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This research contribution instantiates a framework of a hybrid cascade neural network based on the application of a
specific sort of neo-fuzzy elements and a new peculiar adaptive training rule. The main trait of the offered system is its
competence to continue intensifying its cascades until the required accuracy is gained. A distinctive rapid training procedure
is also covered for this case that offers the possibility to operate with non-stationary data streams in an attempt to provide
online training of multiple parametric variables. A new training criterion is examined for handling non-stationary objects.
Additionally, there is always an occasion to set up (increase) the inference order and the number of membership relations
inside the extended neo-fuzzy neuron.
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1. Introduction

Artificial neural networks (Haykin, 2009; Suzuki, 2013;
Hanrahan, 2011) have been applied broadly to working
out issues in the areas of data mining, intelligent control,
and image processing due to their multipurpose fitting
qualities and capabilities of training on the basis of
experimental data that characterize the functioning of a
studied object or a phenomenon.

The case gets substantially more complicated if
data come sequentially for processing in an online
mode. These problems are usually scrutinized within
such developing trends as dynamic data mining, video
processing, data stream processing, and web mining
(Aggarwal, 2015; Delen, 2015; Larose, 2014; Kruse
et al., 2013; Bodyanskiy et al., 2015a; Mumford and
Jain, 2009; Bifet et al., 2018; Gama, 2010). It
seems comprehensible that networks which use the error
back-propagation algorithm for their learning cannot
be used for online data processing, and it seems
extremely justified to apply hybrid neuro-fuzzy systems
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of computational intelligence in the first place. Their
output signal depends in a linear manner on adjustable
synaptic weights like radial-basis-function networks or
counter-propagation networks. At the same time, these
neural networks fall under the “curse of dimensionality”,
which abruptly lowers their performance. In most cases,
it is much more efficient to use neuro-fuzzy systems
(like the Takagi–Sugeno–Kang system and the ANFIS) in
these tasks, albeit there is a necessity to tune membership
functions, which tangles the process of their learning.

The recent interest of researchers from the area
of computational intelligence (Kruse et al., 2013;
Bodyanskiy et al., 2015a; Mumford and Jain, 2009;
Stefanowski et al., 2017; Jaworski, 2018) has been
attracted to deep neural networks (Goodfellow et al.,
2016; Menshawy, 2018), which provide a considerably
higher quality of information processing compared with
conventional shallow neural networks. However, the
process of deep learning in these networks happens
slowly, so that data processing in an interactive computing
mode by dint of the popular deep neural networks is
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merely impossible.
From the viewpoint of deep learning, cascade

neural networks (Fahlman and Lebiere, 1990) look quite
attractive. The process of building up cascades (layers)
here can occur continuously upon reaching the required
accuracy of results. It is also possible to carry out the
tuning of the cascade networks’ parameters in an online
manner, if simplified approximating structures with an
output that depends linearly on synaptic weights (that
allows using fast learning procedures) are used instead
of traditional elementary neurons. Therefore, a hybrid
cascade network was introduced by Bodyanskiy et al.
(2015b), who used neo-fuzzy neurons (Yamakawa et al.,
1992; Miki and Yamakawa, 1999; Uchino and Yamakawa,
1997) as nodes, and this fact allowed improving the
quality of results significantly and implementing an
online process of adjusting all weights. This network
is per se a deep stacked network (Goodfellow et al.,
2016; Menshawy, 2018), albeit since the process of
the zero-order fuzzy inference by Takagi–Sugeno is
implemented in every layer in substance, the number of
these layers may be extremely high, which necessarily
leads to decreasing the speed of the whole system.

As is commonly known, a deep neural network
(DNN) is an artificial neural network (ANN) with
multiple hidden layers between the input and output
layers (Goodfellow et al., 2016). The DNN finds the
correct mathematical transformation to turn the input
into the output. DNNs can model complex non-linear
relationships. DNNs are feedforward networks in most
cases (although we should mention additionally that
LSTMs are an example of recurrent DNNs) in which data
flow from the input layer to the output one without looping
back.

As was already mentioned, there is some similarity
(equivalence) between deep neural networks and cascade
neuro-fuzzy architectures. To dwell on this aspect and
explain explicitly in which way these systems are similar,
cascade hybrid systems also contain multiple layers (in
this case, pools of neurons), and the calculation process
also happens in the feedforward manner. Learning
procedures are also used for tuning multiple parameters
in the networks. But to show the superiority of cascade
neuro-fuzzy systems over traditional DNNs, we should
notice that nodes of different types may be used in one
ensemble as well as different online learning procedures
for each node.

That is why developing a deep stacked hybrid
cascade network with improved approximating properties
and a high learning speed seems appropriate. In that
manner, the unique nature of this network is represented
by an adaptive training procedure that allows processing
data with high quality when observations come to the
system in an online mode.

It is necessary to not that a preliminary version of

this paper was presented at the 3rd Conference on Infor-
mation Technology, Systems Research and Computational
Physics, Cracow, Poland, 2018. Speaking of the basic
contribution of the article, unlike the previously presented
papers, this manuscript mostly enlarges on a more detailed
presentation (concerning all the mathematical aspects)
of the learning procedure for the offered hybrid cascade
network. Optimization procedures for the generalizing
nodes are also given in detail along with some suggestions
on initialization conditions for crucial parameters of these
procedures.

