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This paper presents a methodology and design of a model-free-based proportional-integral reduced-order observer for a
class of nondifferentially flat systems. The problem is tackled from a differential algebra point of view, that is, the state
observer for nondifferentially flat systems is based on algebraic differential polynomials of the output. The observation
problem is treated together with that of a synchronization between a chaotic system and the designed observer. Some
basic notions of differential algebra and concepts related to chaotic synchronization are introduced. The PI observer de-
sign methodology is given and it is proven that the estimation error is uniformly ultimately bounded. To exemplify the
effectiveness of the PI observer, some cases and their respective numerical simulation results are presented.
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1. Introduction

Most of control techniques assume a complete knowledge
of parameters and state variables of the system at any
time. Nevertheless, in practice this is not always possible
due to physical limitations. Therefore, it is necessary
to design observers for such variables. In the literature,
the differential geometry approach has been widely used
with excellent results (Gauthier et al., 1992). However,
it is well known that differential algebra offers certain
advantages with respect to the differential geometric
approach (cf. Martı́nez-Guerra et al., 2015). For this
reason, some authors have employed algebraic techniques
to attack the observation problem (Martı́nez-Guerra et al.,
2007).

Differential algebra theory was developed by Ritt
(1950) in order to generalize classical algebra and
to make it possible to study solutions in the context
of ordinary and partial algebraic differential equations.
Solutions described by nonlinear differential polynomials
are particularly interesting. In general, differential algebra
is said to be the field of mathematics that studies algebraic
structures equipped with a derivation operation. Some
algebraic structures are differential rings and differential

∗Corresponding author

fields.

In control theory, a fundamental concept for the
observation problem is the observability property of a
dynamical system. There exists an equivalent definition
for the observability property in differential algebra
terms. It is known as the algebraic observability
condition (AOC) and was formulated in order to solve the
state estimation problem of nonlinear dynamical systems
through differential polynomials of the known variables
(Kolchin, 1973; Martı́nez-Guerra and Cruz-Ancona,
2017). An unknown variable is said to be algebraically
observable if it satisfies a differential polynomial of the
known variables. A system satisfies the AOC if all
unknown variables are algebraically observable.

On the other hand, differential flatness of a
dynamical systems has huge relevance for control
theory. This property has been widely used as an
indicator of controllability presented by a dynamical
system (Sira-Ramirez, 2002). Most of differential
flatness applications are related to the trajectory planning
for unmanned vehicles (Gensior et al., 2006; Pledgie
et al., 2002). Roughly speaking, a dynamical system
is said to be differentially flat if all its variables
satisfy an algebraic differential equation of the output.
Any system which does not satisfy it is said to be
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nondifferentially flat. Nondifferentially flat systems have
received little attention. A few studies for this kind of
systems are related to synchronization of chaotic systems
(Martı́nez-Guerra et al., 2015).

One can note a relationship between the AOC
and nondifferential flatness of a system. That is, any
system that is nondifferentially flat, does not satisfy
the AOC. However, in this paper it will be shown that
there is a possibility to estimate unknown variables of a
nondifferentially flat system from an auxiliary variable
which, when selected in the right form, is algebraically
observable. As far as we know, in the literature there
is no methodology to solve the estimation problem
of a nondifferentially flat system. Even more, the
model-free-based PI reduced-order observer proposed
here is a more natural way of setting up an observer since
we usually do not have any exact copy of the system.

The methodology stated here requires, among other
things, that the observed system have bounded dynamics.
Therefore, it is proposed for chaotic systems. A
problem related to chaotic systems, which is of great
interest in nonlinear theory, is the synchronization
problem. Basically, synchronization occurs when, given
two coupled chaotic systems, their state trajectories are
equal. Thus, the synchronization problem is analogous
to the observation problem treated here. In this case, the
chaotic system and the PI observer are unidirectionally
coupled, where the output plays the role of the coupling
signal and the synchronization phenomenon occurs when
the estimation error is zero.

