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The aim of this paper is to present a model based on the recurrent neural network (RNN) architecture, the
long short-term memory (LSTM) in particular, for modeling the work parameters of Large Hadron Collider (LHC) super-
conducting magnets. High-resolution data available in the post mortem database were used to train a set of models and com-
pare their performance for various hyper-parameters such as input data quantization and the number of cells. A novel ap-
proach to signal level quantization allowed reducing the size of the model, simplifying the tuning of the magnet monitoring
system and making the process scalable. The paper shows that an RNN such as the LSTM or a gated recurrent unit (GRU)
can be used for modeling high-resolution signals with the accuracy of over 0.95 and a small number of parameters, rang-
ing from 800 to 1200. This makes the solution suitable for hardware implementation, which is essential in the case of
monitoring the performance critical and high-speed signal of LHC superconducting magnets.
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1. Introduction

The Large Hadron Collider (LHC) is a circu-
lar proton-proton collider located at the
European Organization for Nuclear Research (CERN) on
the border between Switzerland and France. It is the
largest experimental instrument ever built (Brüning and
Collier, 2007). The purpose of this enormous project
is the verification of theories developed in elementary
particle physics. The experiments conducted at the LHC
generate a tremendous amount of scientific data which
are later used in the analysis and validation of the physics
models regarding the history of the universe and the
nature of the matter. The investigated events are so rare
that the collisions must take place every 25 ns to be able
to capture the interesting phenomena.

On the other hand, the LHC itself is unique
equipment which required the development of many
innovations. As such, it is a subject of many research
endeavors in the fields of engineering, technology and
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accelerator physics. It comprises many subsystems
built with a multitude of devices installed inside the
underground tunnel. The LHC tunnel is almost 27 km
long and located 100m underground. The radiation
level in the tunnel excludes direct intervention during
operation, making remote monitoring and control a
necessity.

The main engineering effort is to maximize the
availability of the machine while the high safety level
is guaranteed. In consequence, there is a significant
number of data streams generated by sensors and devices
depicting various subsystem conditions. Gathered data
triggers an interruption of the accelerator’s operation
immediately when a dangerous anomaly is detected. Then
an analysis of the event must be performed off-line by
experts using post mortem (PM) data. The automation
and improvement of on-line analysis would be very
beneficiary.

The research presented in this publication is
especially crucial for the future upgrade of the LHC
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(Apollinari et al., 2017) and for the study of the
next-generation circular accelerator named the Future
Circular Collider (FCC) (FCC Study, 2019). The authors
focus on a data stream coming from superconducting
magnets operated at the LHC and introduce an
architecture based on RNNs to model the magnets’
work characteristics. The authors’ long-term goal is to
automate the task of determining the parameters of safe
superconducting magnets’ operation or at least to reduce
the necessary expert involvement. It should be noted that
specialists cannot be removed from the process of model
creation. However, their work can be made easier by using
the proposed system.

The initial version of this paper was presented at
the 3rd Conference on Information Technology, Systems
Research and Computational Physics, Cracow, Poland,
2018.

The publication structure is as follows. Section 2
gives a short overview of the LHC safety system
and the data used for building the RNN-based model;
Section 3 provides background information about time
series analysis and RNNs. The proposed method is
described in Section 4. Section 5 provides the results of
the experiments. Finally, the conclusions of the research
are presented in Section 6.

2. Protection of the Large Hadron Collider

The LHC accelerates two proton beams travelling in
opposite directions (Evans and Bryant, 2008). The
particles circle the 26 658.883m long beam pipe 11 245
times per second. Particle trajectories are formed by
superconducting magnets working at a temperature of
superfluid helium at about 1.9◦K. Each of the eight sectors
of the LHC comprises about 154 magnets. The magnets
produce a magnetic field appropriate to bend the proton
trajectory when they conduct an electrical current at the
level of 13 kA. This means that the energy stored in one
sector is about 1.2GJ, which is sufficient to heat up and
melt 1900kg of copper. At a collision state, a separate
particle has the energy on the level of 7TeV. This means
that the beam of protons accumulates energy of 360MJ,
which is equivalent to the energy for warming up and
melting 515 kg of copper.

An energy corresponding to a fraction of ≈10−7 of
the beam energy can quench a magnet when operated at
full current. The quench is a phenomenon of leaving the
superconducting state by a coil or a bus carrying strong
electric current. A tremendous amount of heat is released,
leading to a catastrophic accident.

