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Sampling-based motion planning is a powerful tool in solving the motion planning problem for a variety of different robotic
platforms. As its application domains grow, more complicated planning problems arise that challenge the functionality of
these planners. One of the main challenges in the implementation of a sampling-based planner is its weak performance when
reacting to uncertainty in robot motion, obstacles motion, and sensing noise. In this paper, a multi-query sampling-based
planner is presented based on the optimal probabilistic roadmaps algorithm that employs a hybrid sample classification
and graph adjustment strategy to handle diverse types of planning uncertainty such as sensing noise, unknown static and
dynamic obstacles and an inaccurate environment map in a discrete-time system. The proposed method starts by storing
the collision-free generated samples in a matrix-grid structure. Using the resulting grid structure makes it computationally
cheap to search and find samples in a specific region. As soon as the robot senses an obstacle during the execution of the
initial plan, the occupied grid cells are detected, relevant samples are selected, and in-collision vertices are removed within
the vision range of the robot. Furthermore, a second layer of nodes connected to the current direct neighbors are checked
against collision, which gives the planner more time to react to uncertainty before getting too close to an obstacle. The
simulation results for problems with various sources of uncertainty show a significant improvement compared with similar
algorithms in terms of the failure rate, the processing time and the minimum distance from obstacles. The planner is also
successfully implemented and tested on a TurtleBot in four different scenarios with uncertainty.
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1. Introduction

An essential component for any robotic system is the
ability of the robot to move inside its environment
(Jafarzadeh and Fleming, 2018). Such an ability is
provided using a motion planning procedure. Motion
planning can be defined as moving a mobile robot
between a pair of start and goal configurations in an
environment filled with obstacles, while avoiding any
collision with obstacles and the environments boundaries
(Kingston et al., 2018; Klaučo et al., 2016). It has been
proven that the motion planning problem in its simplest
form is NP-complete (Canny, 1988; González et al.,
2016), meaning that the running time of the algorithm
is exponential in the degree of freedom which makes
the motion planning problem a challenging research
area. Based on the increasing application of motion
planning in various areas such as automation, animating
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digital characters, computer games, architectural design,
assembly planning, robotic surgery, and computational
biology, there have been an extensive amount of research
in the field of motion planning algorithms, resulting
in various algorithms with different characteristics,
advantages and drawbacks (Choset et al., 2005; Khaksar
et al., 2012; Elbanhawi and Simic, 2014; Przybylski and
Putz, 2017).

In the field of motion planning, sampling-based
planners have been successfully applied to solve difficult
problems in high-dimensional spaces (Ha et al., 2018).
These algorithms are unique in the fact that planning
occurs by sampling the configuration space. Original
sampling-based planners such as probabilistic roadmaps
(PRMs) (Kavraki et al., 1996), rapidly-exploring random
trees (RRTs) (LaValle and Kuffner, 2001), and expansive
space trees (ESTs) (Hsu et al., 2002), are proved to be
probabilistically complete as the probability of finding a
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solution in these planners is one when the input size goes
to infinity. These algorithms have been improved further
to achieve some forms of optimality in the generated
solutions. Optimal sampling-based planners such as
PRM* and RRT* (Karaman and Frazzoli, 2011) are
asymptotically optimal as the solutions found by these
algorithms converge asymptotically to the optimum, if one
exists, with the probability of one as the input size goes to
infinity. The failure of a robot to navigate in uncertainty
is becoming an important challenge as the robots are
finding their way to operate in our homes, offices and
outdoor environments and participate in complex tasks
such as health monitoring and elderly care. Because
of the uncertainty associated with a robots motion and
its sensory readings, the real robot state is often not
available. Therefore, any path planner must be able
to account for these uncertainties to provide safe and
collision-free navigation plans. Uncertainty in path
planning is often caused by three main sources including
motion error, sensing error, and imperfect environment
map (Kurniawati et al., 2012).

Despite the proven advantages of sampling-based
algorithms in path planning and even in other fields such
as computer games and drug design (Choset et al., 2005),
they fail to deal with planning under uncertainty. The
main necessity for a typical sampling-based path planner
is to have a map of the environment or the knowledge
to decide whether any given configuration is in collision
with obstacles or not. These algorithms generate random
or semi-random samples in the free configuration space
and, therefore, they should be able to detect collisions
beforehand to prevent them from happening. This
restrictive assumption strongly limits the applicability of
sampling-based planners to robots operating in uncertain
environments. In addition, as a part of most of
the randomized algorithms, a local planner should be
available to detect possible collision-free connection
between any two given configurations. Moreover, dealing
with dynamic obstacles poses additional complexity to
the uncertain path planning problem. Not knowing
the position of a dynamic obstacle or, equivalently, the
collision status of a configuration over time, leads a
typical sampling-based planner to failure.

Recently, conventional sampling-based planners
have been upgraded to deal with some levels of
uncertainty including sensing errors, uncertain
environment maps and dynamic obstacles. These
methods will be discussed in the next section. However,
an overall evaluation on the performance shows that
they are computationally demanding compared with
their counterparts that do not consider uncertainty.
Furthermore, focusing on one aspect of uncertainty
normally requires deterministic knowledge on other
aspects. For instance, having an efficient path planner
to deal with dynamic obstacles requires a very accurate

(a) (b) (c)

Fig. 1. Part of the solution computed by the proposed planner in
a simple 2D environment with a static unknown obsta-
cle: the robot is following the preplanned path (a), as the
robot senses the new obstacle, the graph is adjusted and
the path is repaired accordingly (b), as the robot keeps
moving, the graph keeps being adjusted and the gener-
ated path is improved during the planning (c). The ob-
stacle and its expanded version are shown with dark and
light squares, respectively. The robot is the dark circle
with the light circle around it as the vision range, and the
generated path is the thick line.

sensory system. In other words, the cumulative effect of
all sources of uncertainty can be difficult to model in the
planning phase before task execution.

