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aKrasovskii Institute of Mathematics and Mechanics
Ural Branch of the Russian Academy of Sciences

16 S. Kovalevskaya St., Yekaterinburg, 620990 Russia
e-mail: maksimov@imm.uran.ru

bGraduate School of Economics and Management
Ural Federal University

19 Mira St., Yekaterinburg, 620002 Russia

cInstitute of Mathematical Sciences
Technical University of Berlin

Str. des 17. Juni 136, D-10623, Berlin, Germany
e-mail: troeltzsch@math.tu-berlin.de

Dynamical reconstruction of unknown time-varying controls from inexact measurements of the state function is investigated
for a semilinear parabolic equation with memory. This system includes as particular cases the Schlögl model and the
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1. Introduction

In this paper, we study the problem of reconstructing an
unknown control in a parabolic equation with memory
that is motivated by the following FitzHugh–Nagumo
system:

∂

∂t
y(x, t)−Δy(x, t) +R(y(x, t)) + ζz(x, t)

= u(x, t) in Ω× (0, T ),

∂ny(x, t) = 0 on Γ× (0, T ),

y(x, 0) = y0(x) in Ω,

∂

∂t
z(x, t) + β z(x, t)− γ y(x, t) + κ

= 0 in Ω× (0, T ),

z(x, 0) = z0(x) in Ω. (1)

Here, Ω ⊂ R
n, n ∈ {1, 2, 3}, is a bounded Lipschitz

domain (hence open) with boundary Γ, T > 0 is a fixed
∗Corresponding author

terminal time, ζ, β, γ, κ are real numbers, y0 : Ω → R,
z0 : Ω → R are given initial data. The so-called reaction
term R is the cubic polynomial

R(y) = k (y − y1)(y − y2)(y − y3)

with given real numbers k > 0 and y1 ≤ y2 ≤ y3. Notice
that a real constant cR exists such that

R′(y) ≥ cR, ∀y ∈ R. (2)

By ∂n we denote the outward normal derivative on Γ. In
this system, the function y is often called the activator,
while z is the inhibitor.

In a nutshell, the problem of control reconstruction
can explained as follows: The system (1) is known
and the activator y can be observed by measurements,
while the control u is not accessible for observation,
hence unknown. The aim is to reconstruct u from the
measurements that are overlaid by certain errors, hence
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inexact. In this way, we consider a (dynamical) inverse
problem.

The well-posedness of the system (1) and the
regularity of its solutions was studied, e.g., by Jackson
(1990). In the context of optimal control, the
differentiability of the control-to-state mapping u �→
(y, z) had to be additionally investigated. Here, we refer
to Buchholz et al. (2013) for the Schlögl model (this is
the equation for y with a = 0) and to the detailed study
by Casas et al. (2013) for the full system (1). Following
their approach, the inhibitor z is eliminated by Duhamel’s
formula

z(x, t) = e−βtz0(x) +

∫ t

0

e−β(t−s)(γ y(x, s)− κ) ds.

Moreover, the activator y is substituted by y(x, t) =
eλtv(x, t) with sufficiently large λ. This transformation
leads to an equation with monotone nonlinearity.
Eventually, renaming v again by y, we arrive at the
following system with memory that we consider in our
paper:

∂

∂t
y(x, t)−Δy(x, t) +Rλ(t, y(x, t)) + (Kλy(·))(x, t)

= u(x, t) + f(x, t) in QT ,

∂ny(x, t) = 0 in ΣT ,

y(x, 0) = y0(x) in Ω,
(3)

where QT = Ω × (0, T ), ΣT = Γ × (0, T ), the function
Rλ is defined by

Rλ(t, y) = e−λtR(eλty) + λy,

Kλ : Lr(QT ) → Lr(QT ) ∀r ∈ [1,∞] is the linear
Volterra-type integral operator

(Kλy(·))(x, t) =
t∫

0

a e−(β+λ)(t−s)y(x, s) ds

with the real constant a = ζγ, and f ∈ L∞(0, T ;H1(Ω))
is a given function that covers in particular the term related
to the constant κ.

Let us now formulate the problem of control
reconstruction in greater detail: in (3), the function
(control) u(·) is unknown. At discrete times τi = i T/m,
i ∈ [0 : m], the state y(τi) of Eqn. (3) is measured.
Let δ = T/m denote the mesh size underlying the time
grid T = {τi}mi=0. The results of these measurements are
functions ηhi ∈ Lp(Ω), i ∈ [1 : m], p > 5/2, satisfying
the estimate

|y(τi)− ηhi |Lp(Ω) ≤ h. (4)

Here, h ∈ (0, 1) stands for the level of informational
noise.