A quench is a random event. The critical safety levels
are, therefore, required to operate the LHC. As a result,
the subsystem to protect against a consequence of this
kind of event was built at the LHC, and it is permanently
maintained and developed.

Fig. 1. Example of the PM data for one of 600 A mag-
nets: RQT12.R7 for the coil around bean pipe B1.
The curve represents time evolution of resistive volt-
age URES(t) around QUENCHTIME = 24.1.2016 3 :
18 : 25 737 ms. The zero on the timescale corresponds
to QUENCHTIME. The voltage range of the ADC
is from 250mV to −250mV. The sampling period is
2ms.

This system dedicated to ensure the LHC safety
requirements is known as the machine protection system
(MPS) (Wenninger, 2016; Bordry et al., 2001; Schmidt,
2016). In general, it consists of two interlock systems:
the power interlock system (PIS) and the beam interlock
system (BIS).

The BIS is a superordinate system which collects
signals from many sources. There are currently 189
inputs from client systems, ranging from the beam loss
monitor (BLM) or the fast magnet current change monitor
(FMCM) to the personnel access system. However,
the most important and the most complex protection
subsystem is the PIS, which ensures communication
between systems involved in the powering of the
LHC superconducting magnets. This includes power
converters (PCs), the quench protection system (QPS),
uninterruptible power supplies (UPSs), the emergency
stop of electrical supplies (AUG) and the cryogenic
system. When the quench protection system (QPS)
detects a magnet quench, the power converter is turned
off immediately. In total, there is an order of thousands of
interlock signals.

When a failure is detected, the beams are dumped,
the arrival of new particles is blocked, and a trigger
for data acquisition is generated. It is a request related
to many LHC systems for providing data that were
recorded locally before the failure is detected. These
data facilitate the understanding of the reasons for the
failure. Each device inside these systems comprises
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Fig. 2. Hardware path of signals from individual devices in the
tunnel to the post mortem system. The thick line in the
center marks an industrial data bus used for real-time
distributed control WorldFIP.

a circular buffer which, at any time, serves current
information about the protected component. In the
particular case of a quench detector, the buffer contains
a voltage time series acquired with a high resolution
by an analogue digital converter (ADC) connected to a
superconducting coil. At a trigger time, half of the buffer
space is already filled with samples acquired before the
event (quench) time. After the event time, the voltage
samples are still recorded to fill the rest of the buffer
space. Therefore, the buffer contains time series around
the trigger time at both sides. An example of buffer
contents is shown in Fig. 1. This kind of data is named
post-mortem because it is recorded after the component
ceased its regular activity.

The contents of the buffer are sent out by a
network controller of the device over the field-bus to
a gateway. Then the data is transferred to a database
over an Ethernet network. The data transmission path
is shown in Fig. 2. There are two storage systems
for data: the post mortem system (PM system) and the
CERN accelerator logging service (CALS). The former is
used during failures and requested checks, and is a source
of the data employed in the experiments presented in this
paper. The latter is used to store the acquired monitoring
data from any device permanently. Due to low resolution,
this data is not used in this study.

The PM system is a diagnostic tool with the
role of organizing the collection and analysis of
transient data recorded during the time interval around
a failure or a request sent by any device in the
machine protection system (MPS) (Ciapala et al., 2002).
The primary purpose is to provide a fast and reliable
tool for equipment experts and operation crews to
help them decide accelerator operation can continue

safely or whether an intervention is required. When a
failure (a beam loss or a magnet quench) happens, the
individual devices’ buffers are frozen and transmitted to
the PM system for further storage and analysis (Ciapala
et al., 2002; Lauckner, 2001; Borland, 1998).

The architecture of the PM system is scalable, very
flexible and dependable. A dynamic load of the system is
balanced during data collection. Any device can dump
the PM data transparently and without any additional
configuration effort. The data storage is highly redundant
and equipped with data consistency check. The data are
stored in a file with a self-describing format known as the
JavaScript object notation (JSON). Therefore, files can be
processed later in any program.

Users can access the PM data utilizing a
specially designed representational state transfer (REST)
application programming interface (API). The aim is to
serve multiple language technologies according to user
preferences: Python, MATLAB, LabVIEW, C++, and
Java. A user is not dependent on the data format or the
file system. Direct extraction of only one signal from a
big dataset is possible without the necessity of reading
the entire set. The API can handle very complex queries.