The methodology stated here is as follows. Given
a nondifferentially flat dynamical system, an auxiliary
variable is proposed. This variable is selected such that
is a function of unknown variables and is algebraically
observable. Given this auxiliary variable, the original
system is expressed as an extended system, known
as immersion (Claude et al., 1983). Thus, the
original problem becomes an estimation problem of
the auxiliary variable. Depending on the selection
made, variables of interest are estimated directly or
indirectly through the estimation of the auxiliary variable.
To solve the estimation problem of the auxiliary
variable, some hypotheses are needed: the auxiliary
variable is algebraically observable and its dynamics are
bounded. Besides, there exist artificial variables which
are continuously differentiable. If these hypotheses are
fulfilled, it is possible to design a PI observer. In order
to exemplify the methodology and show its effectiveness,
some examples and their respective numerical results are
given.

This paper is an extended version of our previous
work (Martinez-Guerra and Flores-Flores, 2018), and
additional material is included.

2. Basic definitions

The main ingredient for the PI observer design is the
algebraic observability property. In order to properly
introduce this concept and some others of interest, such as
a nondifferential flat system, in the following some basic
notions and definitions are introduced.

Definition 1. Let K and L be differential fields.
An element x ∈ L is called differentially algebraic
over K if satisfies a polynomial differential equation
P (x, ẋ, . . . , x(α)) = 0 with coefficients in K . In what
follows, the field K = R is considered.

Example 1. Consider the linear system

ẋ1 = x2 + u,

ẋ2 = x1,

y = x1

such that

P (x1) = y − x1 = 0,

P (x2) = ẏ − x2 − u = 0

with coefficients u, y, ẏ ∈ K〈u, y〉 = K ∪ {u, y} that
represents a differential field and a set {u, y} that contains
u, y and their finite differential quantities (K ⊂ K〈u, y〉),
that are coefficients of the differential polynomials with
indeterminate x.

Then consider the bilinear system

ẋ1 = ux2,

ẋ2 = ux1,

y = x1

such that

P (x1) = y − x1 = 0,

P (x2) = ẏ − ux2 = 0

with coefficients u, y, ẏ ∈ K〈u, y〉.
Finally, consider the nonlinear system

ẋ1 = ux2x1,

ẋ2 = ux1,

y = x1

such that

P (x1) = y − x1 = 0,

P (x2) = ẏ − ux2y = 0

with coefficients u, y, ẏ ∈ K〈u, y〉.

One can note that in all the three cases x ∈
R

2 satisfies a polynomial differential equation with
coefficients in K〈u, y〉,K = R. Therefore, it is said to
be differentially algebraic. �
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Definition 2. A state variable xi of a dynamical system
is said to be algebraically observable if it satisfies a
differential polynomial with respect to known variables,
i.e., P (xi) = 0 with coefficients in K〈u, y〉 (K =
R). If all state variables of the dynamical system are
algebraically observable, we say that the system satisfies
an algebraic observability condition (AOC).

Definition 3. A dynamical system is said to be nondiffer-
entially flat if any variable is not differentially algebraic.
That is, the polynomial differential equation P (xi, ui) =
0 with coefficients in K〈y〉 (K = R) is not satisfied.
Otherwise is said to be differentially flat.

Example 2. Consider the following Lorenz system:

ẋ1 = σ(x2 − x1),

ẋ2 = ρx1 − x2 − x1x3,

ẋ3 = x1x2 − βx3,

y = x1.

It follows that

P (x1) = y − x1 = 0,

P (x2) = σ(x2 − y)− ẏ = 0,

P (x3) = y(x3 − ρ+ 1) + ẏ

(
1 +

1

σ

)
+

ÿ

σ
= 0.

We can note that P (x3) is not rational since y �= 0
and its derivatives are coefficients in K〈y〉. Therefore, the
system is said to be differentially flat.

On the other hand, consider y = x2, such that

P (x1, ẋ1) = ẋ1 − σ(y − x1) = 0,

P (x2) = y − x2 = 0,

P (x1, x3, ẋ3) = ẋ3 + βx3 − yx1 = 0.

In this case the system is nondifferentially flat, since
Definition 3 is not satisfied. �
Remark 1. It is possible to note a relation between
the nondifferential flatness of a system and the AOC. For
a nondifferentially flat system, the AOC is not fulfilled.
For this reason it is not possible to build an observer for
all variables of interest. This motivates the methodology
proposed in this paper.