Our main problem is the following: Find a method
of approximate reconstruction of the unknown control u
through the discrete measurements ηhi , i ∈ [1 : m].
Below, we assume that

ηh0 ∈ H1(Ω), |y0 − ηh0 |H1(Ω) ≤ h, (5)

where H1(Ω) is the Sobolev space of L2(Ω)-functions
that have all first-order weak derivatives in L2(Ω).

This problem belongs to the class of inverse
problems of controlled dynamical systems. In a more
general context, it is also included in the theory of
ill-posed problems. Modifications of such a posteriori
formulations were investigated by Tikhonov and Arsenin
(1977), Lavrentiev et al. (1980), Banks and Kunisch
(1989), Kabanikhin (2011), Barbu (1990), Shitao and
Triggiani (2013), Lasiecka et al. (1999) or Avdonin
and Bell (2015). The solution presented here follows
the theory of stable dynamical inversion developed by
Kryazhimskii and Osipov (1995), Maksimov (2002; 2009;
2016), Maksimov and Pandolfi (2002) or Maksimov
and Mordukhovich (2017), who used a combination of
methods from the theory of ill-posed problems (Tikhonov
and Arsenin, 1977) and from the theory of positional
control (Krasovskii and Subbotin, 1988). The essence of
our approach is that an algorithm for input reconstruction
is represented as a control algorithm for some artificial
dynamical system (a model). Given current observations
of the system, the control input in the model is chosen in
such a way that its realization in time is obtained by some
regularization principle that guarantees the stability of the
numerical method.

In Fig. 1, a scheme of the solution method is shown
that is stable with respect to informational noise and
computational errors. According to this scheme, a given
system S (in our case, Eqn. (3)) is accompanied by some
artificial computer-modeled closed-loop control system
(the model M). This model, working on the time
interval [0, T ], has an unknown control function uh(·)
and an output function wh(·). The model M should
be constructed. The process of synchronous feedback
control of the systems S and M is running on the interval
[0, T ]. It is split into m − 1 identical steps. In the
i-th step that is carried out on the time interval Ji =
[τi, τi+1), the following actions are performed. First, at
time τi, according to some rule U , the control uh(t) =
uh(τi, η

h
i , w

h(τi)), t ∈ Ji is calculated. Then (till the
time τi+1), the control uh(t), τi ≤ t < τi+1, is fed to the
system M. The values uh(τi) and wh(τi+1) are results of
the algorithm at the i-th step. Thus, all the complexity of
solving the problem is reduced to the appropriate choice
of a model M, computation of wh and the construction of
a function uh(·).

In essence, the procedure of dynamical
reconstruction is equivalent to solving the following
two main problems:
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Fig. 1. Scheme of the control reconstruction method.

1. Define an appropriate model M.

2. Set up a suitable rule U for forming a control uh(·)
in the model.

For some classes of partial differential equations,
such a scheme was realized by Maksimov (2002; 2009;
2016), Maksimov and Pandolfi (2002) or Mordukhovich
(2008). The main novelty of our paper is the investigation
of the parabolic equation with memory (3). Moreover, we
consider two cases.

In the first case, we assume that the controls are
restricted by u(t) ∈ Uad for a.a. t ∈ [0, T ], where Uad ⊂
H1(Ω) is a given convex, bounded and closed set. In this
way, we assume some a-priori knowledge on the location
of the unknown controls u(·). In the second case, we do
not assume such a-priori restrictions. Then the control
u(·) on the right-hand side of Eqn. (3) is an unknown
element of Lp(QT ) for all p ≤ 6. The performance of
control reconstruction is estimated by two criteria.

The first one is the deviation of the solution
of Eqn. (3) corresponding to some real control u(·)
from the solution of an auxiliary equation (the model)
corresponding to a constructed approximation uh(·) to
this control. The value of this deviation will be denoted
by the symbol εh(·).

The second one is the mean-square norm of the
difference uh(·) − u(·). The choice of these two criteria
is explained by the fact that, if they are small (under
corresponding assumptions on the correlation between
the parameters of the numerical method), then the
approximation uh(·) is close to the control u(·) in the
mean-square norm (see Theorem 2 below).

2. Analysis of the state equation

Throughout the paper, we use the following notation. By
〈·, ·〉, we denote the duality between the Sobolev spaces
H1(Ω) and (H1(Ω))∗, ∇y(x, t) is the gradient of the
function x �→ y(x, t). Moreover, we introduce the Hilbert
spaces H = L2(Ω) and V = H1(Ω) equipped with
the scalar products (·, ·) and (·, ·)V , respectively. The
associated norms are denoted by | · |H and | · |V . Moreover,
| · | denotes the module of real numbers and | · |Rn stands
for the norm in the Euclidean space R

n. Next, we need
the Sobolev space

W (0, T ) = {y ∈ L2(0, T ;V ) : ẏ ∈ L2(0, T ;V
∗)}.