2.1. Post-mortem signals. Among many kinds of
data files stored within the PM system, this study
concerns the data acquired during events happening
within superconducting coils of one class of LHC
magnets. The common feature of this class is the level
of the electrical current flowing through their coils during
normal operation. This level is 600A and therefore the
commonly used name of this class is “600A magnets”.

The PM javascript object notation (JSON) file for
“600A magnets” contains many self-descriptive fields
with digital and analogue signals. The set of these signals
monitors the complete system of supply and protection of
one magnet in the LHC tunnel. Table 1 presents a list of
signals which were the most important for this study.

The signals are measured using dedicated equipment
named the quench detector (Skoczeń and Skała, 2009;
Steckert and Skoczeń, 2017). All signals presented
in Table 1 are converted to digital samples using
8-bit ADCs. The current IDCCT flowing through
the coil is measured with Hall sensor called a
direct current current transducer (DCCT). Due to the
superconducting state of the coil, the total voltage UDIFF

consists mainly of an inductive component (when current
changes) and residual resistive voltage. When the current
IDCCT changes, the voltage UDIFF grows. The quench
detector has to distinguish between two reasons for
increasing the voltage UDIFF. In the first situation, only
the inductive component of the voltage is huge while the
resistive part remains zero. This state is normal during
ramping up or down the current in the magnet. In the
second situation, both the components are comparable,
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Table 1. List of the most important time series stored in the PM JSON file of “600A magnets.”
Signal name Symbol Unit Description

Coil current IDCCT A Electrical current flowing through superconducting coil
Total differential voltage UDIFF V Voltage measured between terminals of superconducting coil
Resistive voltage URES V Resistive part of UDIFF extracted by quench detector
Time derivative of current IDIDT As−1 Derivative of current over time calculated by quench detector
Event time stamp QUENCHTIME ns Unix time stamp (UTS) with augmented precision for

a moment when URES exceeds threshold

or the resistive part is even higher. This situation is
hazardous, and it signifies a loss of the superconducting
state of the coil. The quench detector compensates
the inductive part and compares the resistive part with
a predefined threshold. The quench detector solves
Kirchhoff’s equations of the supplying circuit in order to
extract the resistive voltage URES. During this process, it
is necessary to calculate the time derivative of the current
flowing through the coil IDIDT. If the URES remains
higher than a threshold for a time longer than a predefined
value, the trigger signal is generated. This trigger
suspends the operation of the whole accelerator. The time
stamp of this event is stored as a QUENCHTIME field.

3. Time series analysis

The spatial and temporal components may characterize
virtually all real-world phenomena. The spatial ones exist
in space, and it is assumed that they are stationary, i.e.,
do not evolve in time, whereas the temporal ones unfold
in time and have no spatial component. This distinction
is, of course, an idealization since there are neither pure
spatial nor temporal phenomena; most of them may be
described as a mixture of those two different components.

3.1. Heuristic smoothing methods. The basic
smoothing methods are focused on the temporal
component, and the spatial resolution of the input signal
is limited to a single series. Building the best-suited
heuristic smoothing model involves determining the type
of model (whether the model must include the trend,
seasonality or both) and then obtaining the best-fit
parameters for the selected model.

3.1.1. Moving average. Moving average is a simple
method which uses several of the past samples to predict a
single future value. The prediction is based on computing
an average of values in the scope of a window. The quality
of the prediction depends on the window size k, which is
the only and main hyper-parameter,

ŷ(t+1) =
1

k

k−1∑

n=0

y(t−n), (1)

where y(t) is the true observation, and ŷ(t) is the
prediction for the same sample.

3.1.2. Exponential smoothing. The exponential
smoothing methods are a wide class of models with
different assumptions and degrees of complexity that are
derived from the common idea of creating forecasts.
The common denominator of exponential smoothing is
the attribution (exponentially) of decreasing weights to
historical observations in determining the prognosis of a
future observation.

Exponential smoothing models are based on a
reasonable assumption that the future value depends not
only on the last observed value, but on the whole of its
series, and at the same time, the influence of older values
is smaller than that of newer values.

Assuming ŷ(0) = y(0), we have that

ŷ(t+1) = αy(t) + (1 − α)ŷ(t). (2)

Single exponential smoothing models are
characterized by α, which controls the impact of
past and current values on a predicted value. For α = 0,
only the current value is taken into account.

3.1.3. Double exponential smoothing. Double
exponential smoothing (Holt’s method) models are
characterized by two different parameters, α and β. In
this approach, the parameter β controls the trend.