The paper is structured as follows. Section 2
describes a structure of the hybrid cascade neuro-fuzzy
network with pools of extended neo-fuzzy nodes.
Section 3 introduces nodes of the proposed cascade
system. Section 4 outlines a learning procedure for the
offered network as well as optimization procedures for
parameter tuning. Section 5 presents simulation results.
The final part contains some conclusions on the provided
research.

2. Structure of the hybrid cascade
neuro-fuzzy network with pools of
extended neo-fuzzy neurons

The structure of the suggested hybrid system is given
in Fig. 1 and, as a matter of fact it coincides with the
topology of the hybrid cascade neural network on the
grounds of an optimized pool in each cascade that was
introduced for the first time by Bodyanskiy et al. (2015b).
As a structural block of that system, we used elementary
Rosenblatt perceptrons in a combination with neo-fuzzy
neurons (NFNs, to be described in detail in Section 3)
(Yamakawa et al., 1992; Miki and Yamakawa, 1999;
Uchino and Yamakawa, 1997). A modified procedure by
Kaczmarz–Widrow–Hoff (Kaczmarz, 1937) was applied
for training this system. In the work of Bodyanskiy et al.
(2016), a similar cascade hybrid network was built on the
basis of extended NFNs (ENFNs) (Hu et al., 2017) for
the first time. At the same time, a new procedure for
optimization of a neurons pool was also presented in that
paper. Bodyanskiy et al. (2015a) and Hu et al. (2017)
used a new topology of the structural nodes along with
new learning procedures.

A vector

x (k) = (x1 (k) , . . . , xi (k) , . . . , xn (k))
T ∈ R

n,

where k = 1, 2, . . . denotes the current sampling time,
comes to the system’s input (a receptive layer).

These signals are later given to the input of each
node ENFN[m]

j in every layer, and extended neo-fuzzy
neurons (Hu et al., 2017) are used as nodes which are
characterized by improved approximating properties as
opposed to conventional neo-fuzzy neurons (Yamakawa
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ŷ k ( )[2]ˆ

j
y k ( )[2]ˆ

q
y k

[2]
1ENFN [2]

jENFN
[2]
qENFN

[2]NG

( )*[ ]ˆ my k

( )[ ]

1
ˆ my k

( )[ ]ˆ m

j
y k

( )[ ]ˆ m

q
y k

[ ]
1

mENFN [ ]m
jENFN

[ ]m
qENFN

[ ]mNG

( )*[ 1]ˆ my k-

M

K
K

K

... ...

..
.

... ...

... ...

..
.

Fig. 1. Scheme of the hybrid cascade neuro-fuzzy network driven by ensembles of extended neo-fuzzy neurons.

et al., 1992; Miki and Yamakawa, 1999; Uchino and
Yamakawa, 1997). The ENFN owns synapses of some
more sophisticated nature that makes it possible to
perform Takagi–Sugeno fuzzy reasoning of arbitrary
order. Here j = 1, 2, . . . , q stands for the quantity
of nodes in a layer, m designates a number of a layer,
wherein the quantity of these layers may be growing
during the learning procedure. Output signals ŷ

[m]
j (k)

of these nodes forming an ensemble are processed in
a node of generalization NG[m], which synthesizes the
best possible (optimal) output signal ŷ∗[m] (k) of an
ensemble in every layer with the help of a weighted linear
combination.

If it is only a signal x (k) ∈ R
n that arrives to the

input of the first hidden layer, then it is a signal

x[2] (k) =
(
xT (k) , ŷ∗[1] (k)

)T
∈ R

n+1

for the input quantity of the second hidden layer, and a
signal

x[3] (k) =
(
xT (k) , ŷ∗[1] (k) , ŷ∗[2] (k)

)T
∈ R

n+2

for the input of the third hidden layer. In general terms, a

signal for the m-th hidden layer is

x[m] (k)

=
(
xT (k) , ŷ∗[1] (k) , ŷ∗[2] (k) , . . . , ŷ∗[m−1] (k)

)T

∈ R
n+m−1.

In this case, all the layers are trained in an online fashion
sequentially (one after another) as a signal appears at the
output of the previous layer.

3. Nodes of the hybrid cascade neural
network

The neo-fuzzy neuron is a training framework of nonlinear
nature with diversified arrival signals and a single output
value to carry out the converting

ŷ =

n∑
i=1

fi (xi) , (1)

where xi denotes the component i in the input vector
x = (x1, . . . , xi, . . . , xn)

T ∈ R
n (of the dimensionality

n) while ŷ designates an NFN scalar output. The NFN
contains (nonlinear) synapses NSi. Their goal is to alter
the i-th component entry of xi (in a nonlinear manner)
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into

fi (xi) =
h∑

l=1

wliμli (xi) , (2)

where wli indicates the synaptic weight l in the nonlinear
synapse i, l = 1, 2, . . . , h, i = 1, 2, . . . , n; μli (xi)
stands for the membership relation l in the nonlinear
synapse i which effects a fuzzification procedure of a
crisp component xi. In such a way, the NFN-performed
converting may be put down like

ŷ =

n∑
i=1

h∑
l=1

wliμli (xi). (3)

The fuzzy inference rule fulfilled by the identical
NFN has the form

IF xi is Xli THEN the output is wli l = 1, 2, . . . , h,

which in turn implicates that a synapse in fact performs
the zero-order fuzzy inference by Takagi-Sugeno (Jang
et al., 1997; Takagi and Sugeno, 1985).