It is well known that W (0, T ) is continuously embedded
in C([0, T ], H).

A function y(·) = y(·; 0, y0, u(·)) ∈ W (0, T ) ∩
L∞(QT ) is said to be a (weak) solution of Eqn. (3) if
the equation

T∫

0

〈ẏ(t), ϕ(t)〉dt +
T∫

0

∫

Ω

{∇y(x, t) · ∇ϕ(x, t)

+Rλ(t, y(x, t))ϕ(x, t)} dxdt

+

T∫

0

∫

Ω

(Kλy(·))(x, t)ϕ(x, t) dxdt

=

T∫

0

∫

Ω

{u(x, t) + f(x, t)}ϕ(x, t) dxdt

holds for all ϕ ∈ W (0, T ) and the initial condition y(0) =
y0 is fulfilled.

Notice that, for all times t ∈ [0, T ], the state y(t)
of Eqn. (3) at the time t is a well-defined element of H .
It follows from the work of Casas et al. (2013, Thm. 2),
that under Assumption 1 presented below, for any y0 ∈
L∞(Ω), u ∈ Lp(QT ), and p > 5/2 (in particular, for
u ∈ L∞(0, T ;V )), there exists a unique (weak) solution
of Eqn. (3).

An equation similar to (3) was introduced
by Buchholz et al. (2013). The Schlögl and
FitzHugh–Nagumo equations can be reduced to this
type. The FitzHugh–Nagumo equations (1) play an
important role in mathematical biology and medicine.
For instance, they serve as a very simplified mathematical
model for some electrical processes in the human
heart and can be used to understand associated control
strategies. Moreover, they describe the transport of
impulses in human nerve cells. The Schlögl model that is
obtained for ζ = 0 is well known in physical chemistry.
Invoking (2), we are able to transform our equation to one
with monotone nonlinearity; see the substitution y = eλv
below.

Note that control problems for such equations were
discussed, for example, by Casas et al. (2013), Buchholz
et al. (2013), Ryll et al. (2016), Breiten and Kunisch
(2014), or Maksimov (2017); see also the bibliography
therein. Moreover, we mention Gugat and Tröltzsch
(2015), who studied the problem of boundary feedback
stabilization. A study of this paper reveals that an
extension of our method to boundary control should be
possible.

Let the following assumption be fulfilled, which after
the substitution y = eλtv leads to an equation of a
monotone type.

Assumption 1. The parameter λ in Eqn. (3) satisfies the
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inequality

max{3|cR|, 3|a|T 1/2, 0.5− β} ≤ λ,

with cR defined in (2).

The following result was proved by Casas et al.
(2013). Here, Ω denotes the closure of the set Ω.

Lemma 1. Let Assumption 1 be fulfilled. If λ is sufficiently
large, u(·) ∈ Lp(QT ), p > 5/2, and y0 ∈ L∞(Ω), then
there exists a unique solution y(·) ∈ W (0, T )∩L∞(QT )∩
C(Ω × (0, T ]) of Eqn. (3). If even y0 ∈ C(Ω), then the
inclusion y(·) ∈ C(Ω× [0, T ]) takes place.

Lemma 2. Let the assumptions of Lemma 1 be fulfilled
and y0 ∈ V . Then, ẏ(·) ∈ L2(0, T ;H). Moreover, for
each M > 0, there exists a constant c0 = c0(M) > 0
such that the inequality

vrai sup
t∈(0,T )

|y(t)|2H +

T∫

0

|ẏ(t)|2H dt

≤ C0

⎧⎨
⎩|y0|2V +

T∫

0

(
|u(t)|2H + |f(t)|2H

)
dt+ 1

⎫⎬
⎭ (6)

holds for all u(·) ∈ Lp(QT ) with |u(·)|Lp(QT ) ≤ M .

Proof. Thanks to Lemma 1, the function y(·) belongs
to L∞(QT ). Therefore, the function (x, t)�→F1(x, t) =
e−λtR(eλty(x, t)) + λy(x, t) is an element of the space
L∞(QT ). Also, from the results of Casas et al. (2013), the
function (x, t)�→F2(x, t) = (Kλy(·))(x, t) is an element
of L∞(QT ). Consequently, the function y(·) is a solution
of the parabolic equation

∂

∂t
y(x, t)−Δy(x, t) = F (x, t) inQT ,

∂ny(x, t) = 0 inΣT ,

y(x, 0) = y0(x) inΩ,

where the function (x, t)�→F (x, t) = −F1(x, t) −
F2(x, t) + u(x, t) + f(x, t) belongs to L2(0, T ;H).