Assuming ŷ(0) = y(0) and ŷ(1) = y(1), we have

l(t) = αy(t) + (1− α)(l(t−1) + b(t−1)), (3)

b(t) = β(l(t) − l(t−1)) + (1 − β)b(t−1), (4)

ŷ(t+1) = l(t) + b(t), (5)

which can be expanded as

ŷ(t+1) = α(1 + β)y(t) − αy(t−1)

+ (2− α− αβ)ŷ(t) − (1− α)ŷ(t−1).
(6)

A further extension of Holt’s method is triple
exponential smoothing (Holt–Winter method) taking into
account the data seasonality. The PM data analysis
revealed no seasonal component, and therefore we
decided not to include it in our experiments.
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3.2. Recurrent neural networks. In deep learning
applications there is a well-established practice
to use feed-forward neural networks (FNNs) and
convolutional neural networks (CNNs) to address
tasks dominated by a spacial component (Krizhevsky
et al., 2012). On the other hand, data which contain more
temporally distributed information are usually processed
by models built around recurrent neural networks. Of
course, it is possible to treat time series signals as a vector
of spatial values and use the FNN or CNN to classify
them or do some regression (LeCun, 2015).

The voltage and current time series, which are
used to train models described in this paper and make
predictions unfold in time, and their temporal component
are dominant. Therefore, a decision was made to use RNN
networks. There are two fundamental equations, (7) and
(8), which characterize computations of a recurrent neural
network,

h(t) = Q(Whxx
(t) +Whhh

(t−1) + bh), (7)

ŷ(t) = σ(Wyhh
(t) + by), (8)

where Q is an activation function, Whx, Wyh and Whh

are weight matrices of input-hidden layer, hidden-output
layer and recurrent connections, respectively, and bh and
by are vectors of biases.

One of the most efficient RNNs architectures is the
long short-term memory (Graves, 2012; Morton et al.,
2016; Pouladi et al., 2015; Chen et al., 2016). Since
its invention in 1997, the LSTM has been updated and
modified (Greff et al., 2015) to improve its modeling
properties and reduce large computational demands of the
algorithm. It is worth noting that the LSTM, as opposed
to a vanilla RNN, is much more complex regarding the
internal component constituting its cell—this complexity
results in a long training time of the algorithm. Therefore,
there were many experiments conducted with simpler
architectures which preserve beneficial properties of the
LSTM. One of such architectures is the GRU (Chung
et al., 2015), which is widely used in deep learning as an
alternative for the LSTM. According to the recent research
results, it even surpasses the LSTM in many applications
(Chung et al., 2014).

The LSTM internal structure is based on a set of
connected cells, with three different gates in each one:

• input gate i
(t)
c controls input activations into the

memory element;

• output gate o
(t)
c controls the cell outflow of

activations into the rest of the network;

• forget gate f
(t)
c scales the internal state of the

cell before summing it with the input through the
self-recurrent connection of the cell. This enables
gradual forgetting in the cell memory.

In addition, the LSTM cell also comprises an input node
g
(t)
c and an internal state node s

(t)
c . The output of a set of

LSTM cells is calculated according to the following set of
vector equations:

g(t) = φ(Wgxx
(t) +Wghh

(t−1) + bg), (9)

i(t) = σ(Wixx
(t) +Wihh

(t−1) + bi), (10)

f (t) = σ(Wfxx
(t) +Wfhh

(t−1) + bf ), (11)

o(t) = σ(Woxx
(t) +Wohh

(t−1) + bo) (12)

s(t) = g(t) � i(t) + s(t−1) � f (t), (13)

h(t) = φ(s(t))� o(t), (14)

where φ is a hyperbolic tangent. The hard sigmoid
function controlling the gating mechanism is defined as
follows:

σ(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ tl,

ax+ b if x ∈ (tl, th),

1 if x ≥ th.

(15)

The field of RNN-based methods for anomaly
detection is growing very fast with the progress and
discoveries in deep learning (DL). The basic concept of
those methods uses original signal modeling.

The architecture of an LSTM-based anomaly
detector which incorporates both the hierarchical
approach and multi-step analysis was proposed in
Malhotra et al. (2015), capitalizing on the property of
generalization which results from stacking of several
RNN layers. The Gaussian distribution of an error signal
(the difference between predicted and real values) was
used to decide if the prediction error signifies an anomaly.