In this paper, an extension of the optimal
probabilistic roadmaps (PRM*) (Karaman and Frazzoli,
2011) is proposed which is able to handle different types
of planning uncertainty in a single package without a
considerable increase in the computational cost. The
algorithm is based on an adaptive randomization concept
in which the entire randomized structure obtained from
the traditional sampling mechanism is incrementally and
frequently updated to handle any type of uncertainty
in the planning space and the robot’s sensory system.
First, a sampling radius Rs(n) is applied to the sampling
process to have a more sparse and monotone graph and
avoid oversampling. Second, it stores the generated
samples in a grid-based matrix (GR), based on the
corresponding Cartesian coordinates (xi, yi)

T to make
it computationally cheap when performing regional
adaptation on the graph. Next, an uncertainty matrix,
(COL) will be updated with a predefined frequency, Δt,
which directly updates itself based on the information
provided by the onboard sensor(s).

The most important part of the proposed algorithm is
a graph-adjustment component which adjusts the resulting
graph in real time by refining not only in-collision nodes
but also the corresponding connected neighbors. The
proposed incremental graph adjustment process enables
the planner to deal with any new obstacle in the same
way without knowing whether the obstacle is static or
dynamic. Other types of uncertainty such as noisy
sensors or inaccurate maps are treated in the same way
since regardless of the source of uncertainty, it results
in encountering an obstacle when it was not accounted
for. Figure 1 shows the performance of the algorithm in
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dealing with a static unknown obstacle. The performance
of the proposed planner is tested in several simulation
scenarios with uncertainty. Furthermore, to test the results
on a real robot, an implementation procedure is introduced
that converts the output of the planner to a control vector
for a nonholonomic mobile robot moving in a 2D indoor
environment. This implementation is tested on a TurtleBot
in four different path planning scenarios with uncertainty.

The remainder of this paper is organized as follows:
Section 2 is a summary of the related literature. Section 3
contains formal definitions and the notation regarding
the problem while Section 4 describes the proposed
algorithm. The simulation and experimental results are
provided in Section 5 and, finally, the work is concluded
and potential future work is discussed in Section 6.

2. Related work

Sampling based planning is by no means a novel concept
in robotics (Janson et al., 2018). It was proposed to
overcome the complexity of deterministic robot planning
algorithms for a robot with six degrees of freedom. The
use of random computations to solve otherwise rather
difficult problems have been immensely successful.

A common restrictive assumption in sampling-based
algorithms is that the environment is well defined such
that the relative location of the robot with respect to
obstacles is completely known. This assumption is valid
in static environments where industrial manipulators are
used or in CAD applications in which the environment is
user-defined. For autonomous robots operate in uncertain
environments that cannot be modeled or estimated, the
assumption of a well-defined static environment does not
hold true. There is an uncertainty that arises because of
sensing errors and noise and the imprecision of actuators
and other uncontrollable factors such as unknown static
or dynamic obstacles (Elbanhawi and Simic, 2014). In
the past years, sampling-based algorithms have been
updated to deal with various sources of uncertainty.
Based on a single or a multi-query nature of the base
planner, different improvements have been proposed
in the presence of uncertainty. Even though for a
single-query planner regenerating a search tree may be a
valid approach, it requires tuning appropriate parameters
and various heuristics in different instances.

There are several extensions of the RRT algorithm
to deal with uncertainty (Jaillet et al., 2011; Belghith
et al., 2013; Bry and Roy, 2011; Achtelik et al., 2013)
which mostly deal with dynamic obstacles and show poor
performances when facing other forms of uncertainty such
as imperfect sensing or noisy environment maps. In
the field of multi-query algorithms, several extensions
of the PRM planner have been introduced to deal
with uncertainty. A PRM was proposed for dynamic
motion planning based on regenerating a roadmap on

the assumption of an obstacle-free space (Leven and
Hutchinson, 2011) while the data structure of the
PRM was improved to accommodate changes in the
environment and consequently, in the roadmap. However,
this algorithm only handles dynamic environments.

A similar approach attempts to use a tree-based
planner to connect the roadmap nodes in dynamic
environments and encodes obstacle positions in local
connections (Jaillet and Simeon, 2004). A generalized
PRM was introduced in surroundings where obstacle
movements are restricted to local sectors (Choset et al.,
2005). The PDR maintains a roadmap whose paths can be
deformed. Thus, numerous paths can be obtained between
two configurations (Jaillet and Simon, 2008).

A sampling-based motion planner was proposed to
deal with sensing uncertainty through a utility guided
process that incorporates uncertainty directly into the
planning procedure (Burns and Brock, 2007). Guided
cluster sampling (GCS) is a global motion planner which
was introduced to handle problems with uncertainty. GCS
uses the point-based partially observable Markov decision
process (POMDP) approach (Kurniawati et al., 2012).
GCS uses domain specific properties to construct a more
suitable sampling strategy. A real-time path planner
was proposed that guarantees probabilistic feasibility for
autonomous robots with uncertain dynamics operating
among dynamic obstacles with uncertain motion patterns
(Aoude et al., 2013). This method builds a learned motion
pattern model by combining the flexibility of the Gaussian
process with the efficiency of the RRT planner.

BU-RRT* (Luders and How, 2014) is a novel
optimizing sampling-based motion planner that
guarantees the feasibility of linear systems subject to a
bounded uncertainty. FIRM (Agha-Mohammadi, 2014)
is a feedback-based information roadmap for planning
under uncertainty which is a belief-space variant of the
PRM planner. In this method, the costs associated with
the edges are independent of each other and this preserves
the optimal substructure property. FIRM also relies on a
feedback from local planners to reduce the uncertainty
propagation between states. The problem of motion
planning for a linear system subject to Gaussian motion
noise was considered and the CC-RRT*-D planner (Liu
and Ang, 2014) was developed to deal with risk-aware
path planning under uncertainty. This planner employs
the chance-constraint approximation and leverages the
asymptotically optimal property of the RRT* framework
to compute risk-aware and asymptotically optimal
trajectories under motion uncertainty.

A sampling-based real-time motion planning
algorithm was proposed (Li et al., 2014) for planning
under state uncertainty which is an extension of
the closed-loop rapid belief tree. An RRT-based
planner (HFR) was reported that is able to perform
high-frequency replanning under uncertainty using
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parallel sampling-based planners (Sun et al., 2015). RRTX

(Otte and Frazzoli, 2016) is a tree-based asymptotically
optimal planner which is capable of solving dynamic
motion planning problems by refining and repairing
the same graph over the entire navigation. Whenever
obstacles change or the robot moves, a graph rewiring
cascade quickly remodels the existing search-graph and
repairs its shortest path.