The validity of the inclusion ẏ(·) ∈ L2(0, T ;H) ∼=
L2(QT ) follows from Theorem 5 of Evans (1998, Chapter
7.1). This theorem is formulated for homogeneous
Dirichlet boundary conditions, but an inspection of the
proof shows that it can be extended to homogeneous
Neumann boundary conditions. Theorem 5 of Evans
(1998, Chapter 7.1) also ensures that

y ∈ L2(0, T ;H
2(Ω)) ∩ L∞(0, T ;V ),

and that the estimate

vrai sup
t∈(0,T )

|y(t)|V + |y(·)|L2(0,T ;H2(Ω)) + |ẏ(·)|L2(QT )

≤ c1(M)(|F (·)|L2(QT ) + |y0|V )
holds true with some constant c1(M) > 0.

The integral operator Kλ : L2(QT ) → L2(QT ) is
linear and continuous. Estimating now

|Rλ(·, y(·))|L∞(QT ) ≤ c2(M),

|Kλy(·)|L2(QT ) ≤ c3(M)

for all |u(·)|Lp(QT ) ≤ M , we get

|F (·)|L2(QT ) ≤ |u(·)|L2(QT ) + |f(·)|L2(QT ) + c4(M).

Now we obtain the result of the lemma in the form

vrai sup
t∈(0,T )

|y(t)|V + |y(·)|L2(0,T ;H2(Ω)) + |ẏ(·)|L2(QT )

≤ c5(M){|y0|V + |u(·)|L2(QT ) + |f(·)|L2(QT ) + 1}.
The final statement of the lemma follows by squaring the
above inequality and employing Young’s inequality. �

3. Reconstruction of restricted controls

Let us now turn over to the reconstruction problem. First,
we consider the case of restricted controls.

Definition 1. The symbol ηh
T (y(·)) denotes the set of all

functions ηh(·) ∈ Lp(QT ), p > 5/2, which is associated
to a uniform partition T of [0, T ], such that

ηh(t) = ηhi ∈ Lp(Ω) for a.a. t ∈ [τi, τi+1),

i ∈ [0 : m − 1]. Moreover, the values ηhi are assumed to
obey the properties (4) and (5). We call such functions ηh

admissible measurements.
As model M, we introduce the parabolic equation

∂

∂t
w(x, t) −Δw(x, t) +Rλ(t, w(x, t)) + (Kλη

h(·))(x, t)

= uh(x, t) + f(x, t) inQT ,

∂nw(x, t) = 0 inΣT ,

w(x, 0) = ηh0 (x) inΩ.
(7)

Let the symbol wh(·) = w(·; 0, ηh0 , uh(·), ηh(·))
denote the solution of the differential equation (7). Note
that, for any admissible measurement ηh(·), the function
(x, t) �→ (Kλη

h(·))(x, t) is an element of the space
Lp(QT ). Therefore, as follows from results of Casas
et al. (2013), for every admissible measurements ηh(·) ∈
ηh
T (y(·)) and uh(·) ∈ Lp(QT ), there exists a unique

solution of Eqn. (7), i.e., a function wh(·) ∈ W (0, T ) ∩
L∞(QT ).

Remark 1. If ηh0 ∈ V , then ẇh(·) ∈ L2(0, T ;H). This
fact is easily verified along the lines of Lemma 2.
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Let us now introduce the set of admissible controls
by

Uad = {u(·) ∈ L2(0, T ;V ) : u(t) ∈ Uad a.e. in[0, T ]}.

The proof of the next lemma is completely analogous to
the proof of Lemma 2.

Lemma 3. Let wh(·) be the unique weak solution of
(7) associated with given uh(·) ∈ Uad, and initial data ηh0
satisfying (5) for some h ∈ (0, 1). Then the inequality

vrai sup
t∈(0,T )

|wh(t)|2H +

T∫

0

|ẇh(t)|2H dt

≤ C1

⎧⎨
⎩|y0|2V +

T∫

0

{|uh(t)|2H + |f(t)|2H} dt+ 1

⎫⎬
⎭ (8)

holds uniformly with respect to all partitions T of the
time interval [0, T ] with mesh size δ = δ(T ) ∈ (0, 1),
controls u(·) ∈ Uad, solutions y(·) = y(·; 0, y0, u(·))
of Eqn. (3), and admissible measurements ηh(·) ∈
ηh
T (y(·)), h ∈ (0, 1). Here, C1 is a constant independent

of h, T , u(·), y(·), ηh(·), and ηh0 .