There is also a whole branch of detectors which
exploit the property of inconsistent signal reconstruction
in the presence of anomalies (Marchi et al., 2015a;
2015b). The authors trained the model of the autoencoder
on regular data and set a threshold above which the
reconstruction error is considered an anomaly. The papers
deal with acoustic signals, but such an approach may
be efficiently employed in other domain such as videos
(Chong and Tay, 2017).

4. Proposed method

In the work of Wielgosz et al. (2017), experiments
with the data collected from the CALS database were
conducted using the setup presented in Fig. 3(a), which
employed the RMSE measure. A great challenge in this
approach is the lack of a strict reference threshold when
detecting anomalies. In order to determine the error level,
a group of experts must be consulted, and it is not always
easy to set one. This difficulty exists because the RMSE
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Fig. 3. Envisioned anomaly detection setups featuring the
RMSE and prediction (a) as well as grid quantization
and classification (b).

does not always indicate anomalous behavior well enough
to quantify it correctly (Strecht et al., 2015).

It is important to emphasize that this work does not
address anomaly detection as such. The primary objective
of this research is the examination of the proposed method
based on a quantized grid as well as the analysis of its
limitations.

Based on the experience from the previous work
(Wielgosz et al., 2017), a new experimental setup was
designed. This new approach is shown in Fig. 3(b). It
allows converting a regression to the classification. The
main difference between the previously used approach
and the proposed one is the introduction of a grid
quantization and classification steps (see marked boxes
in Fig. 3). Consequently, in the new approach, the train
and test data are brought to several categories depending
on the grid size. This transformation may be perceived
as a specific kind of quantization since the floating-point
data are converted to the integer representation denoted as
categories in this particular setup.

After initial experiments, it was determined that
utilizing the static grid does not yield the expected results
due to a massive cardinality imbalance between classes.
For example, when using a grid equal to 1024, the
cardinality of the most numerous class was over 500 times
higher than that of the second one. As a result, even with
the accuracy near 100%, all samples were classified as
belonging to a single (or at the very best two) class.

Analyzing these results, we decided to use a form of
adaptive quantization to achieve more balanced classes,
resulting in better resource utilization and more viable
results. If n is the number of samples, m ∈ N is the
number of classes (categories, bins) and srt_samples i
is the i-th sample in the ascending sorted array of all
available normalized signal samples, the basic adaptive
quantization can be described as the following mapping

from input space Snorm to quantized space Sqa :

Snorm
Πqa(m)
====⇒ Sqa : {0 . . .m− 1}1×n

, (16)

where Πqa(m):

∧

x∈Snorm

∨

y∈Sqa

y =

⎧
⎪⎨

⎪⎩

edgesy ≤ x ·m < edgesy+1

if x < 1,

y = m− 1 if x = 1,
(17)

edges :
∧

0≤k≤m

edgesk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if k = 0,

srt_samplesk·� n
m	

if 0 < k < m,

1 if k = m.

(18)

The subscript k · �n/m	 is the index of the first
sample in the k-th bin. For example, if

x = [0, .3, .9, .1, 0, .5, 0, .3, .1, .2, .3]

and the number of bins m = 4, then

srt_samples = [0, 0, 0, .1, .1, .2, .3, .3, .3, .5, .9]

and edges would be

edges0 = 0,

edges1 = srt_samples1·� 11
4 	 = srt_samples3 = .1,

edges2 = srt_samples2·� 11
4 	 = srt_samples6 = .3,

edges3 = srt_samples3·� 11
4 	 = srt_samples9 = .5,

edges4 = 1,

yielding the input vector after quantization:

y = [0, 2, 3, 1, 0, 3, 0, 2, 1, 1, 2].

In the actual experiments, a recursive version of
the adaptive algorithm was used, ensuring there are
no duplicated edges. The implementation is available
online.1 Example quantized series can be seen in Fig. 4,
with especially illustrative panel (b), which shows the
distribution of the grid bins across selected (marked with
rectangle in panel (a)) part of the signal. It may be noticed
that, out of five bins, bins 2 and 3 are the narrowest
because a large number of the signal transitions occurring
within the range covers by the bins. The bins’ density is
proportional to the level of signal variation, i.e., areas with
greater variability are more densely covered with the grid.

