
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 3, 581–594
DOI: 10.2478/amcs-2019-0043

A FAST NEURAL NETWORK LEARNING ALGORITHM WITH APPROXIMATE
SINGULAR VALUE DECOMPOSITION

NORBERT JANKOWSKI a,∗, RAFAŁ LINOWIECKI a

aDepartment of Informatics, Faculty of Physics, Astronomy and Informatics
Nicolaus Copernicus University, ul. Grudziądzka 5, 87-100 Toruń, Poland

email: norbert@is.umk.pl

The learning of neural networks is becoming more and more important. Researchers have constructed dozens of learning
algorithms, but it is still necessary to develop faster, more flexible, or more accurate learning algorithms. With fast learning
we can examine more learning scenarios for a given problem, especially in the case of meta-learning. In this article we focus
on the construction of a much faster learning algorithm and its modifications, especially for nonlinear versions of neural
networks. The main idea of this algorithm lies in the usage of fast approximation of the Moore–Penrose pseudo-inverse
matrix. The complexity of the original singular value decomposition algorithm is O(mn2). We consider algorithms with a
complexity of O(mnl), where l < n and l is often significantly smaller than n. Such learning algorithms can be applied to
the learning of radial basis function networks, extreme learning machines or deep ELMs, principal component analysis or
even missing data imputation.

Keywords: Moore–Penrose pseudo-inverse learning, radial basis function network, extreme learning machines, kernel
methods, machine learning, singular value decomposition, deep extreme learning, principal component analysis.

1. Introduction

Singular value decomposition (SVD) is one of the major
algorithms used frequently in neural network and machine
learning as an element of more complicated algorithms.
Let us assume we have a matrix A, an (m× n) one (A ∈
Mm×n(R)). Then the goal of SVD is to decompose this
to

A = U × Σ× V T , (1)

where U and V T are orthogonal matrices, and Σ is a
diagonal matrix with singular values. In a more practical
version, U ∈ Mm×n(R), Σ and V T ∈ Mn×n(R). In
the second case, U ∈ Mm×m(R), Σ ∈ Mm×n(R)
and V T ∈ Mn×n(R). This case is not very convenient
because, when m is huge, the matrix U may not fit in
memory, while in the first case, if only n is not huge
either, there is no problem with keeping all the matrices
in memory.

SVD in artificial neural networks (ANNs) and
machine learning (ML) is used in unsupervised and
supervised learning. In the former case, it is employed
as a very efficient tool for principal component analysis

∗Corresponding author

(PCA). PCA can be used to extract the most important
features from data (dimensionality reduction). Another
known application of SVD in unsupervised learning
is latent semantic analysis (Dumais, 2005) or face
recognition (Heseltine et al., 2003).

In the case of supervised learning, SVD is used to
obtain solutions of linear and nonlinear discrimination
and regression problems by building the pseudo-inverse
just from the results of SVD. For a deeper investigation
of Moore–Penrose pseudo-inverse learning, see the
work of Górecki and Łuczak (2013). Whenever we
consider classification or approximation problems, they
are represented by a training dataset D, which consists
of learning vectors xi (xi ∈ R

n, i ∈ [1, . . . ,m]) with the
corresponding labels yi (y = [y1, . . . , ym]). In the case of
classification yi = 1, . . . , k (in the binary case, yi = ±1),
and in the case of regression yi ∈ R. Then we expect our
model F (x,w) to satisfy

F (xi,w) ≈ yi, i ∈ [1, . . . ,m], (2)

and to be as close as possible to the Bayesian optimal
classifier (Mitchell, 1997) in the context of classification
and, similarly, in the case of regression. This means

mailto:norbert@is.umk.pl

582 N. Jankowski and R. Linowiecki

that we want to estimate a hidden relation between input
(x1, . . . ,xm) and output (y) in D.

If we consider a linear model, it can be defined as

F (x;w) =

n∑

j=1

wjxj + w0, (3)

where w are parameters of a hyperplane.1 In the case
of nonlinear models, we can look at a nonlinear model
constructed as a linear combination of nonlinear functions

F (x;w) =

l∑

j=1

wjgj(x) + w0, (4)

which is a combination (w) of kernels gj . The above
form is fully consistent with the radial basis function
network (RBFN) (Broomhead and Lowe, 1988) and the
extreme learning machine (ELM) (Huang et al., 2004;
2006) as well. The same form also applies to nonlinear
support vector machines (Vapnik, 1995; Boser et al.,
1992) (except for the learning algorithm). Additionally,
it is a special case of a multilayer perceptron (Rumelhart
et al., 1986) with one hidden layer, one linear neuron in
the output layer and fixed weights between the first and
the second layer, but the MLP is typically trained by back
propagation and usually no weights are fixed.

The sigmoidal function was the original kernel used
in the ELM, while in the RBFN the Gaussian kernel is
usually chosen (although it is sometimes used in the ELM
as well (Huang et al., 2006)). The sigmoidal kernels in
ELMs are constructed by randomizing their weights and
thresholds. In the case of Gaussian kernels, they can be
initialized by a subset of vectors of the training data D.
In both cases the number of kernels has to be chosen
manually. Automatic kernel selection (for the ELM or
RBFN) was described by Jankowski (2018).