Proof. We already know from Lemma 1 that a unique
weak solution wh(·) ∈ L∞(QT ) of (7) exists (we apply
the lemma for a = 0 with an appropriate right-hand
side including Kλ(w

h)). Now we move Rλ(t, w
h) and

Kλ(w
h) to the right-hand side and define

Fh(x, t) = uh(x, t) + f(x, t)

−Rλ(t, w
h(x, t))− (Kλη

h(·))(x, t).

This function belongs to L2(QT ). Clearly, wh(·) solves
the linear parabolic equation

∂

∂t
w(x, t) −Δw(x, t) = Fh(x, t) in QT ,

∂nw(x, t) = 0 in ΣT ,

w(x, 0) = ηh0 (x) in Ω.

Invoking again Theorem 5 of Evans (1998,
Chapter 7.1), we know that

wh(·) ∈ L2(0, T ;H
2(Ω)) ∩ L∞(0, T ;V ),

ẇh(·) ∈ L2(QT ),

and

vrai sup
t∈(0,T )

(|wh(t)|V

+ |wh(·)|L2(0,T ;H2(Ω)) + |ẇh(·)|L2(QT ))

≤ c1(M)(|Fh(·)|L2(QT ) + |ηh0 |V )

holds true with some constant c1(M) > 0, where M is
the L6(Ω)-bound for all functions of the bounded set Uad.

Notice that our assumptions guarantee H1(Ω) ⊂
L6(Ω) hence Uad is bounded in some space Lp(Ω) with
p > 5/2. The integral operator Kλ : L2(QT ) →
L2(QT ) is linear and continuous. Estimating now

|Rλ(·, wh(·))|L∞(QT ) ≤ c2(M),

|Kλη
h(·)|L2(QT ) ≤ c3(M),

we find

|Fh(·)|L2(QT ) ≤ |uh(·)|L2(QT ) + |f(·)|L2(QT ) + c4(M).

Notice that, by the definition of the set of admissible
measurements and by the estimate (4), ηh is contained in a
bounded set of L2(QT ). Moreover, the estimate (5) yields

|ηh0 |V ≤ |y0|V + h ≤ |y0|V + 1.

Now it is easy to see that

vrai sup
t∈(0,T )

|wh(t)|V +|wh(·)|L2(0,T ;H2(Ω))+|ẇh(·)|L2(QT )

≤ c5(M){|uh(·)|L2(QT ) + |f(·)|L2(QT )+|y0|V + 1}

holds. The claim of the lemma follows by squaring the
above inequality and employing Young’s inequality. �

Let us fix now a family of uniform partitions Th of
the interval [0, T ] with mesh size δ(h)> 0 such that

Th = {τh,i}mh
i=0, τh,0 = 0, τh,mh

= T,

τh,i+1 = τh,i + δ(h), δ(h) ∈ (0, 1),

and a function α(h) : (0, 1) → (0, 1).

Definition 2. The rule U of forming the control uh(·) in
the model (7) is defined as a set-valued mapping Uh that
assigns to η ∈ Lp(Ω) and w ∈ H the set

Uh(η, w) =
{
uh ∈ Uad :

〈
w − η, uh

〉
+ α(h)|uh|2V

≤ inf
u∈Uad

(〈w − η, u〉+ α(h)|u|2V ) + h
}
.

(9)

Let us now describe the numerical method for
solving the problem. At the beginning, we fix values h ∈
(0, 1), α = α(h), and a uniform partition Th = {τi}mh

i=0 of
[0, T ] with diameter δ(h) > 0. The work of the algorithm
is decomposed into m− 1 identical steps.

On the half-open interval [0, τ1), we first select some
uh
0 ∈ Uh(η

h
0 , η

h
0 ). Then we define

uh(t) = uh
0 , ∀t ∈ [0, τ1). (10)
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Under the action of this control as well as of the
unknown control on the interval [0, τ1) that we denote
by u0,τ1(·), the solutions y(·) = y(·; 0, y0, u0,τ1(·)) and
wh(·) = w(·; 0, ηh0 , uh

0,τ1(·), ηh0,τ1(·)) of Eqns. (3) and (7)
on the interval [0, τ1] are realized. Notice that we cannot
compute y(·), since u0,τ1(·) is unknown. However, we
have a measurement ηh1 ∈ Lp(Ω) of y(τ1) that obeys the
estimate

|ηh1 − y(τ1)|Lp(Ω) ≤ h, (11)

where uh
0,τ1(·) is the function uh(t) defined above on the

half-open interval [0, τ1).
At the time t = τ1, we select a uh

1 that obeys the
condition

uh
1 ∈ Uh(η

h
1 , w

h(τ1)). (12)

In the interval [τ1, τ2), we fix the control uh by

uh(t) = uh
1 for t ∈ [τ1, τ2).