Recently, a localization-aware sampling-based
planner has been introduced (Pilania and Gupta, 2017)
for incremental motion planning under uncertainty using
a measure of localization ability of the samples. This
planner puts more samples in regions where sensor
data are able to achieve higher uncertainty reduction
while maintaining adequate samples in regions where
uncertainty reduction is poor. A holistic approach for
3D object reconstruction with a mobile manipulator
robot with an eye-in-hand sensor has been proposed
(Vasquez-Gomez et al., 2017) considering uncertainty
in both observation and control. In this work, a set of
candidate views/states is directly generated in the state
space, and later only a subset of these views is kept by
filtering the original set.

Few advances in the concept of belief roadmap
search have been proposed (Shan and Englot, 2017) to
plan under localization uncertainty based on a best-first
strategy to improve the computational cost of the search.
A sampling-based mobile manipulator planner has been
introduced (Pilania and Gupta, 2018) that considers the
base pose uncertainty and the effects of this uncertainty
on manipulator motions by having a hierarchical planner
that plans for both the base and the arm in a judicious
manner, a localization-aware sampling and connection
strategies, and also by incorporating base pose uncertainty
along the edges. A distributionally robust incremental
sampling-based method has been introduced (Summers,
2018) for kinodynamic motion planning under uncertainty
based on the RRT planner. In this method, unlike
many approaches that assume Gaussian distributions
for uncertain parameters, moment-based ambiguity sets
of distributions with given mean and covariance are
considered.

Finally, a framework has been proposed (Axelrod
et al., 2018) to compute shadows as the geometric
equivalent of a confidence interval around observed
geometric objects which introduces tighter bounds than
those of previous methods and the tightness of the bounds
does not depend on the number of obstacles by relying
on computing a bound specific to a trajectory instead of
trying to identify a generic safe set.

Most of the above mentioned planners focus on
one source of uncertainty and at some level, require
accuracy on other aspects which is not the case in complex
planning problems under different forms of uncertainty.
Furthermore, the total processing time of the planner

when dealing with uncertainty is a crucial factor which
usually is neglected. Having a motion planning algorithm
with a computationally expensive process, is not practical
when dealing with a real robot. To understand the effect of
high process runtime, in the implementation of a planner
a mobile robot is considered that stops for a minute each
time and senses a new obstacle.

3. Problem formulation

In this section, basic definitions and descriptions of the
motion planning problem and the proposed algorithm are
provided. A mobile robot is moving in a d-dimensional
state space. Initially, there is a map of the environment
that only specifies the space boundaries. The only
requirement of the planner is to have or to be able to
generate an initial solution before the navigation starts.
In other words, initially the robot follows the direct path
towards the goal position until it encounters an obstacle.

Let Q ⊂ R
d be the state space of the navigation

problem which includes two main subsets such as Qobs ⊂
Q when the state is in collision with obstacles, and Qfree =
Q when the robot is free to move. Let (xinit, yinit)

T and
(xf , yf )

T be the desired initial and final configurations in
the planning query, respectively.

Definition 1. Let (xi, yi)
T ⊂ Q be a randomly selected

configuration in Q and S = {(xi, yi)
T , i = 1, . . . , n} be

a set of n randomly generated samples in Q. We consider
S as a valid set of samples if

(xi, yi)
T ∈ Qfree, i = 1, . . . , n, (1)

||(xi, yi)
T , (xj , yj)

T || ≤ RS(n), ∀(xj , yj)
T ∈ S,

(2)
RS(n) = [L(Qfree(n− λ)/πn2]1/2, (3)

S =

[
x1 . . . xn

y1 . . . yn

]
, (4)

where ||A,B|| denotes the Euclidean distance between
two points A and B and RS(n) is the sampling radius
based on the number of samples, n. L is the Lebesgue
measure (i.e., the volume) and λ is a positive scaling
constant. More details about the sampling radius can be
found in the work of Khaksar et al. (2013).

Definition 2. A sequence of states, σ : [0, 1] →
R

n is called a collision-free path between (xi, yi)
T and

(xj , yj)
T if

σ(τ) ∈ Qfree, ∀τ ∈ [0, 1], (5)

σ(τ) = (xi, yi)
T , σ(1) = (xj , yj)

T . (6)

If σ(0) = (xi, yi)
T , σ(1) = (xj , yj)

T , and for all other
τ ∈ (0, 1), σ(τ) = 0, then there is a direct collision-free
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path, σD , between (xi, yi)
T and (xj , yj)

T .

Definition 3. Let CONn×n be a matrix defining the con-
nection graph between all (xi, yi)

T and (xj , yj)
T ∈ S.

Any two pairs of samples in S are connected if there exist
a direct collision-free direct path between them and the
length of this path is less than a given connection radius
Rc(n). Specifically,

CONn×n = [coni,j ], i, j = 1, . . . , n, (7)

coni,j =

⎧⎪⎨
⎪⎩
|σD(i, j)||, , σD(i, j) �= ∅

∧ ||σD|| ≤ Rc(n),

0, otherwise,

(8)

Rc(n) = γ
[ log(n)

n

]1/n
, (9)

γ > γ∗ = 2(1 + 1/d)
1
d

[
L
(Qfree

ζd

)]1/d
, (10)

S =

⎡
⎣con1,1 . . . con1,n

. . . coni,j . . .
conn,1 . . . conn,n

⎤
⎦ , (11)

where d is the dimension of the configuration space, ζd is
the volume of the unit ball in the d-dimensional Euclidean
space and L(Qfree) denotes the Lebesgue measure (i.e.,
the volume) of the obstacle-free space.

The concept of connection radius was taken from
the PRM∗ algorithm (Karaman and Frazzoli, 2011) to
guarantee asymptotically optimal solutions.

Definition 4. Let Σ be the set of all feasible paths
between (xinit, yinit)

T and (xf , yf )
T . The optimal path

planning problem between (xinit, yinit)
T and (xf , yf)

T can
be defined as finding a path σ∗ that minimizes a given cost
function, s : Σ → R≥0, while connecting (xinit, yinit)

T to
(xf , yf)

T through Qfree.