Now we can define the goal (the error function) of
linear learning by

Jl(w, X) = ||Xw− y||2

=
m∑

j=1

(wTxj + w0 − yi)
2,

(5)

where X is defined by

X =

⎡

⎢⎢⎣

1 x11 x12 · · · x1n

1 x21 x22 · · · x2n

. .
1 xm1 xm2 · · · xmn

⎤

⎥⎥⎦ , (6)

and in nonlinear learning, the goal is defined by

Jn(w, G) = ||Gw − y||2

=

m∑

i=1

(l∑

j=1

wjgj(xi) + w0 − yi

)2

,

1In the case of more than two-class classification, one model per class
should be constructed.

where G is given as

G =

⎡

⎢⎢⎣

1 g1(x1) g2(x1) · · · gl(x1)
1 g1(x2) g2(x2) · · · gl(x2)
. .
1 g1(xm) g2(xm) · · · gl(xm)

⎤

⎥⎥⎦ . (7)

Note that Eqn. (7) simply uses the matrix G in place
of the matrixX in Eqn. (5). For simplicity, we can assume
the general form of the learning goal J ,

J(w, A) = ||Aw − y||2, (8)

which covers both the linear and the nonlinear case.
To find the solution—the minimum of Eqn. (8)—we

have to compute the gradient:

∇J(w, A) = 2AT (Aw − y). (9)

To find w, we equate the gradient to zero:

∇J(w, A) = 0. (10)

After a few substitutions, we finally have

w = (ATA)−1ATy = A†y, (11)

where A† is the Moore–Penrose pseudo-inverse matrix of
A. Now, SVD can be used to compute the pseudo-inverse
of A. In this way, SVD can be employed to build both
linear and nonlinear discrimination/regression. In the case
of nonlinear discrimination, we have solutions for RBFNs
and ELMs. Finally, A† is

A† = V × Σ−1 × UT , (12)

where Σ−1 is a matrix with the dimensions of Σ swapped
symmetrically, and all of its non-zero elements are on its
diagonal. Σ−1

ii = 1/Σii for each i, where Σii �= 0.
The costs of learning via SVD are relatively low.

The complexity of SVD in linear cases is O(mn2) and
O(ml2) in nonlinear cases (the difference lies in the sizes
of the matrices X and G, respectively). The goal of this
article is to reduce the costs stemming from the number
of columns of the decomposed matrix (n2 and l2 in the
above complexities, respectively).

The usage of SVD for learning RBFNs or ELMs
does not constitute the whole of pseudo-inverse learning
applicability in ANNs. Tang et al. (2016) introduced a
multilayer perceptron learned as a multi-layered ELM.
It can be seen as a special case of deep learning—the
first layers are the layers of autoencoders and the final
layer is a typical ELM. This kind of learning enables a
significant shift of quality in comparison with the abilities
of single hidden layer ELMs, especially in computer
vision problems. Another application is local receptive
fields-based learning in the domain of ELMs, introduced
by Huang et al. (2015). This is also an example of

A fast neural network learning algorithm with approximate singular value decomposition 583

a deep structure which is more similar to convolutional
neural networks (CNNs) (Goodfellow et al., 2016)—it
consists of several random feature (sub-)layers and the
corresponding pooling maps which finally compose an
input to the standard extreme learning layer. RBFNs and
ELMs are also used in meta-learning (Jankowski, 2013)
as an elementary learning algorithm for searching in wide
model spaces. Additionally, pseudo-inverses and ELMs
can be used in several other applications, one of the more
interesting and somewhat non-typical usages dealing with
missing data (Eirola et al., 2014; Sovilj et al., 2016).

The computational costs of SVD are crucial for the
efficiency of the above ANN. What is more, in the search
for an appropriate ANN architecture, we test multiple
configurations (different layers, different parameters of
neurons, etc.), and the learning of each configuration
consumes its own amount of time. This is why reducing
SVD costs is very important, as it provides a useful
speedup in each learning process with little or no tradeoff
in accuracy.

The next section describes the idea of fast
approximate SVD computation and lays out a proposition
of a modification which additionally reduces the
computational costs of SVD. The following section
presents several numerical analyses which compare
normal SVD with fast versions in terms of accuracy and
execution time.

2. Analysis and modification of fast
approximate singular value
decomposition

In the work by Halko et al. (2011) we can find a
review of a few attempts at reducing the cost of matrix
decomposition by randomization techniques. Most of
them use a low-rank approximation of a matrix. In the first
part of this section we will focus on the general idea, and
then on one algorithm proposed by Halko et al. (2011).
Finally, we will analyze its convergence and propose a
modification of the algorithm to reduce the computational
costs.

Generally, the idea is based on intermediate matrix
decomposition which has to produce a matrix of a
significantly smaller size, and after that SVD will be used
to decompose that smaller matrix with (possibly) much
lower computational costs. Such a decomposition may be
strongly dependent on the rank of the decomposed matrix
A. It is especially helpful when the rank of A is smaller
than its size, or if there exists a low-rank approximation
of A.

The low-rank approximation of a given matrix A is
defined by

A ≈ C × B,
m× n m× k k × n,

(13)

where k bounds the rank of the above decomposition.
Assuming that m > n, SVD decomposition of

the matrix B is computationally simpler than that of
A. However, these are not sufficient conditions for
efficient construction of the pseudo-inverse matrix of A
without additional restrictions on the C matrix. When
C is an orthonormal matrix, the computation of the
pseudo-inverse of the above decomposition is simple.

That is why the following matrix Q with orthonormal
columns is so useful:

A ≈ QQTA. (14)

Now, to compute the SVD of A, we have to

• construct the matrix Q,

• construct the matrix B such that B = QTA (B ∈
Mk×n(R)),

• compute SVD(B) = ŨΣV T , and

• define the final matrix U as U = QŨ .

The proposed construction of the matrix Q
was performed by Gaussian randomization and
orthogonalization. First, let the matrix H be defined
by

h(i) = Aω(i), i = 1, . . . , k, (15)

where ω(i) is a random Gaussian vector 1 × n and H ∈
Mm×k(R).

The next step is to build an orthonormal matrix
Q from the matrix H using an orthonormalization
algorithm. The two steps, the randomization and the
orthonormalization, can be performed as in Algorithm 1.

Now the columns of the matrix Q form an
orthonormal basis of the range of H .

The selection of k as the number of columns in the
above algorithm is very important. This is because we
expect the error

||A−QQTA||, (16)

stemming from the decomposition, to be small. The
choice of k below the rank of A can lead to a poor
decomposition of A.

However, thanks to the randomness of the vectors
ω(i), the set of ω(i) is likely to be linearly independent.
As presented by Halko et al. (2011), the following lemma
holds.