It was originally offered to employ triangular
membership constructions in place of activation functions
inside the neo-fuzzy neuron. It may bring some
entanglement to simulation embodied by differentiable
(smooth) relations. From this angle, the piece-wise linear
fitting may be responsible for the diminished accuracy
rate of the results obtained. An increased number of
membership functions could hold down this negative
effect. But, finally, it culminates in an enlargement
of the number of weight parameters, and the topology
complexity is evolving along with the learning time
demanded.

The disclosed flaw could be omitted through the use
of cubic splines to be displayed in the following manner:

μij (xi)

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.25
(
2 + 3

2xi−cij−ci,j−1

cij−ci,j−1

−
(

2xi−cij−ci,j−1

cij−ci,j−1

)3)
, xi ∈ [ci,j−1; cij ] ,

0.25
(
2− 3

2xi−ci,j+1−cij
ci,j+1−cij

+
(

2xi−ci,j+1−cij
ci,j+1−cij

)3)
, xi ∈ ( cij ; ci,j+1].

(4)

At a particular point of time, the input quantity
invokes only two contiguous functional relations
(Fig. 2) instantaneously (quite con-natural to triangular
membership functions). But the equipped set of functions
does not fulfill conditions of the Ruspini partition. In
return, applying cubic splines brings into action smooth
polynomial fitting as a replacement for piece-wise linear
approximation and boosts the possibility of implementing
top-quality simulation of substantively non-stationary and
non-linear signals.

ix

1

2ic
3ic , 1i hc - 1ihc =( )ix k

1
0ic =

μ ( )ij ix

1μi 2μi 3μi , 1μi h-
μih

Fig. 2. Cubic spline membership functions.

Due to the fact that these membership relations are
equally spaced, the i-th element of the input term xi

makes active solely two neighboring function procedures,
although their sum amounts to one, which finally indicates
that

μli (xi) + μl+1,i (xi) = 1 (5)

and

fi (xi) = wliμli (xi) + wl+1,iμl+1,i (xi) . (6)

As remarked previously, the NFN’s synapse NSi

executes the zero-order inference by Takagi–Sugeno
only presenting the common Wang–Mendel neuro-fuzzy
system (Wang and Mendel, 1993; Wang, 1994). It seems
justified enough to enhance fitting characteristics of this
computational network with the benefit of a specified
constructional item said to be an extended nonlinear
synapse (ENSi) and to develop the extended neo-fuzzy
neuron that consists of ENSi items in place of ordinary
synapses NSi.

Scrutinizing additional variables

ϕli (xi) = μli (xi)
(
w0

li + w1
lixi + w2

lix
2
i

+ · · ·+ wp
lix

p
i

)
,

(7)

fi (xi)

=
h∑

l=1

μli (xi)
(
w0

li + w1
lixi + w2

lix
2
i

+ · · ·+ wp
lix

p
i

)
= w0

1iμ1i (xi) + w1
1ixiμ1i (xi)

+ · · ·+ wp
1ix

p
i μ1i (xi)

+ w0
2iμ2i (xi) + · · ·+ wp

2ix
p
i μ2i (xi) + · · ·

+ wp
hix

p
i μhi (xi) ,

(8)

wi =
(
w0

1i, w
1
1i, . . . , w

p
1i, w

0
2i, . . . , w

p
2i, . . . , w

p
hi

)T
, (9)

μ̃i (xi) = (μ1i (xi) , xiμ1i (xi) , . . . , x
p
i μ1i (xi) ,

μ2i (xi) , . . . , x
p
iμ2i (xi) ,

. . . , xp
iμhi (xi))

T
,

(10)
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we can write
fi (xi) = wT

i μ̃i (xi) , (11)

ŷ =
n∑

i=1

fi (xi) =
n∑

i=1

wiμ̃i (xi) = w̃T μ̃ (x) , (12)

where μ̃ (x) =
(
μ̃T
1 (x1) , . . . , μ̃

T
i (xi) , . . . , μ̃

T
n (xn)

)T
,

w̃T =
(
wT

1 , . . . , w
T
i , . . . , w

T
n

)T
.

It can be marked easily that the ENFN comprises
(p+ 1)hn parametric values to be adjusted, and the fuzzy
inference fulfilled by each ENFNi is

IF xi IS Xli THEN THE OUTPUT IS

w0
li + w1

lixi + · · ·+ wp
lix

p
i , l = 1, 2, . . . , h, (13)

which matches the Takagi–Sugeno inference of the p-th
order.

The ENFN’s architecture is more elementary
compared with the conventional neuro-fuzzy system. This
fact makes its numerical implementation easier as well.

4. Learning method for the hybrid cascade
neuro-fuzzy network

The training process of the system in question can be
considered using an example of the j-th node in the m-th
cascade described by Eqn. (12). It should be additionally
noted that a one-step construction in view of

E
[m]
j (k) =

1

2

(
e
[m]
j (k)

)2

=
1

2

(
y (k)− w̃

[m]T
j (k − 1) μ̃[m]

(
x[m] (k)

))2

(14)

was applied by Bodyanskiy et al. (2015a; 2016) and
Hu et al. (2016) as a learning criterion; in the formula
(14), e[m]

j (k) stands for an error at step k, and y (k) is an
external reference signal.