Definition 5. Let COLn×n(t) be a matrix that represents
the uncertainty in the planning problem as a function of
time. This uncertainty could be from unknown obstacles,
noisy sensing devices, or dynamic obstacles. We have

COLn×n(t) = [coli,j(t)], i, j = 1, . . . , n, (12)

coli,j(t) =

{
0 in time (t)→ σD(i, j) �= ∅,
1 otherwise,

(13)

COL(t) =

⎡
⎣col1,1(t) . . . col1,n(t)

. . . coli,j(t) . . .
coln,1(t) . . . coln,n(t)

⎤
⎦ . (14)

The matrix of uncertainty shows whether or not,
in a specific time t, a given configuration (xi, yi)

T is

in collision with obstacles by the value of coli,i(t). It
also shows if in time t, there is a direct path σD(i, j)
between any two configurations (xi, yi)

T and (xj , yj)
T ,

by the value of coli,j(t). This matrix will be updated
continuously during the navigation by analyzing the
readings of the robots sensory system. Any noise in
the robot’s sensing devices can be formulated using this
matrix as it gets updated frequently and imprecise sensory
readings are not able to cause the planning to fail. the
main contribution of the proposed structure to sensing
uncertainty is how the algorithm looks at the sensory
information and, more importantly, how the planner
records the information.

4. Proposed algorithm

In this section, the proposed algorithm is presented in
detail which includes the graph construction and graph
adjustment. The flow chart of the proposed algorithm is
presented in Fig. 2.

In the flow chart of Fig. 2, the “low dispersion
sampling” generates the collision/free samples inside
the configuration space while the “connection matrix”
connects the samples considering the sampling radius
introduced in the previous section. “Uncertainty update”
checks the current visible samples for collision duo to
uncertainty, and “find shortest path” uses the A algorithm
for realizing the shortest path from the start to the
goal position. “Remove in-collision nodes” updates the
graph by discarding the colliding nodes, and finally, the
“add collision-free nodes” updates the graph by adding
previously removed nodes.

Fig. 2. Flow chart of the proposed algorithm including the
Graph Construct and Graph Adjust procedures.
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Like any multi-query planner, the graph construction
phase starts by learning the configuration space through
sampling. Initially, it requires an approximation
of the space boundaries. Having any additional
information is optional and does not affect the planner
performance. According to the initial available map,
the sampling takes place and the set of all samples
S =

{
(xi, yi)

T , i = 1, . . . , n
}

is created and filled with
randomly selected collision-free configurations. At the
same time, another matrix structure GR = (xi, yi)

T is
created which stores the elements of S in a grid structure
with a predefined resolution ΔGR < RS(n). The main
difference between S and GR is the order of storing
the coordinates. While S saves the coordinates on a
first-come first-served base, GR stores the coordinates
in a 2D structure based on their corresponding grid cell.
Considering a sample (xi, yi)

T in S, the corresponding
position of (xi, yi)

T in GR, (α, β) can be calculated as
follows:

α = 
xi/ΔGR�, β = 
yi/ΔGR� (15)

where 
α� means the smallest positive integer, which is
greater than or equal to α. Having a grid resolution
smaller than the sampling radius RS(n) guarantees that
any given cell in the grid matrix includes at most
one sample. Using this simple structure makes it
computationally cheap to search the visible area around
the robot and find the neighbor nodes without searching
the whole graph. In the current position of the robot, the
surrounding grid cells are considered as visible if the cell
center is within the sensing range. This strategy provides
enough visible grid cells without being pessimistic or
optimistic as presented in Fig. 3.

After generating the samples and storing them in
GR, the graph will be constructed based on the values
in CON matrix and an initial solution will be generated
using a graph search algorithm such as A∗. Now the robot
is ready to move towards the final position. Algorithm 1

(a) (b) (c)

Fig. 3. Different strategies for recognizing a grid cell as visi-
ble: a pessimistic strategy that accepts a cell if the entire
cell is within the sensing range (a), an optimistic strat-
egy that accepts a cell if it is partially visible (b), and the
proposed strategy that recognizes a cell if the center of
the cell is visible (c). Unrecognized cells are shown in
white.

Algorithm 1. Graph Construct.

Require: S ← {(xi, yi)
T }, GR← {(αi, βi)

T }
Require: CON ← {coni,j}, i, j = 1, . . . , n

1: while reach = false and fail = false do
2: time = time+Δt
3: Scan: ρ(θ, time)
4: Update: COLn×n

5: Graph Adjust
6: Graph Shortest Path← [dist, path]
7: Sparse{(CON), (xc, yc)

T , (xf , yf )
T }

8: if ||(xc, yc)
T , (xf , yf )

T || ≤ ε then
9: reach← true

10: end if
11: if path = ∅ then
12: fail← true,
13: return
14: end if
15: Move← d = V ×Δt
16: end while

presents the Graph Construct phase.
In the next phase of the algorithm, as the robot starts

to move, the surrounding area is scanned and visible
grid cells, as shown in Fig. 3(c), are marked as free or
occupied based on the readings of the sensor(s), ρ(θ,Δt).
By knowing the occupied grid cells within the vision
range, it is possible to update the uncertainty matrix COL.
For every grid cell within the range, the values of the
corresponding nodes in the uncertainty matrix will be
updated. If a node was defined as free before but now,
the corresponding grid cell to that node is not reachable,
i.e., occupied, the status of that node will be updated to
occupied, coli,i(t) = 1. On the other hand, if a node
was marked as occupied before and now it is reachable,
its corresponding uncertainty value is updated to 0. The
next step is to adjust the graph based on the new values
in the matrix of uncertainty as presented in Algorithm 2.
An instance of the graph adjustment is shown in Fig. 4,
where the graph adjustment is shown in two different
positions and some vertices are removed or added back
to the roadmap.

Now, the graph connection matrix, CON will be
updated based on the changes in COL. First, for all nodes
within the vision range, if there is a direct path σD(c, i)
between the robot’s current position (xc, yc)

T and that
node (xi, yi)

T in the current CON , i.e., coni,c �= 0, and
the corresponding value of coli,i(t) has been updated to
1, then all the connections of that node will be removed
in the graph connection matrix, CON(i, :) = 0, and
CON(:, i) = 0. The opposite procedure applies to the
nodes that have been disconnected before and now have
a collision-free connection to the current node. Next, for
all other nodes within the sensing range and connected to
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(a) (b)

(c) (d)

Fig. 4. Graph Adjust procedure: the original graph before
sensing the obstacle (a), the obstacles are detected and
in-collision edges are determined (b), the adjusted graph
after removing the in-collision edges (c), and after the
robot moves to another position with a different sensing
outcome, all of the previously removed edges are added
back to the graph if the corresponding uncertainty values
are not zero (d). The black point is the robot’s current
position and the light gray circle represents the robot’s
vision range.