Algorithm 1. Orthogonal randomized matrix.
1: for i = 1 to k do
2: ω(i) = Gaussian random vector (1× n)
3: h(i) = Aω(i)

4: q̃(i) = (I −QQT)h(i)

5: q(i) = q̃(i)/||q̃(i)||
6: Q = [Q q(i)]
7: end for

584 N. Jankowski and R. Linowiecki

Lemma 1. Let B ∈ Mm×m(R), r be a positive integer
and α > 1. Draw an independent family {ω(i) : i =
1, . . . , r} of standard Gaussian vectors. Then

||B|| ≤ α

√
2

π
max

i=1,...,r
||Bω(i)||,

with a probability of at least 1− α−r.

In the context of the above definition of the
orthonormal matrix Q and the above lemma, the direct
conclusion is that the decomposition error is bounded as
below:

||(I −QQT)A||

≤ 10

√
2

π
max

i=1,...,r
||(I −QQT)Aω(i)||, (17)

with a probability of at least 1− 10−r.
In further parts of the article, by the decomposition

error we will refer to

10

√
2

π
max

i=1,...,r
||(I −QQT)Aω(i)||. (18)

Halko et al. (2011) present the final algorithm for
construction of matrix Q as a combination of the previous
orthonormalization steps in connection with the above
property to control the decomposition error incrementally
(see Algorithm 2). Thanks to this, the number of columns
in the matrix Q is incrementally adjusted according to the
decreasing decomposition error in low costs.

In all experiments ε was set to 0.1 and r = 10; ε
defines the accuracy which limits the error in Eqn. (18),
r controls the reliability of the test defined by Lemma 1
(larger r means stronger reliability and slightly more
costly computations of the test). The chosen values of
r and ε give sufficient accuracy and reliability of the test.
The Gaussian random vector is drawn from a Gaussian
distribution with zero mean and unit variance.

The complexity of the above algorithm is O(mnk),
where m × n is the size of A and k is the number
of columns in Q. After the construction of Q,
SVD is calculated on the matrix B = QTA and
the matrix B ∈ Mk×n(R). This means that the
complexity of SVD on B is O(nk2). This leads us
to the final complexity of the fast version of SVD:
O(mnk). Two plots in Fig. 1 show examples of
convergence of the decomposition error (Eqn. (18))
for two data sets from the UCI Machine Learning
Repository, cardiotocography-1 and musk2. The
same decomposition error is used in further figures as
well. In the first step the original data sets were
standardized, and after that transformed (with a Gaussian
kernel) to 2000-dimensional kernel spaces according to
Eqn. (7). Such matrices were used to construct matrices
Q, in accordance with Algorithm 2.

We can see two different cases: the first example
stops after 788 iterations, while in the second case the
algorithm stops after 2000 iterations. In the first case, the
rank of the data matrix of cardiotocography-1 is
smaller than 2000, and the matrix could be approximated
by a matrix of rank 788. In the second case the rank of
the data matrix was huge and the algorithm constructing
Q was not able to reduce its size.

Additionally, we can see some interesting behavior
on another example: in this case we add 1% of noise to
cardiotocography-1, after the transformation to the
2000-dimensional kernel space. The results are presented
in Fig. 2. The expression ‘ν% of noise’ means that we
added Gaussian noise with zero mean and the standard
deviation equal to ν/100 to the data in the interval [0, 1]
(data constructed by Gaussian kernels). Now, the noise
added to the transformed data significantly impacted the
convergence and finally we have no reduction in the size
of the matrix Q, even with such a small amount of noise.

Such behaviour is not optimistic from the perspective
of machine learning and artificial neural networks. Let
us remember that adding an appropriate amount of noise
is equivalent to the Tikhonov regularization (Tikhonov
and Arsenin, 1977) learning in neural networks (Bishop,
1991). It would, of course, be better if the addition of
noise did not affect the convergence so strongly. But we
can observe that there is a strong difference between the
convergence progressions of cardiotocography-1
with noise (Fig. 2) and musk2 (Fig. 1). In the case of
cardiotocography-1, due to the addition of a small
amount of noise, after initially rapid convergence, we can
see that the shape becomes very flat, especially compared

Algorithm 2. Forming matrix Q.
1: function constructQ(A)
2: for i = 1 to r do
3: ω(i) = Gaussian random vector (1× n)
4: h(i) = Aω(i)

5: end for
6: Q(0) = [], the m× 0 matrix
7: j = 0
8: while

(
maxk=1,...,r ‖h(j+k)‖) > ε/(10

√
2/π) do

9: j = j + 1
10: h(j) = (I−Q(j−1)(Q(j−1))T)h(j)

11: q(j) = h(j)/‖h(j)‖
12: Q(j) = [Q(j−1)q(j)]
13: ω(j+r) = Gaussian random vector (1× n)
14: h(j+r) = (I−Q(j)(Q(j))T)Aω(j+r)

15: for i = (j + 1), (j + 2), . . . , (j + r − 1) do
16: h(i) = h(i) − q(j)〈q(j),h(i)〉
17: end for
18: end while
19: Q = Q(j)

A fast neural network learning algorithm with approximate singular value decomposition 585

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

cardiotocography-1

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

musk2

Fig. 1. Examples of convergence of the decomposition er-
ror during the construction of the matrix Q. Those
plots were obtained for benchmarks from UCI:
cardiotocography-1 and musk2.

with the convergence progression of musk2. This clearly
suggests the existence of two separate causes for those
different instances of convergence behaviour.

Smoothed gradient stop criterion in the algorithm
of constructing matrix Q. Based on the above
experience, we decided to introduce another type of
stopping criterion for the algorithm of forming matrix Q.

The previous stopping criterion was based on the
lemma presented in the earlier part of this section, which
extracts the maximal norm of the last few vectors hi;
see Eqn. (18). Our idea was to add an additional
condition which tests whether the subsequent norms are
not overly flat. However, this is not as easy as just testing
the gradient, as demonstrated by several specific incidents
which may occur from time to time, depending on the
dataset; see Fig. 3. Sometimes we may find several
points where the convergence is not monotonic and, in
consequence, the gradient flips in opposite directions.
Hopefully, such flips exhibit very local behaviour and
to overcome this problem we propose the criterion as
presented Algorithm 3.