To perform minimization of the expression (14),
both “sliding window”-based gradient procedures as
well as exponentially weighted ones based on stochastic
approximation were employed. Although the decision
quality of test cases was quite high, the convergence speed
for these algorithms was insufficient in some cases.

While training the hybrid system under
consideration, it is more efficient to use criteria of a
more general type,

E
[m]
j (k) =

k∑
τ=1

αk−τ
(
e
[m]
j (k)

)2
, (15)

(here 0 ≤ α ≤ 1 is a forgetting factor) which matches
the expression (14) when α = 0 and the regular
least-squares criterion when α = 1. Minimization

of the criterion (15) may be normally accomplished
by applying the conventional exponentially weighted
recurrent method of least squares (EWRLSM), cf. (16),
where each neuron in the cascade uses its own parameter
αj (0 < αj ≤ 1). While processing non-stationary data
streams, this approach is advantageous, since different
forms of a trade-off between tracking and filtering traits
of the training operation can be executed by utilizing the
diverse parameters αj .

In addition to that, one should remember that
application of the algorithm (16) makes things more
confusing by the fact that it may lead to the “burst
of parameters” in a covariance matrix (an exponential
growth of its elements) during the learning process. This
undesirable phenomenon may be prevented by choosing
quite high values of the forgetting factor αj ≥ 0.95,
but tracking properties of the algorithm are lost in this
case during the learning process. The phenomenon
mentioned above (the so-called “burst of parameters”)
can be prevented by applying an exponentially weighted
modification of the stochastic approximation (Otto et al.,
2003) in view of
⎧
⎪⎪⎨
⎪⎪⎩

w̃
[m]
j (k) = w̃

[m]
j (k − 1)

+
(
p
[m]
j (k)

)−1

e
[m]
j (k) μ̃[m]

(
x[m] (k)

)
,

p
[m]
j (k) = αjp

[m]
j (k − 1) +

∥∥μ̃[m]
(
x[m] (k)

)∥∥2,
(17)

which is stable at any values αj , but characterized by a
low processing speed.

For that matter, an optimal gradient recurrent
exponentially weighted (OGREW) learning algorithm
should be used instead of the expressions (16) and (17).
This algorithm is a modification of the optimal adaptive
identification one (Bodyanskiy and Boryachok, 1993) and
can take in this particular case the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃
[m]
j (k) = w̃

[m]
j (k − 1)+

(
ē
[m]
j (k)

)2 (
r
[m]
j (k)−R

[m]
j (k) w̃

[m]
j (k − 1)

)

∥∥∥r[m]
j (k)−R

[m]
j (k) w̃

[m]
j (k − 1)

∥∥∥
2 ,

(
ē
[m]
j (k)

)2
=
(
ē
[m]
j (k)

)2
+ αj

(
ē
[m]
j (k − 1)

)2
,

r
[m]
j (k) = y (k) μ̃[m]

(
x[m] (k)

)
+ αjr

[m]
j (k − 1) ,

R
[m]
j (k) =

μ̃[m]
(
x[m] (k)

)
μ̃[m]T

(
x[m] (k)

)
+ αjR

[m]
j (k − 1) .

(18)
We should take note of the fact that (18) takes the

form of the popular Kaczmarz–Widrow–Hoff algorithm
(Kaczmarz, 1937) at α = 0. Speaking of the algorithm,
it should be mentioned that Kaczmarz’s procedure is
an iterative method that is applied usually to any linear
system of equations, but its computational advantage
compared with other methods depends heavily on whether
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⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̃
[m]
j (k) = w̃

[m]
j (k − 1) +

P
[m]
j (k − 1) e

[m]
j (k) μ̃[m]

(
x[m] (k)

)

αj + μ̃[m]T
(
x[m] (k)

)
P

[m]
j (k − 1) μ̃[m]

(
x[m] (k)

) ,

P
[m]
j (k) =

1

αj

(
P

[m]
j (k − 1)− P

[m]
j (k − 1) μ̃[m]

(
x[m] (k)

)
μ̃[m]

(
x[m] (k)

)
P

[m]
j (k − 1)

αj + μ̃[m]T
(
x[m] (k)

)
P

[m]
j (k − 1) μ̃[m]

(
x[m] (k)

)
)
.

(16)

the system is sparse. This method was used initially for
solving the problem of adaptive identification of control
objects in the so-called multiplicative form which could
provide noise immunity to a learning process by choosing
an appropriate parameter.

The output of the neurons’ signal ŷ[m]
j (k) in each

layer, which forms an ensemble of cascades, is fed to
inputs of generalization nodes NG[m], which are as a
matter of fact adaptive linear associators,

ŷ∗[m] (k) =

q∑
j=1

c
[m]
j (k)ŷ

[m]
j (k)

= c[m]T ŷ[m] (k) ,

(19)

where c[m] =
(
c
[m]
1 , c

[m]
2 , . . . , c

[m]
q

)T
specifies the vector

of the weight parameters which denote the vicinity of
the signal to a real value and meet the requirements of
unbiasedness

∑q
j=1 c

[m]
j = c[m]TE = 1, where E marks

a q × 1 vector made up of ones,

ŷ[m] (k) =
(
ŷ
[m]
1 (k) , ŷ

[m]
2 (k) , . . . , ŷ[m]

q (k)
)T

.