(a) (b) (c)

Fig. 5. Local minimum trap where the robot moves between
two local optima forever: the robot is at point A and
the current shortest path goes through point B (a), when
the robot reaches point B, the graph is adjusted and now
the path goes through point C (b), as the robot reaches
point C, some parts of the nodes that are out of the vision
range are added back to the graph which forces the robot
to move back to point B (c). This loop continues forever.

the neighbors of the current node, in-collision connections
are removed and collision-free connections are added to
adapt the graph to the uncertainty of the space. The graph
adjustment to two immediate layers of neighbors enables
the robot to detect collision without getting close to the
obstacles. This process can be extended for more than two

Algorithm 2. Graph Adjust.

Require: COLn×n(t) = [coli,j(t)], i, j = 1, . . . , n
1: for all (xi, yi)

T ∈ visible range do
2: if coli,c = 1 and coni,c �= 0 then

CON(i, :) = 0, CON(:, i) = 0
3: end if
4: if coli,c = 0 and coni,c �= 0 then
5: for all (xi, yi)

T ∈ visible range do
6: if coli,j(t) = 0 CON(i, j) =

0, CON(j, i) = 0 then
7: end if
8: end for
9: end if

10: if coli,c = 0 and coni,c = 0 then
11: CON(i, c) = ||(xi, yi)

T , (xc, yc)
T ||

12: CON(c, i) = ||(xi, yi)
T , (xc, yc)

T ||
13: for all (xi, yi)

T ∈ visible range do
14: if coli,j(t) = 0 and coni,j �= 0 then
15: CON(i, j) = ||(xi, yi)

T , (xj , yj)
T ||

16: CON(j, i) = ||(xi, yi)
T , (xj , yj)

T ||
17: end if
18: end for
19: end if
20: end for

layers; however, it worsens the computational cost of the
process since more nodes need to be checked for collision.

Applying the Graph Adjust procedure has another
benefit that improves the planning efficiency. According
to lines 13–17 in Algorithm 2, if there are some nodes that
have been removed from the graph in previous iterations
of the algorithm and now the planner can conclude that
they are not in collision, they will be added back to
the graph. This situation happens when an obstacle is
blocking a collision-free node or there is a dynamic object
in the environment. This is more effective than adding
back the edges to the graph as soon as they are out of the
vision range. Adding back the removed edges as soon as
they are not visible any more may cause a local minimum
in which the robot keeps moving between two positions
forever. Figure 5 shows an example of the situation
with local minima. Limiting the graph adaptation to
the visible region avoids local minima. If the graph is
adjusted, the shortest path from the robots current position
to the final configuration will be calculated and the robot
continues moving but along the latest generated path.
This procedure repeats with a constant frequencyΔt [sec.]
until the robot reaches the obstacle or concludes that no
solution exists. As presented in Fig. 3, the proposed
planner is capable of disconnecting the in-collision nodes
and reconnecting free nodes.
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5. Results and a discussion

To evaluate the performance of the algorithm and compare
it with similar planners, the algorithm was simulated and
further implemented on a real mobile robot. The results
are described in the following sections.

5.1. Post-processing. To make the results of the
proposed algorithm suitable for a real robot, few
modifications are required. Since one of the major
drawbacks of sampling-based algorithms are their widely
regarded suboptimal paths, we applied a postprocessing
procedure (Luna et al., 2013) to the results of the
algorithm which can remove the redundant nodes from the
final solution. From a given path, a shorter path could be
obtained by checking whether nonadjacent configurations
(xi, yi)

T and (xj , yj)
T along the path can be connected

with the local planner. The points (xi, yi)
T and (xj , yj)

T

could be chosen randomly. Another alternative would
be a greedy approach. Starting from (xinit, yinit)

T , the
planner tries to connect directly to the final configuration
(xf , yf)

T . If this step fails, it starts from the configuration
after (xinit, yinit)

T and tries again. This process repeats
until a connection can be made to (xf , yf )

T , say, from
the point (x1, y1)

T . Now the planner sets the target
to (x1, y1)

T and begins again, trying to connect from
(xinit, yinit)

T to (x1, y1)
T , and repeats the procedure. This

procedure can also be applied in the opposite direction.
Figure 6 illustrates this greedy approach in the forward
direction to shorten a path in a two-dimensional Euclidean
space.

Next, a path smoothing technique was applied to
refine the resulting paths by finding the inner circle
of each three consecutive nodes on the postprocessed
path as presented in Fig. 7. The proposed path
smoothing technique works by receiving a set of three
consecutive configurations in the final postprocessed path
and calculating the center coordinate of the inner circle
accordingly,

xc =
li × xi + li+1 × xi+1 + li+2 × xi+2

li + li+1 + li+2
, (16)

yc =
li × yi + li+1 × yi+1 + li+2 × yi+2

li + li+1 + li+2
, (17)

r2 =
(li + li+1)× (li+1 + li+2)× (li + li+2)

li + li+1 + li+2
, (18)

where (xi, yi)
T , (xi+1, yi+1)

T , and (xi+2, yi+2)
T are the

vertices of the triangle and li, li+1, and li+2 are the
lengths of the opposite sides, respectively. The overall
performance of the postprocessing method is illustrated in
Fig. 8 where the original solution, the shortened path, and
the final smoothed path are shown for a given planning
problem.

5.2. Simulation studies. The planner was simulated
in Matlab R2018b to perform in four different planning
scenarios as presented in Fig. 9. All simulations were run
on a desktop with a 3.40-GHz Intel Core i7 processor with
32 GB of memory.

In the first problem as in Fig. 8(a), the environment
includes four simple obstacles in a symmetric

(a) (b)

Fig. 6. Implementation of the greedy forward post-processing
approach for removing the redundant segments of the
generated solution. The original (a) and shortened (b)
paths after the postprocessing.

(a) (b)

(c) (d)

Fig. 7. Performance of the proposed path smoothing method:
the original path (a), finding the inner circle (b), remov-
ing the sharp edge (c), and the final smooth path (d).