Definition 4. A chaotic system

ẋ = f(x)

is a deterministic nonlinear system that exhibits an
apparently random behavior that satisfies the following
properties:

(i) f(x) is bounded. That is, for the map f : X →
X , where X is a closed invariant set, there exist an
attracting set D ⊂ X such that ∀t ≥ 0 and ∀x ∈ X ,
f(x) ⊂ D.

(ii) Sensitive dependence on the initial condition. That
is, the map f : X → X is said to have sensitive
dependence on initial conditions if there exists a δ >
0 such that for any x ∈ X and any neighborhood
Nε(x) = (x − ε, x + ε) of x, there exist y ∈ Nε(x)
and an integer k > 0 such that |fk(x) − fk(y)| >
δ > 0.

It is worth mentioning that chaotic behavior depends
on system parameters as well. For further details, see the
work of Layek (2015).

Definition 5. Consider two chaotic systems coupled
unidirectionally, given by

Σm :=

{
ẋm = Fm(xm, um),
ym = hm(xm)

and

Σs :=

{
ẋs = Fs(xs, us(xs, ym)),
ys = hs(xs).

Systems Σm and Σs are synchronized if their state
trajectories follow a common path.

Define the synchronization error as

esynch(t) = xm − xs.

Hence systems Σm and Σs are synchronized if

lim
t→∞ ||esynch(t)|| = 0.

In our case, the chaotic system and the observer are
coupled unidirectionally by the output (Neijmeijer and
Mareels, 1997).

3. Problem statement

In the following, consider the following dynamical system
whose full state is not available:

ẋ = F (x, u),

y = h(x), (1)

where x = [x1, x2, . . . , xn]
T is the state vector of the

system, F is an analytic function, h is a polynomial.
Variables u = [u1, u2, . . . , um]

T and y ∈ R are the input
and output, respectively.

Define an auxiliary variable η as a function of the
unknown variables of the system. Thus, system (1) can
be expressed as an immersion (see Claude et al., 1983).
Therefore, we have

ẋ(t) = f(x, η, u),

η̇(x) = Ω(x),

y(t) = h(x). (2)
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Remark 2. One can note that for (2), the problem is to
estimate η. Depending on the selection of η, variables
of interest are determined directly or indirectly. If η
is defined as η = [η1, . . . , ημ], a bank of observers is
proposed, that is, an observer is designed for each variable
of interest.

3.1. Observer synthesis. Assume that the following
hypotheses are fulfilled:

H1. η is algebraically observable,

H2. Ω(x) is bounded, i.e., ||Ω(x)|| ≤ N , where 0 < N <
∞,

H3. γ1, γ2 ∈ C1 real valued functions.

Then the following model-free-based
proportional-integral reduced-order observer is proposed
for the unknown dynamics of system (2), in this case η̇:

˙̂η = kp(η − η̂) + η̂1,

˙̂η1 = ki(η − η̂), (3)

where η̂ is the estimate of η and η̂1 is the integral part of
the observer. Define the estimation error as

e = η − η̂. (4)

Theorem 1. Assume that H1–H3 are satisfied. Then sys-
tem (3) is a model-free-based PI reduced-order observer
for unknown dynamics of system (2) with a uniformly ulti-
mately bounded (UUB) convergence error.

Proof. System (3) is equivalent to

˙̂η = kpe1 + kie2, (5)

where e1 = η − η̂ and ė2 = e1. Set

E =

(
e1
e2

)
. (6)

The derivative of E is

Ė =

(
η̇ − ˙̂η
e1

)

=

(
Ω− kpe1 − kie2

e1

)

= −
(

kp ki
−1 0

)(
e1
e2

)
+

(
Ω
0

)
, (7)

or, in matrix form,

Ė = −KE + Ω̄. (8)

Consider the following candidate Lyapunov
function:

V (E) = ETPE (9)

with P = I . The derivative of V (E) along the trajectories
of (8) is given by

V̇ (E) = ĖTE + ET Ė

= 2ET Ė

= 2ET
(−KE + Ω̄

)
= −2ETKE + 2ET Ω̄. (10)

From the Rayleigh inequality we know that

λmin(K)||E||2 ≤ ||E||2K ≤ λmax(K)||E||2 (11)

such that the first term of V̇ (E) is bounded by

−2ETKE ≤ −2λmin(K)||E||2 (12)