An unidentified vector of the coefficients c[m] can
be established through the use of the method of penalty
functions. For these reasons, some additional parameters
should be introduced like a k × 1 vector of observations
Y (k) = (y (1) , y (2) , . . . , y (k))

T , a k × q matrix of
filtered signals

Ŷ [m] (k) =
(
ŷ
[m]
1 (1) , ŷ

[m]
2 (2) , . . . , ŷ[m]

q (k)
)T

,

and an optimization criterion

I (c, ρ) =
(
Y (k)− Ŷ [m] (k) c[m]

)T

×
(
Y (k)− Ŷ [m] (k) c[m]

)

+ ρ−2
(
1− c[m]TE

)
,

(20)

where ρ denotes a penalty coefficient.
Minimization of (20) in c[m] leads to the expression

c[m] (ρ) =
(
Ŷ [m]T (k) Ŷ [m] (k) + ρ−2EET

)−1

×
(
Ŷ [m]T (k) Ŷ [m] (k)

+ ρ−2EET
)
.

Having applied the formula of matrix inversion by
Sherman and Morrison to this expression and by setting
the penalty coefficient to zero, we get

c[m] = lim
ρ→0

c[m] (ρ)

= c∗ [m] + P [m]
y (k)

1− ET c∗ [m]

ETP
[m]
y (k)E

E,
(21)

where

c∗ [m] =
(
Ŷ [m]T (k) Ŷ [m] (k)

)−1

Ŷ [m]T (k) Ŷ [m] (k)

= P [m]
y (k) Ŷ [m]T (k) Ŷ [m] (k)

signifies the standard least-squares estimate.
When a signal to be controlled is multidimensional,

a filtered sequence is given as

ŷ∗[m] (k) =

q∑
j=1

c
[m]
j (k)ŷ

[m]
j (k) = ŷ[m] (k) c[m] ,

where

ŷ[m] (k) =
(
ŷ
[m]
1 (k) , ŷ

[m]
2 (k) , . . . , ŷ[m]

q (k)
)T

refers to a s× q matrix, and

Y (k) =
(
yT (1) , yT (2) , . . . , yT (k)

)T

stands for a k × s matrix of observations, while

Ŷ [m] (k)

=

⎛
⎜⎜⎝

ŷ
[m]T
1 (1)

...

ŷ
[m]T
1 (k)

ŷ
[m]T
2 (1)

...

ŷ
[m]T
2 (k)

· · ·

· · ·

ŷ
[m]T
q (1)

...

ŷ
[m]T
q (k)

⎞
⎟⎟⎠

is a k × sq matrix of filtered signals.
It can be seen that the vector c[m] of weight

coefficients in this case is also identified by the expression
(21). In a somewhat different frame of reference, this
vector of weight coefficients may be obtained by means
of undetermined Lagrange multipliers. With this aim in
view, the updating sequence

ẽ (k) = y (k)− ŷ∗[m] (k)

= y (k)− c[m]T ŷ[m] (k)

= c[m]TEy (k)− c[m]T ŷ[m] (k)

= c[m]T
(
Ey (k)− ŷ[m] (k)

)

= c[m]T Ṽ [m] (k)
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should be introduced as well as the Lagrange function

L[m]
(
c[m], λ

)

=
k∑

τ=1

c[m]T Ṽ [m] (τ) Ṽ [m]T (τ) c[m]

+ λ
(
c[m]TE − 1

)

= c[m]TR[m] (k) c[m] + λ
(
c[m]TE − 1

)
,

(22)

where λ implies an undefined multiplier and R[m] (k) =
Ṽ [m] (k) Ṽ [m]T (k).

Solving the Kuhn–Tucker system of equations, we
get
⎧
⎨
⎩

c[m] (k) =
(
R[m] (k)

)−1
E
(
ET
(
R[m] (k)

)−1
E
)−1

,

λ = −2ET
(
R[m] (k)

)−1
E,

(23)
provided that the Lagrange function at a saddle point
evaluates to

L∗ (c, λ) =
(
ET
(
R[m] (k)

)−1

E

)−1

.

It is easy to notice that the first ratio in (23) is
equivalent to (21) since

c[m] = c∗ [m] +
(
1− ET c∗[m]

)
P [m]
y (k)

× E
(
ETP [m]

y (k)E
)−1

= P [m]
y (k)E

(
ETP [m]

y (k)E
)−1

.

For a multidimensional case, the Lagrange function
(22) takes the form

L[m]
(
c[m], λ

)
= Tr

(
V [m]T (k)V [m] (k)

)
+ λ

(
c[m]TE − 1

)

= Tr

((
Y (k)− Ŷ [m] (k) I ⊗ c[m]

)T

×
(
Y (k)− Ŷ [m] (k) I ⊗ c[m]

))

+ λ
(
c[m]TE − 1

)

=
k∑

τ=1

∥∥y (τ) − ŷ[m] (τ) c[m]
∥∥2 + λ

(
c[m]TE − 1

)
,

where I is the s× s identity matrix, ⊗ stands for the
tensor product, Tr (·) denotes the trace of a matrix, and
V [m] (k) = Y (k) − Ŷ [m] (k) I ⊗ c[m] implies a s× s
matrix of updates.