Let us denote by uh
τ1,τ2(·) this part of the control

function defined on [τ1, τ2). In the same way, we denote
by uh

τi,τi+1
(·) and ηhτi,τi+1

(·) the restrictions of uh(·) and
ηh(·) to [τi, τi+1), respectively. Here, the mapping Uh is
defined by the relation (9). Then, we calculate wh(·) =
w(·; τ1, wh(τ1), u

h
τ1,τ2(·), ηhτ1,τ2(·)), i.e., the solutions of

Eqn. (7) on the interval [τ1, τ2).
Let the solutions y(·) (of Eqn. (3)) and wh(·) (of

Eqn. (7)) be defined on the interval [0, τi]. At the time
t = τi, we calculate

uh
i ∈ Uh(η

h
i , w

h(τi)),

|ηhi − y(τi)|Lp(Ω) ≤ h, ηhi ∈ Lp(Ω),
(13)

and we set

uh(t) = uh
i for t ∈ [τi, τi+1).

As a result of the action of this control and of the
unknown control uτi,τi+1(·), the solutions

y(·) = y(·; τi, y(τi), uτi,τi+1(·))

and

wh(·) = w(·; τi, wh(τi), u
h
τi,τi+1

(·), ηhτi,τi+1
(·))

of Eqns. (3) and (7) on the time interval [τi, τi+1] are
obtained. The above procedure stops at the moment T .

Theorem 1. Let, for given h ∈ (0, 1), the control uh(·)
be defined by the formulas (9)–(13), and let y(·) andwh(·)
be the solutions of Eqns. (3) and (7), respectively; set
μh(·) = wh(·) − y(·). Assume that δ(h) is the diameter

of a uniform partition Th of [0, T ]. Define a function εh :
[0, T ] → [0,∞) by

εh(t) = |μh(t)|2H + 2

t∫

0

{∫

Ω

|∇μh(x, s)|2
Rn dx

+
2

3
λ |μh(s)|2H

}
ds.

Then there are constants C2 = C2(y0) and C3 = C3(y0)
not depending on h, u(·), uh(·), y(·), and wh(·), such that
the estimates

εh(t) ≤ C2(α(h) + δ(h)1/2 + h), ∀t ∈ [0, T ], (14)

T∫

0

|uh(s)|2V ds ≤
T∫

0

|u(s)|2V ds+C3(δ(h)
1/2+h)α(h)−1

(15)
are satisfied.

Proof. To prove the theorem, we estimate the variation
of the function εh(t). Define R̂λ(t, v) = e−λtR(eλtv) +
λ/3 v. Then Eqns. (3) and (7) take the following form:

∂

∂t
y(x, t)−Δy(x, t) + R̂λ(t, y(x, t))

+
2λ

3
y(x, t) + (Kλy(·))(x, t)

= u(x, t) + f(x, t) in QT ,

∂ny(x, t) = 0 in ΣT ,

y(0) = y0(x) inΩ,

(16)

and

∂

∂t
wh(x, t)−Δwh(x, t) + R̂λ(t, w

h(x, t))

+
2λ

3
wh(x, t) + (Kλη

h(·))(x, t)

= uh(x, t) + f(x, t) in QT ,

∂nw
h(x, t) = 0 in ΣT ,

wh(x, 0) = ηh0 (x) in Ω.

(17)

Subtracting (17) from (16), multiplying scalarly (in
H) the difference obtained by μh(t), and taking into
account the monotonicity of the mapping v → R̂λ(t, v)
for all sufficiently large λ, we find

ρh(t) + ((Kλ(η
h(·) − y(·)))(t), μh(t))

≤ (μh(t), uh(t)− u(t))), (18)
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where

ρh(t) =
1

2

d

dt
εh(t)

=
1

2

d

dt
|μh(t)|2H +

∫

Ω

|∇μh(x, t)|2
Rn dx

+
2λ

3
|μh(t)|2H .

Notice that, owing to Lemmas 2 and 3, the function
μ̇h(·) belongs to L2(0, T ;H). Since Lp(Ω), p > 5/2,
is continuously embedded in H , there exists a number
c∗ > 0 such that

|y|H ≤ c∗|y|Lp(Ω), ∀y ∈ Lp(Ω).