On the other hand, since H2 is satisfied, Ω̄ is
bounded. We have

||2ET Ω̄|| ≤ 2N ||E||K = 2N
√
λmax(K)||E||. (13)

Hence we conclude that V̇ (E) satisfies

V̇ (E) ≤ −2λmin(K)||E||2+2N
√
λmax(K)||E||. (14)

By applying the uniform ultimate boundedness (see
Corless and Leitmann,1981), it directly follows that
E(t) is bounded uniformly for any initial condition
E(0), and E(t) remains in the compact set Bδ =
{E : ||E|| ≤ δ, δ > 0}, where

δ =

√
λmax(K)

λmin(K)

(
2N

√
λmax(K)

λmin(K)

)
> 0. (15)

�
From (15) one can find a criterion to select the gains

kp and ki. We have

λmax(K)

λmin(K)

4N2λmax(K)

λ2
min(K)

=
4N2λ2

max(K)

λ3
min(K)

> 0. (16)

To satisfy this last inequality, we must have
λmin(K) > 0 and thus λmax(K) > 0.

Sometimes, depending on the selection of η, output
derivatives might appear in the algebraic differential
polynomial. As output derivatives are not available, it is
necessary to use artificial variables in order to avoid them.

Lemma 1. If the auxiliary variable ηi, i ∈ {1, . . . , μ}, of
system (2) satisfies H1 and can be written as

ηi = aiẏ + bi(u, y), (17)

where ai is constant and bi(u, y) is a bounded function,
then there exist functions γ1i and γ2i ∈ C1 such that the
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model-free-based PI reduced-order observer (3) can be
expressed as

γ̇1i = −kpiγ1i + γ2i + kpi [bi(u, y)− kpiaiy]

+ kiiaiy,

γ1i(0) = γ1i0 ,

γ̇2i = −kiiγ1i + kii [bi(u, y)− kpiaiy] , (18)

γ2i(0) = γ2i0 ,

η̂i = γ1i + kpiaiy,

η̂1i = γ2i + kiiaiy.

Proof. Consider the model-free-based PI reduced-order
observer

˙̂ηi = kpi(ηi − η̂i) + η̂1i ,

˙̂η1i = kii(ηi − η̂i), (19)

where η̂1i represents the integral part of the PI observer.
Substituting (17) in (19), we have

˙̂ηi = kpi(aiẏ + bi(u, y)− η̂i) + η̂1i ,

˙̂η1i = kii(aiẏ + bi(u, y)− η̂i). (20)

We define the artificial variables γ1i and γ2i ∈ C1 as

γ1i = η̂i − kpiaiy,

γ2i = η̂1i − kiiaiy. (21)

Their derivatives are

γ̇1i =
˙̂ηi − kpiaiẏ,

γ̇2i =
˙̂η1i − kiiaiẏ. (22)

From (20)–(22) we have

γ̇1i = −kpiγ1i + γ2i + kpi [bi(u, y)− kpiaiy]

+ kiiaiy,

γ1i(0) = γ1i0

γ̇2i = −kiiγ1i + kii [bi(u, y)− kpiaiy] ,

γ2i(0) = γ2i0 . (23)

�

Remark 3. One can note that the proposed observer is of
model-free, this is, an exact copy of the dynamical system
is not required. The observer needs only the output of the
system for its design.

3.2. PI observer implementation. The model-free PI
observer methodology is illustrated with the following
cases.

Example 3. Consider the linear system

ẋ1 = u,

ẋ2 = u+ f,

y = x2, (24)

where u is known and f is an unknown variable. The
system (24) is nondifferentially flat due to

P (ẋ1) = ẋ1 − u = 0,

P (x2) = x2 − y = 0,

P (f) = u+ f − ẏ = 0. (25)

The linear system can be expressed in the following
form (immersion):

ẋ1 = u,

ẋ2 = u+ f,

ḟ = Ω(x1, x2),

y = x2. (26)

The PI observer is expressed as the following set of
differential equations:

˙̂
f = kp(f − f̂) + f̂1,

˙̂
f1 = ki(f − f̂), (27)

where f̂ is the estimate of f and f̂1 represents the integral
part of the PI observer. One can check that f satisfies H1,
such that f = ẏ − u. Suppose that ḟ is bounded (H2).
Thus, substituting this in (27), we have