It could be also presented as the multidimensional
updating sequence

ẽ (k) = y (k)− ŷ[m] (k) c[m]

= y (k)ET c[m] − ŷ[m] (k) c[m]

=
(
y (k)ET − ŷ[m] (k)

)
c[m]

= Ṽ [m] (k) c[m]

and

L[m]
(
c[m], λ

)

=

k∑
τ=1

c[m]T Ṽ [m]T (τ) Ṽ [m] (τ) c[m]

+ λ
(
c[m]TE − 1

)

= c[m]TR[m] (k) c[m] + λ
(
c[m]TE − 1

)
.

Conspicuously, the optimization result demonstrably
aligns with the expression (23).

The composite signal ŷ∗[m] (k) is not behind on the
accuracy compared with the best signal ŷ[m]

j (k) out of a
pool. Besides, the harder the j-th filter processes y (k),

the larger the corresponding value of c[m]
j .

To provide change management of the signal y(k) in
real time, the expression (21) should be written down in
the recurrent form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
[m]
y (k) = P

[m]
y (k − 1)−

P
[m]
y (k − 1) ŷ[m] (k) ŷ[m]T (k)P

[m]
y (k − 1)

1 + ŷ[m]T (k)P
[m]
y (k − 1) ŷ[m] (k)

,

c∗[m] (k) = c∗[m] (k − 1)+

P
[m]
y (k)

(
y (k)− ŷ[m]T (k) c∗[m] (k − 1)

)
ŷ[m] (k) ,

c[m] (k) = c∗[m] (k)−
P

[m]
y (k)

(
ETP

[m]
y (k)E

)−1 (
ET c∗[m] (k)− 1

)
E,

c
[m]
j (0) = q−1.

(24)
This being said, an arising process imbalance is fixed

exactly at a moment of the change in the parameters
c
[m]
j (k). In the multidimensional event of calculating the

weight parameters, the algorithm takes on the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
[m]
y (k) = P

[m]
y (k − 1)−

P
[m]
y (k − 1) ŷ[m]T (k)

×
(
I + ŷ[m] (k)P

[m]
y (k − 1) ŷ[m]T (k)

)−1

×ŷ[m] (k)P
[m]
y (k − 1)

=
(
I − P

[m]
y (k − 1) ŷ[m] T (k) ŷ[m] (k)

)−1

×P
[m]
y (k − 1) ,

Q
[m]
y (k) = Q

[m]
y (k − 1) + ŷ[m]T (k) y (k) ,

c∗[m] (k) = P
[m]
y (k)Q

[m]
y (k) ,

c[m] (k) = c∗[m] (k)−
P

[m]
y (k)

(
ETP

[m]
y (k)E

)−1 (
ET c∗[m] (k)− 1

)
E,

c
[m]
j (0) = q−1.

(25)
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Numerical implementation of Eqns. (24) and (25)
may face up difficulties pertaining to a high correlation of
the signals’ ŷ[m]

j (k). It follows that the matrix R[m] (k)
is also ill-conditioned. In the multidimensional case,
a need arises to invert s× s matrices at every step.
To bypass this obstacle and to identify the coefficients
c[m] (k), the gradient procedure of searching for a saddle
point by Arrow–Hurwicz (Arrow et al., 1958) may be
applied. In numerical mathematics, the method by
Arrow, Hurwicz, and Uzawa is a handy algorithm for
solving saddle point problems (non-convex minimization
problems). It was introduced initially in the context of
concave programming.

In this case, the Lagrange function (22) looks like

L[m]
(
c[m], λ

)

=

k∑
τ=1

(
y (τ)− c[m] T ŷ[m] (τ)

)

+ λ
(
c[m]TE − 1

)

= c[m]TR[m] (k) c[m] + λ
(
c[m]TE − 1

)
,

and the procedure for tuning c[m] and λ is

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c[m] (k) = c[m] (k − 1)

−γc (k)∇c[m]L[m]
(
c[m], λ

)
,

λ (k) = λ (k − 1) + γλ (k)
∂L[m]

(
c[m], λ

)
∂λ

(26)

or

⎧
⎨
⎩

c[m] (k) = c[m] (k − 1)+

γc (k)
(
2ẽ (k) ŷ[m] (k)− λ (k − 1)E

)
,

λ (k) = λ (k − 1) + γλ (k)
(
c[m]T (k)E − 1

)
,
(27)

where γc (k) , γλ (k) are search steps.

The procedure by Arrow and Hurwicz converges to
a saddle point under rather general assumptions about the
values of γc (k) , γλ (k) . To speed up the search time, one
may try to optimize these parameters. For that reason, the
first ratio in (27) should be premultiplied by ŷ[m]T (k):

ŷ[m]T (k) c[m] (k)

= ŷ[m]T (k) c[m] (k − 1) + γc (k)
(
2ẽ (k)

∥∥∥ŷ[m]T (k)
∥∥∥
2

− λ (k − 1) ŷ[m]T (k)E
)
.