In view of this inequality, and (4), (5), for all s ∈
[τi, τi+1], i ∈ [0 : m− 1], the estimate

|y(s)− ηh(s)|2H
= |y(s)− ηhi |2H

≤
∣∣∣y(τi)− ηhi +

s∫

τi

ẏ(t) dt
∣∣∣2
H

≤ 2
{
|y(τi)− ηhi |2H +

∣∣∣
s∫

τi

ẏ(t) dt
∣∣∣2
H

}

≤ 2
{
|y(τi)− ηhi |2H + (s− τi)

s∫

τi

|ẏ(t)|2H dt
}

≤ d0(δ + h2)

(19)

is fulfilled with some constant d0 > 0. Here and below
we skip the dependence of δ and α on ε. Now, from (19),
with some other constants d1, d2, we get for all t ∈ [0, T ]

t∫

0

∣∣(Kλ(y(·) − ηh(·)))(s)
∣∣2
H

ds

≤ d1

t∫

0

τ∫

0

|y(s)− ηh(s)|2H ds dτ ≤ d2(δ + h2).

By the Cauchy–Bunyakovsky inequality and
Lemmas 2 and 3, the last inequality implies

t∫

0

∣∣(Kλ(y(·)− ηh(·)))(s), μh(s))
∣∣ ds

≤
( t∫

0

|(Kλ(y(·) − ηh(·)))(s)|2H ds
)1/2

×
( t∫

0

|μh(s)|2H ds
)1/2

≤ d3(δ
1/2 + h)

(20)

with another constant d3. By virtue of Lemmas 3 and 4,
we have |μh(t)|H ≤ const. Note that, if uh(t), u(t) ∈ V
and μh(t) ∈ H , then the duality pairing on (V )∗ × V is
equivalent to the scalar product in H :

(μh(t), uh(t)− u(t)) =
〈
μh(t), uh(t)− u(t)

〉
.

Moreover, for a.a. t ∈ [τi, τi+1] and each i ∈ [0 : m− 1],
owing to (9)–(13), we derive the inequalities

〈μh(t), uh(t)− u(t)〉+ 1

2
α
{
|uh(t)|2V − |u(t)|2V

}

= 〈μh(τi), u
h(t)− u(t)〉

+
〈 t∫

τi

μ̇h(s) ds, uh(t)− u(t)
〉

+
1

2
α
{
|uh(t)|2V − |u(t)|2V

}

≤ 〈wh(τi)− ηhi , u
h(t)− u(t)〉

+
1

2
α
{
|uh(t)|2V − |u(t)|2V

}

+ d4h+ d5

τi+1∫

τi

∣∣ẏ(s)− ẇh(s)
∣∣
V ∗ ds

≤ d4h+ d5

τi+1∫

τi

∣∣ẏ(s)− ẇh(s)
∣∣
V ∗ ds.

(21)

Notice that, owing to (4), we have

〈μh(τi), u
h(t)− u(t)〉

= 〈wh(τi)− y(τi), u
h(t)− u(t)〉

≤ 〈wh(τi)− ηhi , u
h(t)− u(t)〉+ d4h.

For the last inequality of (21), we invoked Definition 2 of
Uh. By the continuous embedding of H in V ∗, there exists
a number c∗ > 0 such that

|y|V ∗ ≤ c∗|y|H for any y ∈ H.

Since uh is bounded in L6(Ω), independently of
h, by the boundedness of Uad in H1(Ω), in view of
Lemmas 2 and 3, we get

T∫

0

∣∣ẏ(t)− ẇh(t)
∣∣
V ∗ dt ≤ d6. (22)
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In turn, from (18) and (20)–(22), we derive the inequality

t∫

0

ρh(s) ds+
α

2

t∫

0

{∣∣uh(s)
∣∣2
V
− |u(s)|2V

}
ds

≤
t∫

0

∣∣(Kλ(y(·)− ηh(·)))(s), μh(s))
∣∣ ds

+

t∫

0

(μh(s), uh(s)− u(s)) ds

+
α

2

t∫

0

{∣∣uh(s)
∣∣2
V
− |u(s)|2V

}
ds

≤ d7(δ
1/2 + h) + d8δ

T∫

0

∣∣ẏ(s)− ẇh(s)
∣∣
V ∗ ds

≤ d9(δ
1/2 + h).

(23)

The term related to d8δ is obtained as follows: We
consider the step function ϕδ : [0, T ] → R defined by

ϕδ(t) =

τi+1∫

τi

|ẏ(s)− ẇh(s)|(H1(Ω))∗ ds, t ∈ [τi, τi+1).

Then
∫ t

0

ϕδ(s) ds ≤
∫ T

0

ϕδ(s) ds

=

mh−1∑
i=0

τi+1∫

τi

ϕδ(s) ds

=

mh−1∑
i=0

δ

τi+1∫

τi

|ẏ(s)− ẇh(s)|(H1(Ω)))∗ ds

= δ

∫ T

0

|ẏ(s)− ẇh(s)|(H1(Ω))∗ ds.