The model is trained using historical data fed in
portions. The next sample category is predicted based

1https://bitbucket.org/maciekwielgosz/anomaly_
detection.

https://bitbucket.org/maciekwielgosz/anomaly_detection
https://bitbucket.org/maciekwielgosz/anomaly_detection
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(a)

(b) zoomed-in view of the marked part of (a)

(c)

Fig. 4. Visualization of the recursive adaptive grid size = 8 for
three example series. The line depicts the original sig-
nal, gray spans—grid bin indication for the correspond-
ing original sample. Six of the calculated grid bins (see
(b)) have edges with a value below 7× 10−5, so the y-
axis is cropped accordingly to produce the visualization
on (a) and (c).

on the number of previous steps equal to the look_back
parameter. It is worth noticing that the increase in the
grid size leads to an increase in the resolution and at the
same time is more challenging for the classifier. Since
the reliability of any further application (e.g., anomaly

detection) depends on the accuracy of the model, the
experiments on hyper-parameters’ influence on model
performance for the PM data were conducted.

5. Experiments and a discussion

The main goal of the conducted experiments was the
validation of the feasibility of the application of the
proposed method for modeling the voltage time series
of LHC superconducting magnets. A long short-term
memory model was built with the Keras/Tensorflow
libraries (Chollet, 2015). The number of model
parameters increases slightly for bigger grids. The exact
values can be seen in Table 2.

5.1. Dataset. All the data used for the experiments
were collected from the CERN PM database using the
PM JSON API written in Python. The procedure of data
extraction from the PM database is composed of several
steps, as presented in Fig. 5. A dedicated application and
a set of parameters such as the signal name and number of
time steps were used.

The signals concerning “600A magnets” were
collected for different time series: URES, UDIFF, IDIDT

and IDCCT. The modeling experiments were conducted
using the URES signal only. Basic information about the
data can be found in Table 3.

5.2. Quality assessment measures. Accuracy is used
to compare the model performance for various grid sizes.
It can be defined as

accuracy =
1

N

N−1∑

i=0

1
(
Yi = Ŷi

)
, (19)

where Yi and Ŷi are the i-th sample true quantized value
and the one predicted by the model, respectively, and N is
the dataset cardinality. Additionally, for baseline methods
(see Section 3.1), the mean absolute error (MAE) and the
root mean squared error (RMSE) were calculated:

MAE =
1

N

N−1∑

i=0

|yi − ŷi| , (20)

Table 2. Number of models’ parameters depending on the se-
lected architecture and grid.

grid
number of cells in LSTM layer(s)
16 32 64 64, 32

8 1288 4616 17 416 29 576
16 1424 4880 17 936 29 840
32 1696 5408 18 976 30 368
64 2240 6464 21 056 31 424
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Table 3. Basic information about data used in the experiments. If a series was too short to be used in a particular setup (due to the
required look_back), it was skipped.

dataset no. of series no. of series with QUENCHTIME field total samples total anomalous samples

training 31 496 13 613 (43.22%) 39 509 987 10 272 823 (26.00%)
validation 7874 3449 (43.80%) 9 873 974 2 605 321 (26.39%)
testing 9843 4293 (43.61%) 12 349 311 3 241 540 (26.25%)

RMSE =

√√√√ 1

N

N−1∑

i=0

(yi − ŷi)
2
, (21)

where yi and ŷi are the i-th sample value and the one
predicted by the model, respectively.

5.3. Results. The conducted experiments showed
that even relatively small LSTM models are capable of
modelling the URES signal (Table 4). The accuracy
improves with increasing model complexity and longer
look_back and decreases when a bigger grid is used.
However, due to the most prevalent series length being
1250 samples (96.09% of series were of this length), we
decided not to use look_back longer than 256.

For comparison, the classical forecasting methods
were employed, whose results are shown in Table 5. The
best performance was achieved by utilizing exponential
smoothing (2), resulting in an accuracy ≈2% lower
than the best of the tested LSTM models. In order
to compare the RNN-based model using the proposed
quantized regression scheme with baseline methods, their
output (whose quality is usually determined based on
the MAE/RMSE) was quantized and the accuracy was
calculated (Table 5). Exponential smoothing with a grid
of length 8 performs best among the analyzed baseline
methods. However, it is still inferior to the best of
the analyzed RNN-based models. Furthermore, the
presented studies consider only a single signal; for more

Fig. 5. Procedure for the extraction of voltage time series with
selected events from the PM database using URES as an
example.