Let us also introduce a function that is illustrative of

criteria convergence, i.e.,

(
y (k)− ŷ[m]T (k) c[m] (k)

)2

= ẽ2 (k)− 2γc (k) ẽ (k)
(
2ẽ (k)

∥∥∥ŷ[m]T (k)
∥∥∥
2

− λ (k − 1) ŷ[m]T (k)E
)

+ γ2
c (k)

(
2ẽ (k)

∥∥∥ŷ[m]T (k)
∥∥∥
2

− λ (k − 1) ŷ[m]T (k)E
)2

.

Having solved this equation, the optimal value of
γc (k) may be deduced in the form of

γc (k) =
ẽ (k)

2ẽ (k)
∥∥ŷ[m]T (k)

∥∥2 − λ (k − 1) ŷ[m]T (k)E
,

and then (27) may be given in terms of

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c[m] (k) = c[m] (k − 1)+

ẽ (k)
(
2ẽ (k) ŷ[m] (k)− λ (k − 1)E

)

2ẽ (k)
∥∥ŷ[m]T (k)

∥∥2 − λ (k − 1) ŷ[m]T (k)E
,

λ (k) = λ (k − 1) + γλ (k)
(
c[m]T (k)E − 1

)
.
(28)

When λ (k) = 0, the procedure (28) is congruent
with the one-step identification algorithm by Kaczmarz.

For the multidimensional case, optimization of γc (k)
could be executed in a different manner. Premultiply the
first ratio in (26) by ŷ[m]T (k):

ŷ[m] (k) c[m] (k)

= ŷ[m] (k) c[m] (k − 1)

− γc (k) ŷ
[m] (k)∇c[m]L[m]

(
c[m], λ

)
,

y (k)− ŷ[m] (k) c[m] (k)

= y (k)− ŷ[m] (k) c[m] (k − 1)

+ γc (k) ŷ
[m] (k)∇c[m]L[m]

(
c[m], λ

)
,

eA (k) = ẽ (k) + γc (k) ŷ
[m] (k)∇c[m]L[m]

(
c[m], λ

)
,

where eA (k) denotes an a posteriori error obtained by the
k-th step of the parameter tuning.

Considering the norm of this error,

‖eA (k)‖2

= ‖ẽ (k)‖2

+ 2γc (k) ẽ (k) ŷ
[m] (k)∇c[m]L[m]

(
c[m], λ

)

+ γ2
c (k)

∥∥∥ŷ[m] (k)∇c[m]L[m]
(
c[m], λ

)∥∥∥
2

,
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and minimizing it with respect to γc (k) at every step, the
optimal value of the search step size is deduced as

γc (k) =
ẽT (k) ŷ[m] (k)∇c[m]L[m]

(
c[m], λ

)
∥∥ŷ[m] (k)∇c[m]L[m]

(
c[m], λ

)∥∥2 .

Beyond that point, the procedure (26) for the
multidimensional situation may be presented as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇c[m]L[m]
(
c[m], λ, k

)
= − (2ŷ[m]T (k) ẽ (k)− λ (k − 1)E

)
,

c[m] (k) = c[m] (k − 1)+

ẽT (k) ŷ[m] (k)∇c[m]L[m]
(
c[m], λ, k

)
∥∥ŷ[m] (k)∇c[m]L[m]

(
c[m], λ, k

)∥∥2 ,

λ (k) = λ (k − 1) + γλ (k)
(
c[m]T (k)E − 1

)
.

In a similar fashion, the exponentially weighted
least-squares method may be provided in this case,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ (k) = λ (k − 1) + γλ (k)
(
c[m]T (k)E − 1

)
,

c[m] (k) = c[m] (k − 1) + P
[m]
y (k − 1) ŷ[m] (k)

× (y (k)− c[m]T (k − 1) ŷ[m] (k)+

ŷ[m]T (k)P
[m]
y (k − 1)λ (k − 1)α−1E

)

×
(
α+ ŷ[m]T (k)P

[m]
y (k − 1) ŷ[m] (k)

)−1

−α−1P
[m]
y (k − 1)λ (k − 1)E,

P
[m]
y (k) = α−1

(
P

[m]
y (k − 1)−

P
[m]
y (k − 1) ŷ[m] (k) ŷ[m]T (k)P

[m]
y (k − 1)

α+ ŷ[m]T (k)P
[m]
y (k − 1) ŷ[m] (k)

)
.

5. Simulation results

Theoretical advances of our work were justified by an
experimental investigation depicting the forecasting issue
of electrical loads. It is well known that the question
of energy consumption is of the most immediate interest
within the context of everyday world. Since users’
consumption keeps on being on the rise permanently, all
the trends of consumption must be kept on tightly. At
this point, forecasting electrical loads (the actual power
to be given by a source of energy to its consumer)
becomes extremely important. The task of predicting
power consumption in automated control systems plays
an essential role because it makes it possible to calculate
in advance what maximum amount of electricity can
pass through a specified node or what minimum set of
equipment is necessary for normal functioning of a power
system.