Fig. 8. Performance of the postprocessing and path smoothing
procedures for a given path. The original, shortened,
and smoothed paths are represented by thin, thick, and
dashed lines, respectively.
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Table 1. Performance comparison based on the simulation results with 500 nodes in all initial graphs.

Parameter Scene GCS RR-GP BU-RRT∗ FIRM CC-RRT∗ RRBT-LAS Proposed

1 72.1 [4.8] 71.2 [5.6] 64.1 [3.5] 68.1 [6.1] 65.5 [4.4] 72.1 [6.2] 64.1 [2.5]
PL [std] 2 80.5 [6.4] 81.9 [7.2] 84.4 [8.1] 80.5 [9.2] 84.8 [7.6] 81.9 [7.9] 79.4 [3.2]
(meter) 3 93.2 [9.7] 95.6 [8.5] 91.7 [8.6] 93.3 [7.9] 94.6 [9.3] 96.8 [8.1] 91.5 [4.6]

4 94.3 [9.1] 95.6 [9.9] 87.9 [8.1] 99.8 [9.1] 90.1 [8.7] 96.6 [9.2] 85.1 [5.3]
1 18.6 [2.6] 12.4 [4.0] 11.7 [2.6] 15.9 [4.1] 12.4 [1.8] 12.0 [5.7] 4.7 [0.1]

RT [std] 2 5.8 [1.3] 5.2 [2.7] 4.9 [1.9] 6.2 [1.3] 4.2 [1.8] 6.0 [2.6] 2.1 [0.2]
(sec) 3 5.2 [0.3] 4.3 [0.4] 4.1 [0.6] 3.5 [0.3] 4.1 [0.7] 4.0 [0.2] 2.3 [0.1]

4 12.9 [0.6] 15.9 [0.8] 10.2 [0.3] 10.0 [0.3] 12.6 [0.5] 11.2 [0.9] 8.6 [0.2]
1 1 2 2 1 0 2 0

Failure 2 6 5 5 4 2 3 0
(%) 3 1 1 0 0 0 0 0

4 7 8 8 5 6 5 2
1 0.3 [0.1] 0.4 [0.1] 0.3 [0.1] 0.3 [0.1] 0.3 [0.1] 0.4 [0.1] 0.4 [0.1]

DM [std] 2 0.4 [0.1] 0.4 [0.1] 0.3 [0.1] 0.4 [0.2] 0.4 [0.1] 0.4 [0.1] 0.5 [0.1]
(meter) 3 0.1 [0.0] 0.2 [0.0] 0.2 [0.1] 0.2 [0.0] 0.2 [0.1] 0.1 [0.0] 0.3 [0.0]

4 0.3 [0.0] 0.3 [0.1] 0.4 [0.1] 0.2 [0.0] 0.3 [0.0] 0.4 [0.1] 0.6 [0.1]

arrangement, and the robot has to pass through the
narrow passage formed by the two middle obstacles.
The second case is an environment filled with a random
number of polygonal obstacles in random positions. The
next problem is a maze where the robot needs to find its
way avoiding the walls of the maze. The last problem is
an office-like environment where the robot has to move
from one room in one corner of the office to another
room.

(a) (b)

(c) (d)

Fig. 9. Four planning problems used in the simulation studies
with an instance of the generated results in each prob-
lem: a plain environment with four simple obstacles (a),
an environment with 15% random obstacle occupancy
(b), a maze where the robot should follow the walls to
reach the goal (c), and an office-like environment where
the robot has to move from one room to another in order
to reach the final position (d). All environments have the
same dimension (50 m×25 m), and the solutions were
created with similar graph sizes (n = 500).

In all four cases, the robot does not possess any
information about the obstacles’ arrangements, and the
only available information are the coordinates of the
planning query pair of the start and goal configurations.
The results displayed in Fig. 9 are from a similar graph
with size of 500 nodes. 500 nodes were used since this
worked for all algorithms in all test problems.

The performance of the planner is compared with six
similar algorithms as presented in Table 1 and Fig. 10,
for dealing with different types of planning uncertainty
as described in Section 2 including GCS (Kurniawati
et al., 2012), RR-GP (Aoude et al., 2013), BU-RRT*
(Luders and How, 2014), FIRM (Agha-Mohammadi,
2014), CC-RRT* (Liu and Ang, 2014) and RRBT-LAS
(Pilania and Gupta, 2017). The results are described
based on path length (PL) in meters, which is the total
distance travelled by the robot, the processing time (RT )
in seconds, which is the total planning time minus the
navigation time, the failure rate (FL), which is the
percentage of failures, and the minimum shortest distance
to the obstacles (DM ) in meters, which is calculated using

DM = min
ω
{min

θ
(||(xc, yc)

T , obs.||)}, (19)

ω =
planning time

Δt
, (20)

where θ is the sensing angle of the robot, and Δt is the
time between two consecutive scans of the environment
by the robot.

Table 1 shows the results when all planners used a
set of 500 samples per run, the Euclidean distance for
heuristics and the local planner, and uniform sampling
with the sampling radius with the scaling factor of λ =
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n1/2. Instead of using a fixed final configuration, each
execution was rated as successful if the distance of the
robot to the goal was less than a fixed distance Df = 0.1
[m]. For tree-based planners, the fixed step size was
replaced by the sampling radius step size = Rs(n).
During simulations, each actual obstacle was expanded
by the size equal to the radius of the robot which for a
TurtleBot, Rrobot � 0.18 [m]. This will allow having
a point robot instead of the actual robot and performing
the simulation in the configuration space rather than
the actual work space. The same expansion strategy
was applied on the boundaries of the environments.
Since no postprocessing was applied to the simulation
results, the scanning of the planner was designed to
take place each time the robot reaches a new node,
which gives an equal number of scans and segments of
the final path. The results indicate that the proposed
planner outperforms each of the studied algorithms in all
performance variables. The planner maintains a stable
path length and a stable distance to the obstacles, while
it significantly reduces the processing time and the failure
rate. As stated before, the processing time includes
the initial sampling and roadmap construction time plus
the computational cost related to the graph adjustment
procedure. The failure rates also indicate the applicability
of the planner to planning problems with uncertainty. The
planner failed to guide the robot only in the last test
environment and only two times out of 100 executions
due to the elevated level of inaccuracy and noise in the
given map. The comparative results obtained from the
simulation studies are presented in Fig. 10 where the
performances are averaged over all four test problems.