˙̂
f = kp(ẏ − u− f̂) + f̂1,

˙̂
f1 = ki(ẏ − u− f̂). (28)

As variable ẏ is not auxiliary, we introduce some
artificial variables that satisfy H3 in order to deal with this.
Consider the following auxiliary variables:

γ1 = f̂ − kpy,

γ2 = f̂1 − kiy. (29)

Deriving the auxiliary variables and replacing f̂ and
f̂1, we have

γ̇1 = −kp(u+ γ1 + kpy) + γ2 + kiy,

γ̇2 = −kiu− ki(γ1 + kpy). (30)

That is, the dynamics of interest are estimated from
the auxiliary variables. Therefore, the model-free-based
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PI observer is given by

γ̇1 = −kpγ1 + γ2 − kp(u+ kpy) + kiy,

γ1(0) = γ10 ,

γ̇2 = −kiγ1 − ki(u+ kpy),

γ2(0) = γ20 ,

f̂ = γ1 + kpy,

f̂1 = γ2 + kiy. (31)

�
Example 4. The Chua circuit was invented by Leon
O. Chua. It is a simple electronic circuit that exhibits
chaotic behaviour. The Chua circuit, also known as the
Chua system, is basically it formed by two capacitors and
an inductor. This system is described by three nonlinear
differential equations and it was the first chaotic system
proved to exist to exist by analytical and experimental
means.

Consider the following Chua system:

ẋ1 = a(x2 − x1 −m0x1 − x3
1m1),

ẋ2 = x1 − x2 + x3,

ẋ3 = −bx2,

y = x2, (32)

where a, b,m0 and m1 are constant parameters. Variables
x1 and x2 correspond to the voltages across the capacitors
and x3 is the electric current in the inductor.

One can find that system (32) is nondifferentially flat
due to

P (x1, x3) = x1 − ẏ − y + x3 = 0,

P (x2) = x2 − y = 0,

P (ẋ3) = ẋ3 + by = 0. (33)

We define the variable

η = x1 + x3 = ẏ + y (34)

which satisfies H1. Therefore, system (32) is expressed in
the following form (immersion):

ẋ1 = a(x2 − x1 −m0x1 − x3
1m1),

ẋ2 = −x2 + η,

ẋ3 = −bx2,

η̇ = Ω(x1, x3),

y = x2. (35)

Since the Chua system dynamics are bounded,
Ω(x1, x3) satisfies H2. The following PI observer is
proposed in order to estimate η:

˙̂η = kp(ẏ + y − η̂) + η̂1,

˙̂η1 = ki(ẏ + y − η̂). (36)

To remove the dependence on ẏ, consider the
following auxiliary variables:

γ1 = η̂ − kpy,

γ2 = η̂1 − kiy. (37)

From the derivatives of the auxiliary artificial variables we
have

γ̇1 = kp(y − γ1 − kpy) + γ2 + kiy,

γ̇2 = ki(y − γ1 − kpy). (38)

Therefore, the model-free-based PI observer is given by

γ̇1 = −kpγ1 + γ2 + kp(y − kpy) + kiy,

γ1(0) = γ10 ,

γ̇2 = −kiγ1 + ki(y − kpy),

γ2(0) = γ20 ,

η̂ = γ1 + kpy,

η̂1 = γ2 + kiy. (39)

Now, we can use η̂ to estimate the variables of
interest x1 and x3 as follows. From expression (34) we
can consider the following relationships:

η̂ = x̂1 + x3, (40)

ẏ = η̂ − y. (41)

Deriving (40), we have

˙̂η = ˙̂x1 + ẋ3 = ˙̂x1 − by. (42)

On the other hand,

η̂ = γ1 + kpy (43)

such that

˙̂η = γ̇1 + kpẏ. (44)

From (42) and (44) we get

˙̂x1 = γ̇1 + kpẏ + by. (45)

Substituting γ̇1 from (39) and (41) in (45), we have

˙̂x1 =− kpγ1 + γ2 + kp(y − kpy)

+ kiy + kp(η̂ − y) + by. (46)