The function presented in Algorithm 3 is a smoothed
version of the gradient of the decomposition error. It
rejects the flips the of gradient (line 9 of the code) and
analyzes the average of maximal norms over the last
r vectors hi. Here τ defines the minimal decrease of
decomposition error needed to continue the construction
of matrix Q; τ was set manually to 0.02 and this value
was used in all tests. After the introduction of the new
stopping criterion, the computation of matrix Q slightly
changes; compare this with Algorithm 4. It is important
to note that the new stopping criterion does not influence
the complexity, as it relies only on values that have already
been computed.

The above version of constructing matrix Q has
the same complexity as the previous one, i.e., O(mnk).
However, as is shown in next section, k is very often
significantly smaller than in the previous version.

The results obtained with the new stop criterion can
be seen in Figs. 4–7 with 0%, 1%, 4% and 32% of noise,
respectively (on the cardiotocography-1 dataset
again). Comparing those figures with the previous ones, it
is easy to observe that the adoption of the new criterion
leads to a significant reduction in the size of the final

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

Steps

Er
ro
r

Fig. 2. Example of convergence of the process of forming ma-
trix Q for the cardiotocography-1 dataset with
1% of noise.

0 50 100 150 200

0

100

200

300

Steps

D
ec
om
po
si
tio
n
er
ro
r

Fig. 3. Non-monotonic convergence of the decomposition error.

586 N. Jankowski and R. Linowiecki

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

Fig. 4. Convergence with the gradient stopping criterion: 0% of
noise.

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

Fig. 5. Convergence with the gradient stopping criterion: 1% of
noise.

matrix Q. Table 1 presents the number of columns in the
matrix Q depending on the percentage of noise.

The final learning algorithm of a neural network or
linear discrimination with the above fast SVD algorithm
is presented as Algorithm 5.

In the next section, a comparative analysis of three
versions of SVD is presented: the classic and the fast one,
and that with the gradient stop.

3. Results analysis of pseudo-inverse
learning

Three versions of SVD are compared in this section:
normal SVD, fast approximate SVD, and its version with

Table 1. Relation between the noise level and the number of
columns in matrix Q.

noise % 0 1 2 4 8 16 32
columns 172 211 165 227 233 638 878

the gradient stop as an element of neural network learning.
All experiments were performed on a typical laptop with
an Intel i7-4550U processor, 1.5 GHz/2.10 GHz, with 8
GB RAM (DDR3 1.33 GHz).

The tests concentrated mainly on three aspects:

• convergence analysis of fast SVD and its modified
version,

• comparison of execution time of SVD and fast
versions of SVD, and

• classification accuracy (because we are interested in
applications of SVD in neural networks and machine
learning).

In Table 2 we summarize the most important
information about selected datasets from the UCI
Machine Learning Repository (Merz and Murphy, 1998)
used for testing.

All tests concern the learning of a neural network
equivalent with the RBFN or the ELM with a Gaussian
kernel. The tests were computed with second layer sizes
of 100, 200, 1000 or 2000 kernels, depending on the test

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

Fig. 6. Convergence with the gradient stopping criterion: 4% of
noise.

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

Fig. 7. Convergence with the gradient stopping criterion: 32%
of noise.

A fast neural network learning algorithm with approximate singular value decomposition 587

Table 2. Information on the datasets used for tests.
Dataset # classes # instances # features # ordered

cardiotocography-1 10 2126 21 21
cardiotocography-2 3 2126 21 21
chess-king-rook-vs-king-pawn 2 3196 38 38
spambase 2 4601 57 57
thyroid-disease 3 7200 21 21
abalone 29 4177 8 7
image 7 2310 19 19
letter-recognition 26 20000 16 16
magic04 2 19020 10 10
musk2 2 6598 168 166
nursery 6 12960 8 0
sat-all 6 6435 36 36
segmentation-all 7 2310 19 19
shuttle-all 7 58000 9 9
waveform 3 5000 21 21

Algorithm 3. Gradient stop criterion.
1: i = 0, lastMax = 0, τ = 0.02;
2: gradT = [], the r elements empty vector
3:

4: function GradientDesc(h(j+1), . . . ,h(j+r))
5: m = maxi∈[j+1,...,j+r] ‖h(i)‖
6: if m ≤ ε/(10

√
2/π) then

7: return false
8: end if
9: gradT[i % r] = max {0, lastMax −m}

10: i = i+ 1
11: lastMax = m
12: if i ≤ r then
13: return true;
14: else
15: return Average(gradT) > τ ;
16: end if

type, in accordance with the learning algorithm presented
as Algorithm 5.

Convergence of fast SVD algorithms. Figures 8 and 9
present the plots of convergence for the selected datasets.
Those figures present all types of behaviour in terms of
convergence—this was the goal in the selection of the
datasets. As before, the y-axis presents the decomposition
error defined by Eqn. (18). The solid-dashed curve
represents the convergence of the fast SVD algorithm.
The solid part of those curves represents the fast SVD with
the gradient stop algorithm. It can be easily seen that the
new stop criterion stops much earlier than the fast SVD
algorithm. Now the new criterion stops if the convergence
curve becomes too flat.

In Tables 3 and 4, comparisons of proportions of

Algorithm 4. Fast SVD.
1: function constructQG (A)
2: for i = 1 to r do
3: ω(i) = Gaussian random vector (1× n)
4: h(i) = Aω(i)

5: end for
6: Q(0) = [], the m× 0 matrix
7: j = 0
8: grad = true
9: while grad do

10: j = j + 1
11: h(j) = (I−Q(j−1)(Q(j−1))T)h(j)

12: q(j) = h(j)/‖h(j)‖
13: Q(j) = [Q(j−1)q(j)]
14: ω(j+r) = Gaussian random vector (1× n)
15: h(j+r) = (I−Q(j)(Q(j))T)Aω(j+r)

16: for i = (j + 1), (j + 2), . . . , (j + r − 1) do
17: h(i) = h(i) − q(j)〈q(j),h(i)〉
18: end for
19: grad = GradientDesc(h(j+1), . . . ,h(j+r))
20: end while
21: Q = Q(j)

the numbers of steps with the numbers of kernels in the
input spaces2 are shown. The fraction means the ratio of
1000 and 2000 or 100 and 200, respectively, to the initial
number of kernels.