Table 4. Model accuracy as a function of grid, look_back and
the model architecture. All models were trained for six
epochs with the batch size = 32 768.

cells
look_back

1 4 32 128 256

grid=8
16 0.9394 0.9403 0.9448 0.9494 0.9558
32 0.9394 0.9428 0.9462 0.9502 0.9544
64 0.9394 0.9442 0.9518 0.9527 0.9554

64, 32 0.9394 0.9455 0.9540 0.9531 0.9611
grid=16

16 0.8940 0.9098 0.9087 0.9203 0.9321
32 0.9034 0.9127 0.9137 0.9242 0.9361
64 0.9034 0.9191 0.9209 0.9265 0.9381

64, 32 0.9119 0.9214 0.9261 0.9285 0.9385
grid=32

16 0.8533 0.8739 0.8765 0.8844 0.9059
32, 0.8569 0.8804 0.8807 0.8940 0.9131
64, 0.8657 0.8891 0.8921 0.9007 0.9177

64, 32 0.8874 0.8901 0.8957 0.9076 0.9200
grid=64

16, 0.8236 0.8383 0.7713 0.8544 0.8318
32, 0.8264 0.8448 0.8448 0.8634 0.8836
64, 0.8295 0.8601 0.8587 0.8660 0.8924

64, 32 0.8604 0.8549 0.8656 0.8779 0.8938

complex cases composed of more signals such direct
comparison would be challenging, since RNNs account
for inter-dependencies between series as opposed to ES.

5.4. Anomaly detection with data quantization. For
an anomaly detection task, if the model is trained only on
non-anomalous data, it is enough to observe the predicted
categories for several time steps. When it turns out that
the predicted category differs from the actual one over
the selected period, this means that an anomaly occurred
(Fig. 6). The data expert has a much easier task in this
case (when compared with the RMSE-based approach)
because the only decisions required are about the grid size
and the anomaly detection window, both of which are well
quantifiable parameters.

The PM data we used were weakly labeled, with
all samples occurring after QUENCHTIME marked
as anomalous. Weakly labeling, as opposed to strict
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Table 5. Baseline results. The parameters α and β were minimized using a truncated Newton (TNC) algorithm, with the RMSE as the
loss function. The baseline methods are described in Section 3.1.

Accuracy
Method Parameters MAE RMSE grid=8 grid=16 grid=32 grid=64

Moving average window = 1 1.5253× 10−17 3.2137× 10−16 0.5727 0.5656 0.5406 0.5193
Exponential
smoothing

α = 0.9476 2.1296× 10−5 4.1668× 10−3 0.9433 0.9165 0.8919 0.8704

Double
exponential
smoothing

α = 0.9480,
β = 0

2.1293× 10−5 4.1672× 10−3 0.8066 0.7779 0.7530 0.7816

labeling, utilizes limited information regarding the
modeled phenomenon as provided by experts in the field.
In the case of the presented method and experiments, only
the very moment of quench occurrence was marked by
the experts (i.e., LHC technicians overlooking the data
acquisition process). Consequently, it is not always clear
where quenches end and if there are any other phenomena
which overlap with the quench (e.g., a power converter

Fig. 6. Data flow diagram for the proposed method.

Fig. 7. Accuracy as a function of the number of epochs for
models with cells = (64,32), look_back = 128 and the
batch size = 32 768.

or monitoring apparatus distortion). In order to provide
stringent labeling, close inter-team cooperation between
technicians would be essential, especially concerning data
interpretation. Such cooperation is very challenging, but
it is gradually being introduced, which allows expecting a
strictly labeled dataset to be ready in the future.

The analyzer part of the detector to work correctly
requires a minimal grid size (e.g., grid ≥ 8) to allow the
analyzer to capture tiny changes within the signal. On
the other hand, increasing the grid size compromises the
accuracy of the model. Consequently, the choice of the
accuracy is a trade-off between the model and analyzer
performance, which results in the effectiveness of the
detector as such. The increase in the number of training
epochs from 6 to 32 results in an accuracy better by
≈1% for smaller grid sizes (Fig. 7). It can be concluded,
however, that even the biggest of the tested models is too
small to handle grid=64.

The early experiments with anomaly detection in
the PM data resulted in a high rate of false positives
(with the precision ≈0.43), indicating the need to
enhance further the part of a system responsible for
distinguishing between anomaly occurrence and model
imperfection. Example visualization of anomaly detection
results, using the model trained without data containing
the QUENCHTIME field, is presented in Fig. 8.