Then substitute (43) in (46) and simplify

˙̂x1 = γ2 + kiy + by

= η̂1 + by. (47)

Equation (47) can be solved with the Euler method,

x̂1(t+ 1) = x̂1(t) + h[η̂1(t) + by(t)]

x̂1(0) = x̂10 (48)



PI observer design for a class of nondifferentially flat systems 661

Finally, from (40) we can consider

x̂3 = η̂ − x̂1. (49)

Therefore, all variables of interest are estimated.
One can note that in this case synchronization and

estimation occur simultaneously. �
In what follows, consider a nonlinear system that

describes the movement and the behaviour of the ship
mass in a test of vertically landing over the surface of a
planet with constant gravitational acceleration g and no
atmospheric resistance.

Example 5. Consider the system described by

ẋ1 = x2,

ẋ2 = g − σαu

x3
,

ẋ3 = −σu− f,

y = x1, (50)

where x1, x2 and x3 are the vertical position, the descent
velocity and mass of the ship, respectively. Here u is a
control signal, σ is the relative velocity of ejection and
α is a positive constant such that σα is the maximal
displacement of the motor breaking. Variable f is an
uncertainty that needs to be observed.

One can note that this system is nondifferentially flat
due to

P (x1) = x1 − y = 0,

P (x2) = x2 − ẏ = 0,

P (x3, ẋ3) = (ÿ − g)x3 − (ẋ3 + f)α = 0. (51)

System (50) can be written in the following form
(immersion):

ẋ1 = x2,

ẋ2 = g − σαu

x3
,

ẋ3 = −σu− f,

ḟ = Ω(x1, x2, x3).

y = x1 (52)

Suppose that Ω is bounded, such that H2 is satisfied.
The unknown variable f satisfies H1 due to

(f + σu)(ÿ − g)2 + σαuy(3) = 0 (53)

In order to estimate f , consider the next PI observer

˙̂
f = kpf (f − f̂) + f̂1,

˙̂
f1 = kif (f − f̂). (54)

Substituting (53), we have

˙̂
f = −kpf

(
σu +

σαuy(3)

(ÿ − g)2
+ f̂

)
+ f̂1,

˙̂
f1 = −kif

(
σu+

σαuy(3)

(ÿ − g)2
+ f̂

)
. (55)

Variables y(3) and ÿ are not available. Nevertheless,
we can approximate them as y(3) ≈ ¨̂x2 and ÿ = ˙̂x2.
Therefore, we have

˙̂
f = −kpf

(
σu+

σαu¨̂x2

( ˙̂x2 − g)2
+ f̂

)
+ f̂1,

˙̂
f1 = −kif

(
σu +

σαu¨̂x2

( ˙̂x2 − g)2
+ f̂

)
, (56)

Let γ1f and γ2f be auxiliary variables satisfying H3,

γ1f = f̂ − kpf
σαu
˙̂x2 − g

,

γ2f = f̂1 − kif
σαu
˙̂x2 − g

. (57)

The corresponding derivatives are

γ̇1f =
˙̂
f + kpf ¨̂x2

σαu

( ˙̂x2 − g)2
,

γ̇2f =
˙̂
f1 + kif ¨̂x2

σαu

( ˙̂x2 − g)2
(58)

Substituting (56) and (57) in (58), we have that the
PI observer for f is

γ̇1f = −kpf

(
σu+ γ1f + kpf

σαu
˙̂x2 − g

)
+ γ2f

+ kif
σαu
˙̂x2 − g

,

γ1f (0) = γ1f0,

γ̇2f = −kif

(
σu + γ1f + kpf

σαu
˙̂x2 − g

)
,

γ2f (0) = γ2f0,

f̂ = γ1f + kpf
σαu
˙̂x2 − g

,

f̂1 = γ2f + kif
σαu
˙̂x2 − g

. (59)

As (59) involves the variable ˙̂x2, we have to to
estimate it.