Comparison of the learning time of SVD, fast SVD
and its version with the gradient stop. The learning
time presented in the following tables was computed
by Algorithm 5 from line 7 to 9, such that we ignore

2The numbers of kernels are equivalent to those of columns in the
matrices A with the transformed datasets.

588 N. Jankowski and R. Linowiecki

Table 3. Comparison of the fractions of steps of the fast SVD algorithm and of its version with the gradient stop for input spaces with
1000 and 2000 kernels.

FastSVD-1000 GradFastSVD-1000 FastSVD-2000 GradFastSVD-2000

cardiotocography-1 0.601±0.0068 0.157±0.017 0.414±0.0035 0.0921±0.0091
cardiotocography-2 0.6±0.0072 0.155±0.016 0.414±0.0034 0.0928±0.0094
chess-king-rook-vs-king-pawn 0.99±0.002 0.327±0.048 0.878±0.0049 0.191±0.028
spambase 0.908±0.0075 0.352±0.046 0.837±0.0055 0.223±0.032
thyroid-disease 0.355±0.01 0.18±0.014 0.256±0.0055 0.108±0.0074
abalone 0.0701±0.0025 0.0433±0.0028 0.0382±0.0011 0.023±0.0014
image 0.219±0.0047 0.0986±0.0068 0.133±0.0022 0.0566±0.0043
letter-recognition 0.868±0.0072 0.196±0.018 0.616±0.0042 0.108±0.011
magic04 0.296±0.0061 0.114±0.0079 0.191±0.0037 0.0644±0.0056
musk2 1±0 1±0 1±0 1±0
nursery 0.617±0.0047 0.17±0.016 0.363±0.0027 0.0928±0.0068
sat-all 0.806±0.0054 0.147±0.018 0.616±0.0041 0.0828±0.0095
segmentation-all 0.219±0.0047 0.0986±0.0068 0.133±0.0022 0.0566±0.0043
SHUTTLE-all 0.0772±0.0028 0.0512±0.003 0.0439±0.0016 0.0284±0.0016
Waveform 1±0.00074 0.207±0.033 0.966±0.0014 0.119±0.02
Mean 0.575±0.0049 0.22±0.017 0.46±0.0031 0.156±0.01

Table 4. Comparison of fractions of steps of the fast SVD algorithm and of its version with the gradient stop for input spaces with 100
and 200 kernels.

FastSVD-100 GradFastSVD-100 FastSVD-200 GradFastSVD-200

cardiotocography-1 1±0.0019 0.889±0.061 0.986±0.0051 0.535±0.042(4)
cardiotocography-2 1±0.00099 0.871±0.069 0.987±0.0056 0.532±0.044(4)
chess-king-rook-vs-king-pawn 1±0 1±0 1±0 0.976±0.07(2)
spambase 0.98±0.016 0.98±0.016 0.965±0.015 0.934±0.065
thyroid-disease 0.84±0.038 0.716±0.039 0.671±0.032 0.493±0.029
abalone 0.458±0.021 0.324±0.017 0.267±0.011 0.179±0.011
image 0.841±0.027 0.575±0.048 0.596±0.02 0.347±0.023
letter-recognition 1±0.0022 1±0.0022 0.999±0.0029 0.75±0.068
magic04 0.97±0.017 0.681±0.035 0.775±0.019 0.395±0.021
musk2 1±0 1±0 1±0 1±0
nursery 1±0 0.997±0.025 1±0 0.671±0.061
sat-all 1±0 0.898±0.087 1±0 0.528±0.049
segmentation-all 0.841±0.027 0.575±0.048 0.596±0.02 0.347±0.023
SHUTTLE-all 0.465±0.02 0.354±0.023 0.278±0.011 0.199±0.013
Waveform 1±0 1±0 1±0 0.768±0.1
Mean 0.893±0.011 0.791±0.031 0.808±0.0093 0.577±0.042

the kernel construction time. In the case of normal
SVD, the code lines from 7 to 9 are substituted by only
computing SVD on the matrix A as well as multiplication
for computing its pseudo-inverse. Tables 5 and 6 present
the fractions of the execution time of the normal SVD
algorithm that were used by fast SVD or by fast SVD with
the gradient stop. It can be seen that fast SVD with the
gradient stop uses much less time than with the previous
stop criterion. Only in case of the musk2 dataset are the
times similar, while in most cases the execution time is
around 10 times smaller.

Comparison of classifier accuracies obtained with
SVD, fast SVD and its version with the gradient stop.
To present a trustworthy investigation of applicability of

the fast versions of SVD algorithms, the accuracies of
classifiers were tested in 10-fold stratified cross-validation
repeated 10 times. The accuracies were averaged from
the test parts only. Tables 7 and 8 present the classifiers’
average accuracies. The columns correspond to different
classifier configurations and rows correspond to datasets.
The cells in boldface mean that a given classifier is a
winner in the meaning of the paired t-test. The cells
consist of averaged accuracy, accompanied by its standard
deviation and the classifier’s rank (in line with the pattern
accuracy ± std(rank))).