A data array was gathered during 6 to 9 months
in one of the regions of Southern Ukraine in 2012.
Generally, the data sample encompassed 6380 data points.
Three rounds of experiments were conducted to compare
the performance and prediction results. The results were

averaged (Table 1). In our experimental part, we used
a new type of the learning criterion (15) along with
the ordinary quadratic criterion, a changing quantity of
membership functions as well as a varying inference order
for ENFNs. There is a need to increase the number of
parameters to be appropriately tuned to obtain a higher
accuracy for the system. If the number of membership
functions (MFs) is expanding, more MFs cover the input
space (and there are fewer places left uncovered in the
input space). The more parameters we have, the longer it
takes to tune all of them correctly (so the computational
time will be growing in that case). In our simulation
work, the coefficients of weights were initially zeros (but
we also tried some random values from the range [0,1]).
The membership values are calculated based on the initial
positions of the centroids (which are randomly chosen)
according to the expressions provided earlier. There is
always some compromise when it comes to the accuracy
and speed issues.

The data were partitioned into training and test data
blocks. The processing was made in an online mode
similar to moving through the whole data set in the regime
of a sliding window. We used just the only real-world data
set because having some real data is definitely better than
processing some artificially generated data. Plots of the
data array in Figs. 3 and 4 illustrate apparently footprints
of outliers stipulated by peak loads, measuring faults, and
other factors. The outliers’ fortuitous character is almost
unpredictable and results in high prediction errors. It can
be seen from Figs. 3 and 4 that the prediction quality
is growing (the RMSE and SMAPE are gradually falling
down). Speaking of the graphs, the top (solid) line in
the graph stands for a desired signal, the middle (thick
dashed) line is a predicted signal, and the bottom (thin
dashed) line marks an error; the vertical line marks the
end of a training part of the data set.

For the simulation part, four systems were chosen
that had been previously developed by us since they
could demonstrate quite impressive results from our
previous research. For this reason, we took a CasNN
network (Bodyanskiy et al., 2015b), a CasENFN system
(Bodyanskiy et al., 2016), an EvoENFN system (Hu et al.,
2017), and the recent hybrid cascade neuro-fuzzy network
(HybCas) (Bodyanskiy and Tyshchenko, 2020). To add a
few third-party evolving systems to our comparison, two
more systems were chosen (eNFN (Silva et al., 2013)
and eMG (Caminhas et al., 2011)). The final comparison
is presented in Table 1. To make the initial conditions
similar, all the cascade systems contained four cascades.
Each cascade included three neurons and a generalizing
node. Besides, a combination of different membership
functions was used in each node of the same ensemble.
Each neuron had a different quantity of membership
functions of the same type (like triangular membership
functions and B-splines of orders 2, 3, and 4). As has
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already been mentioned, usage of cascades inside the
systems helped us optimize the processing time due to a
parallel way of data processing. Initialization of eNFN
and eMG was performed according to the conditions
described by Silva et al. (2013) and Caminhas et al.
(2011).

The proposed system showed the best accuracy
compared with other competitors. It was the slowest
one in the test, but it contained the largest number of
tuned parameters. Table 2 presents the RMSE outputs
of neurons for every cascade in the system. From the
table, we can see that a value of the generalizing neuron
(RMSE) is better than that of any neuron in a pool.
That is the point of this cascade topology: only the best
signals are selected out of the whole set of the obtained
forecasts. Outputs generated by the neurons in each pool
are combined by the corresponding generalizing neuron;
its output accuracy must be higher than that of any output
in this specific ensemble. Besides, speaking of the nature
of the generalizing node, it is a simple adaptive linear
associator.

The practical results prove that there is a dependency
between the forecasting accuracy and the number of
membership functions as well as the inference order
applied (Figs. 3 and 4). There is also a relation between
the predicted fault and the quantity of membership
functions depicted in Fig. 5. If the number of membership
functions (MFs) is expanding, more MFs cover the input
space (and there are fewer places left uncovered there).

6. Conclusion

The hybrid cascade neuro-fuzzy scheme driven by
ensembles of extended neo-fuzzy neurons and an adaptive
training method designated for online non-stationary
data stream handling within the scope of dynamic
stream mining were introduced. The article mostly
addressed the problem of adaptive learning for a hybrid
cascade neuro-fuzzy network based on Sugeno-type fuzzy
inference. The suggested system is not very complicated
computationally by virtue of making computational
processes parallel; it possesses high approximating
features by using ensembles of extended neo-fuzzy
neurons and high processing speed due to speed optimal

Table 1. Systems’ comparison: RMSE.
System RMSEtr RMSEch Time(s)

CasNN 0.2961± 0.0074 0.3575± 0.0083 0.52
CasENFN 0.1912± 0.0056 0.2554± 0.0031 0.82
EvoENFN 0.2634± 0.0048 0.3143± 0.0022 0.67
HybCas 0.1415± 0.0011 0.2176± 0.0017 0.95
eNFN 0.2739± 0.0047 0.4543± 0.0073 0.47
eMG 0.6458± 0.0091 0.8303± 0.0099 0.75

Table 2. Accuracy of cascades in HybCas: RMSE.
Neurons Casc. 1 Casc. 2 Casc. 3 Casc. 4

1st 0.15924 0.14937 0.15936 0.14932
2nd 0.15662 0.14675 0.15673 0.14531
3rd 0.15821 0.14823 0.15825 0.14821
Generalizer 0.15031 0.14668 0.15032 0.14032

learning algorithms, and it also makes the linguistic
interpretation of the obtained results easier from the
viewpoint of fuzzy reasoning. The simulation results
proved high performance of the offered method and
illustrated its application to time series forecasting.
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