Consider the following PI observer for x2:

˙̂x2 = kpx2(ẏ − x̂2) + x̂21 ,

˙̂x21 = kix2(ẏ − x̂2), (60)
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where x2 = ẏ. Consider the following auxiliary variables

γ1x2 = x̂2 − kpx2y,

γ2x2 = x̂21 − kix2y. (61)

The derivatives of the auxiliary variables are

γ̇1x2 = ˙̂x2 − kpx2 ẏ,

γ̇2x2 = ˙̂x21 − kix2 ẏ. (62)

Hence, substituting (60) and (61) in (62) we have

γ̇1x2 = −kpx2 (γ1x2 + kpx2y) + γ2x2 + kix2y,

γ1x2(0) = γ1x20
,

γ̇2x2 = −kix2 (γ1x2 + kpx2y) ,

γ2x2(0) = γ2x20
,

x̂2 = γ1x2 + kpx2y,

x̂21 = γ2x2 + kix2y. (63)

One can note that ẏ ≈ x̂2. Therefore, from (62) we
have

˙̂x2 =− kpx2 (γ1x2 + kpx2y)

+ γ2x2 + kix2y + kpx2 x̂2. (64)

Thus, ˙̂x2 can be estimated and therefore the variable
of interest f is obtained. �

Remark 4. Expressions (59), (63) and (64) constitute a
bank of observers for system (52).

4. Numerical results

In this section are presented numerical results of
Examples 3–5.

For Example 3, we consider the initial conditions
γ1(0) = 0 and γ2(0) = 0. The known variable is u =
2 sin(πt) and the unknown variable is f = 3 sin(πt). The
model-free-based PI observer gains were set to ki = 15
and kp = 8.

For Example 4, we consider the Chua system
parameters a = 9.5, b = 100/7, m0 = −8/7 and
m1 = 4/63, which ensure a chaotic behavior, with initial
conditions x0 = (0.2, 0.2, 0.2). We consider γ1(0) = 0,
γ2(0) = 0 and x̂1(0) = 0. The model-free PI observer
gains are set to ki = 150 and kp = 25.

Finally, for Example 5, we consider g = 1.63 m/s2,
σ = 50 kg/s, α = 200 m/s and the initial conditions x0 =
(−700, 0, 1500). For the model-free PI observer consider
γ1x2(0) = 0, γ2x2(0) = 0, γ1f (0) and γ2f (0) = 0, with
kpf = 49, kif = 700, kpx2 = 6 and kix2 = 25. The
control signal is u = 1 and the uncertain variable is f =
exp(6 sin(t))

Numerical simulations show that the
model-free-based PI observer is capable of performing
a correct estimation of the unknown state variables for

Fig. 1. Case 1: estimation of f made by the PI observer.

Fig. 2. Case 1: estimation error of the PI observer.

Fig. 3. Case 2: synchronization between the Chua system (solid
line) and the PI observer (dotted line).
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Fig. 4. Case 2: estimation of the state variable x1 made by the
PI observer.

Fig. 5. Case 2: estimation of the state variable x3 made by the
PI observer.

all cases. In the case of the Chua system, it is possible
to observe the synchronization phenomenon when the
Chua state trajectory and the estimates of the PI observer
along with the output, are plotted in the phase space
of the system. Hence, it is proven that the estimation
problem and the synchronization problem are solved
simultaneously. On the other hand, Example 5 illustrates
a situation where a bank of observers is obtained in order
to estimate the variable of interest f .

5. Conclusion

It has been shown that the estimation problem for
nondifferentially flat systems can be solved through
differential polynomials of the output and with the right
selection of auxiliary variables. As far as we know,
the estimation problem for nondifferentially flat systems
has not been solved in the literature yet. The observer
proposed here is a free-model observer, which is a more
natural way of proposing an observer since we usually

Fig. 6. Case 2: estimation error of the PI observer.

Fig. 7. Case 3: estimation of the state variable x2 made by the
PI observer.

do not have a copy of the system. Depending on the
case, the variables of interest are estimated directly or
indirectly from an auxiliary variable. This might lead
to situations where the estimation problem requires an
observer for each variable of interest (bank of observers).
The type of convergence obtained is UUB (uniform
ultimate boundedness). Lemma 1 shows the structure
of the model-free-based PI observer for a relationship of
the form (17). For a chaotic system, the estimation and
the synchronization phenomenon between the system and
the PI observer occur simultaneously. Finally, even this
approach has been focused on nondifferential systems. It
is worth to mentioning that the proposed methodology
works for a larger class of systems.
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