The ranks are calculated for each machine for a given
dataset D. They are determined as follows. First, for
a given benchmark dataset D the averaged accuracies of
all learning machines are sorted in descending order. The

A fast neural network learning algorithm with approximate singular value decomposition 589

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

cardiotocography-1an

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

cardiotocography-2

0 500 1,000 1,500 2,000

0

500

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

chess-king-rook-vs-king-pawn

0 500 1,000 1,500 2,000

0

200

400

600

800

Steps

D
ec
om
po
si
tio
n
er
ro
r

spambase

0 500 1,000 1,500 2,000

0

500

1,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

thyroid-disease

0 500 1,000 1,500 2,000

0

500

1,000

1,500

Steps

D
ec
om
po
si
tio
n
er
ro
r

abalone

0 500 1,000 1,500 2,000

0

200

400

600

Steps

D
ec
om
po
si
tio
n
er
ro
r

image

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

2,500

Steps

D
ec
om
po
si
tio
n
er
ro
r

letter-recognition

Fig. 8. Convergence of fast SVD and its version with the gradient stop criterion (part A).

590 N. Jankowski and R. Linowiecki

0 500 1,000 1,500 2,000

0

1,000

2,000

3,000

4,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

magic04

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

musk2

0 500 1,000 1,500 2,000

0

1,000

2,000

3,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

nursery

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

sat-all

0 500 1,000 1,500 2,000

0

200

400

600

Steps

D
ec
om
po
si
tio
n
er
ro
r

segmentation-all

0 500 1,000 1,500 2,000

0

1,000

2,000

3,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

SHUTTLE-all

0 500 1,000 1,500 2,000

0

1,000

2,000

Steps

D
ec
om
po
si
tio
n
er
ro
r

Waveform

Fig. 9. Convergence of fast SVD and its version with the gradient stop criterion (part B).

A fast neural network learning algorithm with approximate singular value decomposition 591

Table 5. Comparison of real time fractions used by fast SVD and its version with the gradient stop compared to the execution time of
SVD for 1000 kernels.

Name FastSVD-1000 GradFastSVD-1000 SVD

cardiotocography-1 0.0969 0.0127 1
cardiotocography-2 0.5056 0.0653 1
chess-king-rook-vs-king-pawn 2.2424 0.3168 1
spambase 1.5718 0.2875 1
thyroid-disease 0.6413 0.2303 1
abalone 0.0601 0.0409 1
image 0.0950 0.0361 1
letter-recognition 3.1637 0.2599 1
magic04 0.7527 0.2067 1
musk2 2.3530 2.3977 1
nursery 2.1806 0.3182 1
sat-all 2.0816 0.1611 1
segmentation-all 0.1102 0.0472 1
SHUTTLE-all 0.2325 0.1541 1
Waveform 3.1955 0.1730 1

Table 6. Comparison of real time fractions used by fast SVD and its version with the gradient stop compared to the execution time of
SVD for 2000 kernels.

Name FastSVD-2000 GradFastSVD-2000 SVD

cardiotocography-1 0.3963 0.0416 1
cardiotocography-2 0.4594 0.0449 1
chess-king-rook-vs-king-pawn 2.2720 0.1322 1
spambase 1.0279 0.0858 1
thyroid-disease 0.2397 0.0616 1
abalone 0.019 0.0141 1
image 0.0764 0.0273 1
letter-recognition 2.217 0.1655 1
magic04 0.34 0.0825 1
musk2 1.3005 1.1607 1
nursery 0.6835 0.1028 1
sat-all 1.2957 0.0655 1
segmentation-all 0.0946 0.0341 1
SHUTTLE-all 0.0945 0.0755 1
Waveform 2.5319 0.0614 1

Algorithm 5. Neural network learning with SVD.
1: function networkLearning (M, learningType)
2: if learningType == linear then
3: A = construct X according to Eqn. (6)
4: else
5: A = construct G according to Eqn. (7)
6: end if
7: Q = constructQG(A)
8: [Ũ ,Σ, V T] = SVD(QTA)
9: w = V Σ−1ŨTQTy

10: return w

machine with the highest average accuracy is ranked 1.
Then, the following machines in the accuracy order whose
accuracies are not statistically different (according to the
paired t-test) from the result of the first machine are

ranked 1, until a machine with a statistically different
result is encountered. That machine starts the next ranked
group (2, 3, and so on), and an analogous process is
repeated on the remaining (yet unranked) machines.

The last three rows in Tables 7 and 8 present
cumulative results on mean ranks (and their standard
deviation), numbers of wins (how many times a given
machine configuration was the winner or statistically not
worse) and the average accuracies. Table 7 compares the
performances performance of the RBFN/ELM with 1000
and 2000 Gaussian kernels using fast SVD, fast SVD with
the gradient stop and standard SVD for learning. In a
similar manner, Table 8 presents results for 100 and 200
kernels.

In most cases the best accuracies were of course
obtained by non-approximated SVD. However, fast SVD
was in many cases as good as SVD. Fast SVD with the

592 N. Jankowski and R. Linowiecki

Table 7. Accuracy comparison for fast SVD with 1000 kernels, gradient fast SVD with 1000 kernels, fast SVD with 2000 kernels,
gradient fast SVD with 2000 kernels, and SVD with 1000 and 2000 kernels.

FastSVD-1k GradFastSVD-1k FastSVD-2k GradFastSVD-2k SVD-1k SVD-2k

cardiotocography-1 83.3±2.1(1) 79.8±2.5(3) 82.9±2.2(2) 80.1±2.6(3) 83.4±2.1(1) 83.1±2.2(1)
cardiotocography-2 92.4±1.6(2) 91±1.8(3) 92.7±1.6(1) 91.2±1.8(3) 92.6±1.6(1) 92.6±1.6(1)
chess-king-rook-vs-
king-pawn

