relationship between parameters
of transformed model and those of the inverse nonlinear
function. Therefore, Stage II is proposed, in which
parameters of the inverse nonlinear function are estimated
uniquely using the IV method and assuming that linear
dynamic model parameters are equal to their IV estimates.
The two-stage identification procedure not only produces
unique parameter estimates of those inverse nonlinear
function but also reduces the model variance error.

The presented algorithm can be extended to the
identification of a specific class of MIMO Wiener systems
in which the MIMO linear dynamic system is described by
a matrix polynomial form and the inverse characteristics
of SISO nonlinear elements are polynomials (Janczak,
2007). An extension of this approach to the two-stage case
will be considered in future work.

A simulation example was included in the paper
to illustrate practical effectiveness of the proposed
identification procedure.
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