(a) (b)

(c) (d)

Fig. 10. Comparative simulation results based on the average
performances in all four test problems. The results are
averaged over 100 executions with 500 nodes in the ini-
tial graph for the path length (a), the run time (b), the
failure rate (c), and the minimum distance to the obsta-
cles (d).

The proposed planner yields higher safety, while the
solution cost, runtime, and the failure rate are superior to
other planners.

5.3. Experimental setup. In order to implement the
proposed method on a real robotic platform, the result
of the algorithm after postprocessing and path smoothing
should be transferred into the robot in the form of control
commands. The final solution consists of three vectors,
including FS, which stores the nodes on the final path,
CU containing the curvature information when the robot
is moving on a curve and finally D, which contains the
travelled distance between any two consecutive notes of
the final solution. These three vectors will be used later
to compute the control vector of the robot, control, which
includes segmental linear (vi) and angular (ωi) velocity
of the robot as well as the during of each segment (ti),

FS =

[
x1 . . . xm

y1 . . . ym

]
, m = 2× ||path|| − 2, (21)

CU =

[
r1 . . . rm
α1 . . . αm

]
, α ∈ [−1, 0,+1], (22)

D =

[
d1 . . . dm
θ1 . . . θm

]
, (23)

control =

⎡
⎣v1 . . . vm−1

ω1 . . . ωm−1

t1 . . . tm−1

⎤
⎦ , (24)

ω = αi
vi
ri
, (25)

ti =
αiθi
ωi

+ (1− αi)
di
vi
, (26)

where αi shows the turning direction. The robot goes
straight if αi = 0, turns right if αi = +1 and turns left
if αi = −1. At the beginning, the robot is given an
initial control vector based on the solution found by the
original road map. As the robot starts moving, it scans the
surrounding area with a fixed predefined frequency Δt =
2 [sec] which means if the robot is moving along a straight
line with a linear speed of vi, then it scans the surrounding
area every d = 2× vi. The sensing range of the robot was
limited to one meter. These values have been fund to work
well with the planner during experimental trials.

5.4. Experimental results. The performance of the
algorithm was tested on a Turtlebot2 with an Asus Xtion
Pro Live camera, an A1 RPLIDAR 360o laser range finder,
and an onboard computer with a 2.60-GHz Intel Core i5
processor with 8 GB of memory. The details of the used
robotic platform are presented in Table 2. The robot is
used for navigation in four different planning problems as
shown in Fig. 11 and Table 3.
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(a) (b)

(c) (d)

Fig. 11. Instances of the performance of the algorithm on a
TurtleBot in four different experiment scenarios includ-
ing simple (a), scattered (b), maze (c), and office envi-
ronments (d). All presented results were obtained with
n = 500 nodes in the final graph.

First, the robot is navigating in a 2D plain
environment where two unknown static obstacles appear
after the initial planning. Next, the same environment is
filled with seven simple polygonal obstacles in a scattered
arrangement. In the third environment, the robot is
moving in a simple maze problem where there is a local
minimum and avoiding it is an additional objective for
the planner. Finally, the robot is moving in an office
with a highly noisy map and in the presence of unknown
static and dynamic obstacles. During the experiments,
the linear speed of the robot was set to be 0.25 [m/sec]
and the angular velocity was calculated accordingly. The
definitions of PL, RT Fail and DM are the same as
before. Figure 12 illustrates the average performance of
the planner based on the number of nodes in the final
graph.

Even though the initial placement of the robot is
important for successful implementation, the planner
could adopt to minor errors in the initial pose of the
robot. Since the postprocessing and smoothing steps
were implemented on the planner, one extra rule had to
be added to the navigation. Whenever the environment

Table 2. Experimental setup configuration.
Component Specifications

Robot TurtleBot3
Size 354 mm × 354 mm × 420mm
Linear Velocity vmax = 0.65 [m/sec]
Angular Velocity ωmax = 180 [deg/sec]
Sensor 360 Laser Distance Sensor LDS-01
SBC Intel Core i3-4010U
Power Source Lithium-Ion, 14.8V, 4400 mAh (4S2P)

(a) (b)

(c) (d)

Fig. 12. Corresponding performance of the proposed planner
with different numbers of nodes in the final graph in
terms of the path length (a), the run time (b), the failure
rate (c), and the minimum distance to the obstacles (d).

scan resulting in graph adaptation and the solution path
is updated, an additional smoothing step takes place to
prevent the robot from completely stopping and changing
its orientation. Instead, the robot moves on a curve in
order to follow the new path. Furthermore, Fig. 12 shows
the changes in the performance of the planner relative to
the initial graph size in the experimental studies. Having
a too small graph leads to failure but as soon as few
samples are added, the planner performs effectively. It
also shows that after certain values, the size of the
graph becomes ineffective on the success or failure of
the planner (Fig. 12(c)). As the number of nodes in the
initial graph increases, the length of the final solution
and the minimum distance to the obstacles decrease since
the solution keeps improving towards the optimal solution
which is shorter and is very close to the boundary of the
obstacles. As usual, the bigger the graph, the longer it
takes to solve the problem.

The algorithm also produces stable results with
low standard deviations mainly because of the sampling
radius and the graph adjustment behavior as presented
with the standard deviation (std) values in Table 3.
Since the samples are evenly distributed in the space,
the resulting solution and the corresponding processing
time and distance to the obstacles change with lower
variances. On the other hand, the graph adopts to
the recent changes without adding new samples to the
graph, and this procedure keeps the appearance and
behavior of the original graph. It should also be
mentioned that the proposed planner successfully handles
sensing uncertainty by frequently updating the uncertainty
matrix and accounting for unforeseen, missed or wrongly
detected obstacles during the actual execution of the
motion planning.
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Table 3. Performance comparison based on the experimental studies for different graph sizes (n).
n = 50 100 500 1000

Experiment 1

PL [m] (std) 12.13 (0.18) 12.08 (0.13) 11.62 (0.12) 11.94 (0.07)
RT [sec] (std) 0.27 (0.08) 0.38 (0.08) 0.48 (0.11) 0.63 (0.14)
Fail [%] 5 0 0 0
DM [m] (std) 0.23 (0.13) 0.24 (0.12v 0.21 (0.08) 0.20 (0.09)