99.4±0.42(2) 98.3±0.77(4) 99.4±0.44(2) 98.5±0.7(3) 99.4±0.43(1) 99.4±0.44(2)

spambase 92.9±1.3(1) 92.6±1.2(2) 91.9±1.2(3) 92.8±1.2(1) 92.9±1.2(1) 91.9±1.2(3)
thyroid-disease 95.6±0.53(2) 94.7±0.53(3) 95.8±0.53(1) 94.7±0.49(3) 95.6±0.53(2) 95.9±0.52(1)
abalone 26.4±2(2) 26.4±2(1) 26.6±2.2(1) 26.3±2.1(2) 26.4±2(1) 26.5±2(1)
image 95.4±1.5(1) 93.1±1.5(3) 95.1±1.3(2) 93.2±1.5(3) 95.5±1.3(1) 95.1±1.3(2)
letter-recognition 92.3±0.57(4) 81.9±1.2(6) 93±0.61(2) 82.8±1.3(5) 92.4±0.55(3) 93±0.6(1)
magic04 86.6±0.69(1) 86±0.66(3) 86.6±0.67(1) 86.1±0.67(2) 86.6±0.69(1) 86.6±0.68(1)
musk2 97.8±0.65(2) 97.8±0.65(2) 99.4±0.33(1) 99.4±0.33(1) 97.8±0.65(2) 99.4±0.33(1)
nursery 96.9±0.37(4) 92.8±0.67(6) 97±0.36(2) 93±0.6(5) 97±0.37(3) 97.1±0.37(1)
sat-all 90.3±1.1(2) 88.1±1(3) 90.6±1.1(1) 88.2±1.1(3) 90.3±1.2(2) 90.6±1.1(1)
segmentation-all 95.4±1.5(1) 93.1±1.5(3) 95.1±1.3(2) 93.2±1.5(3) 95.5±1.3(1) 95.1±1.3(2)
SHUTTLE-all 99±0.15(4) 98.7±0.18(6) 99.1±0.13(2) 98.8±0.18(5) 99.1±0.16(3) 99.2±0.12(1)
Waveform 84±1.6(3) 86.3±1.4(1) 82.7±1.6(4) 86.1±1.6(2) 84±1.6(3) 82.7±1.5(4)
Mean Accuracy 88.5±1.1 86.7±1.2 88.5±1 87±1.2 88.6±1 88.5±1
Mean Rank 2.13±0.3 3.27±0.43 1.8±0.23 2.93±0.34 1.73±0.24 1.53±0.24
Wins[unique] 5[0] 2[1] 6[0] 2[0] 8[1] 10[3]

Table 8. Accuracy comparison for fast SVD with 100 kernels, gradient fast SVD with 100 kernels, fast SVD with 200 kernels, gradient
fast SVD with 200 kernels, and SVD with 100 and 200 kernels.

FastSVD-100 GradFastSVD-100 FastSVD-200 GradFastSVD-200 SVD-100 SVD-200

cardiotocography-1 79±2.6(3) 78.2±2.8(4) 81.3±2.3(2) 79.1±2.5(3) 79±2.6(3) 81.6±2.2(1)
cardiotocography-2 91.2±1.8(2) 90.7±1.8(3) 91.7±1.8(1) 90.8±1.9(3) 91.2±1.8(2) 91.8±1.7(1)
chess-king-rook-vs-
king-pawn

95±1.4(3) 95±1.4(3) 97.1±1(1) 97±1.1(2) 95±1.4(3) 97.1±1(1)

spambase 91.9±1.3(2) 91.9±1.3(2) 92.4±1.2(1) 92.3±1.2(1) 92±1.3(2) 92.4±1.2(1)
thyroid-disease 94.5±0.48(4) 94.4±0.46(5) 94.9±0.52(2) 94.5±0.48(4) 94.5±0.51(3) 94.9±0.5(1)
abalone 26.3±2.1(1) 26.1±2.2(2) 26.4±2(1) 26.1±2(2) 26.4±2(1) 26.3±1.9(1)
image 94.3±1.6(3) 92.4±1.8(5) 94.9±1.4(2) 92.7±1.6(4) 94.9±1.5(2) 95.6±1.4(1)
letter-recognition 76.4±0.88(3) 76.4±0.88(3) 82.7±0.89(1) 79.9±1.4(2) 76.4±0.88(3) 82.7±0.89(1)
magic04 86.1±0.68(3) 85.8±0.67(4) 86.3±0.65(2) 85.8±0.66(4) 86.1±0.68(3) 86.4±0.66(1)
musk2 87.5±0.64(2) 87.5±0.64(2) 89.8±0.76(1) 89.8±0.76(1) 87.5±0.64(2) 89.8±0.76(1)
nursery 91.4±0.67(3) 91.4±0.66(3) 93.9±0.6(1) 91.9±0.72(2) 91.4±0.67(3) 93.9±0.6(1)
sat-all 87.5±1.1(3) 87.3±1.1(4) 88.5±1.1(1) 87.6±1.1(2) 87.5±1.1(3) 88.5±1.1(1)
segmentation-all 94.3±1.6(3) 92.4±1.8(5) 94.9±1.4(2) 92.7±1.6(4) 94.9±1.5(2) 95.6±1.4(1)
SHUTTLE-all 98.7±0.18(4) 98.4±0.29(6) 98.7±0.18(2) 98.6±0.24(5) 98.7±0.17(3) 98.8±0.18(1)
Waveform 86.6±1.4(1) 86.6±1.4(1) 86.5±1.4(1) 86.4±1.4(2) 86.6±1.4(1) 86.5±1.4(1)
Mean Accuracy 85.4±1.2 85±1.3 86.7±1.1 85.7±1.2 85.5±1.2 86.8±1.1
Mean Rank 2.67±0.24 3.47±0.38 1.4±0.14 2.73±0.33 2.4±0.2 1±0
Wins[unique] 2[0] 1[0] 9[0] 2[0] 2[0] 15[6]

gradient performs a little worse indeed, but the results are
often almost on the border of statistical difference, while
the computational time is many times smaller. Also, it
sometimes happens that even the fastest SVD has the best
accuracy.

The most important observation is that, despite the
fact that approximation in the proposed method is so
strong, the results are not much worse. This is especially
important when we browse many configurations before
the final learning of the end model.