It is worth noticing that the presented solution
contains a module which enables the modeling of time
series. In order to use it with more specific applications
such as anomaly detection, the module is extended with
the analyzer section which operates on top of the model.
A more detailed explanation of this architecture was given
by Wielgosz et al. (2018a) and is out of the scope of this
paper.

Figure 8 shows the results of three different
experiments. In the top one, the trigger for anomaly
detection implemented in the analyzer was activated
several times indicating a single false positive case,
located just before the areas marked as an actual start
of the anomaly (the gray span). It was assumed in the
adopted quality measure scheme that multiple triggers
within an area marked as an anomaly are counted as one,
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Fig. 8. Visualization of the proposed anomaly detector results for three example series using the LSTM model with two layers
(64 and 32 cells), look_back = 256 and grid= 32. The gray span indicates the area labelled in data as an anomaly (from
QUENCHTIME until the end of a series); the thick vertical black lines are the point detector marked as a start of anomaly
(trigger points); the dotted grey line (and scale on the right) represents the original, normalized signal before quantization, while
the solid and dashed lines represent the real and the predicted quantized signal, respectively.

and thus all the black lines (in the top panel of Fig. 8)
are considered to be true positives. In the middle panel of
the figure, the proposed system worked correctly, and the
anomaly was accurately detected. The trigger point is in
line with the beginning of the labeled area. In the bottom
panel of Fig. 8, the anomaly detection module triggers too
early, confusing distortions in the original signal with the
start of the real anomaly. Further research is needed to
check how weak data labeling affects those results and

whether the system is capable of confirming and detecting
the existence of anomaly precursors, which at the moment
would be labeled as part of the normal operation.

5.5. Hardware implementation considerations. To
comply with the CERN magnets monitoring system
requirements, the detector system, including the RNN,
will need to be implemented in hardware using
field-programmable gate arrays (FPGAs). Networks of
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a similar size as proposed for the task were already
implemented for application in speech recognition and
were described by Chang et al. (2015), Han et al. (2017),
and Lee et al. (2016). Differences in the described
approaches yield varying results, with the single iteration
execution time ranging from ∼16 µs to 1ms.

Due to hardware implementation requirements, the
look_back value should be carefully analyzed. This
analysis is especially pronounced when it comes to strong
pipeline architecture of the hardware module, where large
look_back may affect resource consumption.

In order to implement the hyperbolic tangent φ(x)
and hard sigmoid σ(x) functions in hardware, they
can be approximated (near zero) using Taylor series
(22–23). Such approximation is possible because after
normalization the values rarely will be outside the [−1, 1]
range,

φ(x) = x− x3

3
+

2x5

15
, (22)

σ(x) =
1

2
+

x

4
− x3

48
+

x5

480
. (23)

6. Conclusions and future work

This work extends the existing investigations (Wielgosz
et al., 2017; 2018a; 2018b; 2018c; 2020) using
higher resolution data and more diverse models. The
importance of the subject grows because the project
High Luminosity LHC (HL-LHC) enters its engineering
phase (Apollinari et al., 2017). The goal is to increase
the rate of particle collisions (luminosity). What is more,
there is a dawn of the next huge CERN project named
the Future Circular Collider (FCC) (FCC Study, 2019).
The circumference of the ring is predicted to be 80 km or
even 100km. Consequently, there is a need for a system
capable of monitoring and prediction of malfunctions.

The authors showed that the developed system
supersedes the state-of-the-art conventional methods,
despite a lack of exhaustive hyper-parameter optimization
of the RNN-based model.

In the future, the authors are going to investigate the
feasibility of implementing a predictive model on FPGAs.
Performing computations on a PC works well for the
validation of the idea, but requirements of control systems
like the QPS are rather hard real-time, which PC systems
are incapable of doing.
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Wielgosz, M., Skoczeń, A. and Wiatr, K. (2018c). Looking
for a correct solution of anomaly detection in the LHC
machine protection system, International Conference on
Signals and Electronic Systems (ICSES), Cracow, Poland,
pp. 257–262.

Maciej Wielgosz received his PhD (with honors)
in 2010 in high-performance reconfigurable com-
puting from the AGH University of Science and
Technology, Cracow, Poland. He is currently an
assistant professor in the Department of Electron-
ics, AGH-UST, and works in the Academic Com-
puting Center CYFRONET. His primary area of
research interests is cognitive computing, with
the emphasis on real-time anomaly detection.

https://cds.cern.ch/record/567214
https://cds.cern.ch/record/567214


Using neural networks with data quantization for time series analysis . . . 515
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