Experiment 2

PL [m]/std 21.68 (0.36) 20.69 (0.25) 18.17 (0.19) 16.28 (0.11)
RT [sec]/std 0.89 (0.09) 1.56 (0.66) 1.73 (0.79) 2.18 (0.81)
Fail [%] 6 1 0 0
DM [m]/std 0.21 (0.08) 0.23 (0.11) 0.21 (0.08) 0.19 (0.07)

Experiment 3

PL [m]/std 35.11 (1.85) 34.30 (2.15) 31.95 (1.54) 28.72 (0.79)
RT [sec]/std 0.84 (0.12) 1.70 (0.35) 2.93 (0.68) 4.18 (0.65)
Fail [%] 9 4 0 0
DM [m]/std 0.22 (0.14) 0.21 (0.18) 0.20 (0.15) 0.21 (0.11)

Experiment 4

PL [m] (std) 49.67 (2.85) 48.40 (2.97) 46.18 (2.65) 43.19 (2.98)
RT [sec] (std) 1.34 (0.08) 2.78 (0.08) 4.25 (0.17] 7.25 (0.15)
Fail [%] 53 17 5 3
DM [m] (std) 0.38 (0.10) 0.37 (0.13) 0.38 (0.07) 0.35 (0.11)

6. Conclusion

A multiquery planner was proposed to deal with the
uncertainty challenge in robotic motion planning. The
proposed algorithm employs two new mechanisms to deal
with unknown changes. First, a sample classification
component takes place parallel to the sampling procedure,
which stores the generated samples in a grid-based matrix.
This makes it computationally free to look for samples
in any specific region of the configuration space during
planning. Since it requires only a simple calculation, it
does not affect the overall processing time of the planner.
Next, a graph adjustment procedure takes place during the
execution of the initial solution to adapt to the problem
uncertainty. This mechanism detects the visible grid cells
and the corresponding nodes by means of a moderate
cell recognition strategy that prevents too optimistic or
too pessimistic cell recognition. Then the selected nodes
are checked for collision and if they are in collision, the
corresponding edges from the current node to those will
be removed. Furthermore, a second layer of nodes around
the current node will be checked and in-collision edges are
disconnected to reduce the response time of the planner to
uncertainty in the planning.

Several simulation and experimental tests have been
conducted which show the efficient performance of the
proposed planner in producing semi-optimal solutions
with low computational cost and insignificant failure rates
even when working with a small graph. The presented
work could be further investigated for more complex

problems even when the boundaries of the environment
are not known to limit the sampling domain.
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Luna, R., Şucan, I.A., Moll, M. and Kavraki, L.E. (2013).
Anytime solution optimization for sampling-based motion
planning, IEEE International Conference on Robotics
and Automation, ICRA 2013, Karlsruhe, Germany,
pp. 5068–5074, DOI: 10.1109/ICRA.2013.6631301.

Otte, M. and Frazzoli, E. (2016). RRTX: Asymptotically optimal
single-query sampling-based motion planning with quick
replanning, International Journal of Robotics Research
35(7): 797–822, DOI: 10.1177/0278364915594679.

Pilania, V. and Gupta, K. (2017). Localization aware sampling
and connection strategies for incremental motion planning
under uncertainty, Autonomous Robots 41(1): 111–132,
DOI: 10.1007/s10514-015-9536-y.

Pilania, V. and Gupta, K. (2018). Mobile manipulator planning
under uncertainty in unknown environments under
uncertainty, International Journal of Robotics Research
37(2–3): 316–339, DOI: 10.1177/0278364918754677.

Przybylski, M. and Putz, B. (2017). D* Extra Lite: A dynamic
A* with searchtree cutting and frontiergap repairing, In-
ternational Journal of Applied Mathematics and Computer
Science 27(2): 273–290, DOI: 10.1515/amcs-2017-0020.

Shan, T. and Englot, B. (2017). Belief roadmap search:
Advances in optimal and efficient planning under
uncertainty, IEEE International Conference on Intelligent
Robots and Systems, IROS 2017, Vancouver, BC, Canada,
pp. 5318–5325, DOI: 10.1109/IROS.2017.8206425.

Summers, T. (2018). Distributionally robust sampling-based
motion planning under uncertainty, IEEE International
Conference on Intelligent Robots and Systems, IROS
2017, Vancouver, BC, Canada, pp. 6518–6523, DOI:
10.1109/IROS.2018.8593893.

Sun, W., Patil, S. and Alterovitz, R. (2015). High-frequency
replanning under uncertainty using parallel
sampling-based motion planning, IEEE Trans-
actions on Robotics 31(1): 104–116, DOI:
10.1109/TRO.2014.2380273.

Vasquez-Gomez, J.I., Sucar, L.E. and Murrieta-Cid, R.
(2017). View/state planning for three-dimensional object
reconstruction under uncertainty, Autonomous Robots
41(1): 89–109, DOI: 10.1007/s10514-015-9531-3.

Weria Khaksar is a postdoctoral research fellow at the Department of
Informatics, the University of Oslo, Norway. His main research interests
include robotics, AI, and machine learning with a special focus on mo-
tion planning and probabilistic robotics. He received a PhD in industrial
engineering from University Putra Malaysia in 2013.

Md Zia Uddin obtained his PhD degree in biomedical engineering in
2011. He is a post doctoral research fellow in the Robotics and Intelli-
gent Systems (ROBIN) research group at the Department of Informat-
ics, University of Oslo, Norway. His research interests include sensors,
robotics, artificial intelligence, deep learning, computer vision, and pat-
tern recognition. He has authored more than 90 research publications,
including those in international journals, conferences and book chapters.
He is a senior member of the IEEE.

Jim Torresen is a professor of computer science at the University of
Oslo, Norway. His research interests include nature-inspired computing,
adaptive systems, reconfigurable hardware, and robotics and their use
in complex realworld applications. He received a PhD in computer sci-
ence from the Norwegian University of Science and Technology. He is a
senior member of the IEEE.

Received: 27 November 2018
Revised: 22 May 2019
Accepted: 18 July 2019


	Introduction
	Related work
	Problem formulation
	Proposed algorithm
	Results and a discussion
	Post-processing
	Simulation studies
	Experimental setup
	Experimental results

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