4. Summary

The complexity of neural network learning algorithms
is so often crucial, especially in learning from huge
datasets (a huge dataset meaning one with a big number
of instances or a big number of attributes). This
article was focused on the construction and analysis of
fast algorithms of SVD computation for training neural
networks like the RBFN, ELM, or deep ELM. The
proposed modification of the fast SVD algorithm is on
the average 10 times faster than standard SVD. Such

A fast neural network learning algorithm with approximate singular value decomposition 593

algorithms can be used in every place where standard
SVD is now employed: in supervised and unsupervised
learning and in classification, regression, PCAs and so on.

Although computational time consumption of the
new fast SVD algorithm is significantly reduced, the
accuracies of classifiers are still satisfactory. This is
especially important when the learning phase is repeated
many times in order to find an appropriate model of a
neural network or another learning machine, which is a
typical case.

References
Bishop, C.M. (1991). Training with noise is equivalent

to Tikhonov regularization, Neural Computation
7(1): 108–116.

Boser, B.E., Guyon, I.M. and Vapnik, V. (1992). A training
algorithm for optimal margin classifiers, in D. Haussler
(Ed.), Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, Pittsburgh, PA, USA,
pp. 144–152.

Broomhead, D.S. and Lowe, D. (1988). Multivariable functional
interpolation and adaptive networks, Complex Systems
2(3): 321–355.

Dumais, S.T. (2005). Latent semantic analysis, Annual Review
of Information Science and Technology 38(1): 188–230.

Eirola, E., Lendasse, A., Vandewalle, V. and Biernacki, C.
(2014). Mixture of Gaussians for distance estimation with
missing data, Neurocomputing 131: 32–42.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep
Learning, MIT Press, Cambridge, MA, http://www.d
eeplearningbook.org.

Górecki, T. and Łuczak, M. (2013). Linear discriminant
analysis with a generalization of the Moore–Penrose
pseudoinverse, International Journal of Applied Math-
ematics and Computer Science 23(2): 463–471, DOI:
10.2478/amcs-2013-0035.

Halko, N., Martinsson, P.G. and Tropp, J.A. (2011). Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions, SIAM
Review 53(2): 217–288.

Heseltine, T., Pears, N., Austin, J. and Chen, Z. (2003).
Face recognition: A comparison of appearance-based
approaches, 7th International Conference on Digital Image
Computing: Techniques and Applications, Sydney, Aus-
tralia, Vol. 1, pp. 59–68.

Huang, G.-B., Bai, Z., Kasun, L.L.C. and Vong, C.M. (2015).
Local receptive fields based extreme learning machine,
IEEE Computational Intelligence Magazine 10(2): 18–29.

Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K. (2004). Extreme
learning machine: A new learning scheme of feedforward
neural networks, International Joint Conference on Neural
Networks, Budapest, Hungary, pp. 985–990.

Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K. (2006). Extreme
learning machine: Theory and applications, Neurocomput-
ing 70(1–3): 489–501.

Jankowski, N. (2013). Meta-learning and new ways in model
construction for classification problems, Journal of Net-
work & Information Security 4(4): 275–284.

Jankowski, N. (2018). Comparison of prototype selection
algorithms used in construction of neural networks
learned by SVD, International Journal of Applied Math-
ematics and Computer Science 28(4): 719–733, DOI:
10.2478/amcs-2018-0055.

Merz, C.J. and Murphy, P.M. (1998). UCI Repository of
Machine Learning Databases, https://archive.ic
s.uci.edu/ml/index.php.

Mitchell, T. (1997). Machine Learning, McGraw Hill, New
York, NY.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986).
Learning internal representations by error propagation, in
J.L.M.D.E. Rumelhart (Ed.), Parallel Distributed Process-
ing: Explorations in Microstructure of Congnition, Vol. 1:
Foundations, MIT Press, Cambridge, MA, pp. 318–362.

Sovilj, D., Eirola, E., Miche, Y., Bjork, K.-M., Nian, R., Akusok,
A. and Lendasse, A. (2016). Extreme learning machine for
missing data using multiple imputations, Neurocomputing
174(PA): 220–231.

Tang, J., Deng, C., Member, S. and Huang, G.-B. (2016).
Extreme learning machine for multilayer perceptron, IEEE
Transactions on Neural Networks and Learning Systems
27(4): 809–821.

Tikhonov, A.N. and Arsenin, V.Y. (1977). Solutions of Ill-posed
Problems, W.H. Winston, Washington, DC.

Vapnik, V. (1995). The Nature of Statistical Learning Theory,
Springer-Verlag, New York, NY.

Norbert Jankowski has been an associate
professor at Nicolaus Copernicus University in
Toruń, Poland, since 2012. He received his
DSc degree in computer science at the Sys-
tems Research Institute, Polish Academy of Sci-
ences, Warsaw. He obtained his PhD in com-
puter science at the Institute of Biocybernetic and
Biomedical Engineering, Polish Academy of Sci-
ences, Warsaw. He received his MSc in computer
science at the Institute of Computer Science, Uni-

versity of Wrocław, Poland. He is the author of 78 scientific articles
and two books. His main research areas are computational intelligence,
meta-learning, machine learning, neural networks, data mining, pattern
recognition, complexity, algorithms and data structures.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php

594 N. Jankowski and R. Linowiecki

Rafał Linowiecki has been an assistant re-
searcher at Nicolaus Copernicus University in
Toruń, Poland, since 2015. He received his MSc
degree in applied computer science at the Faculty
of Physics, Astronomy and Informatics, Nicolaus
Copernicus University. He received a Bachelor’s
degree in mathematics at the Faculty of Mathe-
matics and Computer Science, Nicolaus Coper-
nicus University. He also received a Bachelor’s
degree in economics at the Faculty of Economic

Sciences and Management, Nicolaus Copernicus University. His sci-
entific interests include machine learning, data mining, computational
intelligence, complexity and artificial intelligence. He also specializes
in custom software development with the use of cloud services.

Received: 6 September 2018
Revised: 29 December 2018
Re-revised: 9 February 2019
Accepted: 22 February 2019

	Introduction
	Analysis and modification of fast approximate singular value decomposition
	Results analysis of pseudo-inverse learning
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