This inequality is valid for all δ ∈ (0, 1), h ∈ (0, 1), and
t ∈ [0, T ]. Then, by virtue of (23) and ρh(t) = 0.5 ε̇h(t),
the relation

εh(t) = 2

t∫

0

ρh(τ) dτ + εh(0)

≤ 2d9(δ
1/2 + h)+d10α+ |y(0)− ηh0 |2H

(24)

is found. Therefore, from (23), (24), and (5), we obtain
the inequalities (14) and (15). �

Theorem 2. Let α(h) → 0, δ(h) → 0, (δ1/2(h) +
h)α−1(h) → 0 as h → 0. Then we have

lim
h→0

uh(·) = u(·) in L2(0, T ;H
1(Ω)).

Proof. We are going to show that, for any sequence
hj → 0+ as j → ∞, any family {Thj} = {τhj,i}

mhj

i=0

of uniform partitions of [0, T ], and any sequence of
admissible measurements ηhj (·) ∈ η

hj

Thj
(y(·)), we get

uhj(·) → u(·) in L2(0, T ;H
1(Ω)) as j → ∞.

Here and below, the controls uhj (·) are defined by the
rule (9) and the steps (10)–(13) of the reconstruction
method for h = hj . Assuming the contrary, we
conclude that this convergence does not happen. By
virtue of the boundedness of set {uhj(·)}∞j=1 in the
space L2(0, T ;H

1(Ω)), there exists a weakly convergent
subsequence of {uhj (·)}∞j=1, denoted for simplicity by
{uhj(·)}∞j=1 again, such that

uhj(·)⇀u0(·) in L2(0, T ;H
1(Ω)) as j → ∞, (25)

where
u0(·) �= u(·). (26)

Notice that the set Uad was assumed to be bounded; hence
the sequence {uhj(·)} is bounded in L2(0, T ;H

1(Ω)).
Let yhj(·) = whj (·) − y0(·), where whj (·) =

whj (·; 0, ηhj

0 , uhj(·), ηhj (·)) is the solution of Eqn. (7)
for h = hj and y0(·) is the solution of

∂

∂t
y0(x, t)−Δy0(x, t) + R̂λ(t, y

0(x, t))

+
2

3
λy0(x, t) + (Kλy

0(·))(x, t)

= u0(x, t) + f(x, t) in QT ,

∂ny
0(x, t) = 0 in ΣT ,

y0(x, 0) = y0(x) in Ω.

(27)

In other words, y0(·) is the state function associated
with the weak limit control u0(·). Subtracting (27) from
(7) (in (7) we set h = hj) and multiplying the obtained
difference scalarly (in H) by yhj , after integration we
conclude that

∣∣yhj (t)
∣∣2
H

+ 2

t∫

0

⎧⎨
⎩
∫

Ω

∣∣∇yhj(x, s)
∣∣2
Rn dx+

2

3
λ
∣∣yhj (s)

∣∣2
H

⎫⎬
⎭ ds

+

t∫

0

((Kλ(η
hj (·)− y0(·))(s), yhj (s)) ds

≤
t∫

0

(
yhj (s), uhj (s)− u0(s)

)
ds+ |y0 − η

hj

0 |2H . (28)
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Note that

|yhj (t)|2H ≤ 2|whj (t)− y(t)|2H + 2ν0(t),

where we have set ν0(t) = |y0(t)− y(t)|2H for brevity.
Now, (19) and (20) imply

t∫

0

(
((Kλ(η

hj (·)− y0(·))(s)), yhj (s)
)
ds

≤ c0

( t∫

0

s∫

0

ν0(τ) dτ ds
)1/2( t∫

0

|yhj (s)|2H ds
)1/2

+
( t∫

0

|Kλ(η
hj (·)− y0(·))(s)|2H ds

)1/2

×
( t∫

0

|yhj (s)|2H ds
)1/2

≤ c1

t∫

0

ν0(s) ds+

t∫

0

|yhj (s)|2H ds

+ [d2(δ(hj) + h2
j)]

1/2
( t∫

0

|yhj (s)|2H ds
)1/2

≤ νhj (t) + c4

t∫

0

ν0(s)ds+ c2(δ(hj) + h2
j),

(29)

where

νhj (t) = c3

t∫

0

|y(s)− whj (s)|2H ds.

Moreover, we mention the simple inequality

ν0(t) ≤ 2|yhj(t)|2H
+ 2|y(t)− whj (t)|2H for t ∈ (0, T ).

(30)

Next, we rewrite this inequality, use the inequality
(28) for yhj (notice that the second term in (28) is
nonnegative), and estimate the integral term with Kλ by
(29). We arrive at

1

2
ν0(t)− |y(t)− whj (t)|2H

≤ |yhj (t)|2H ≤ νhj (t) + |y0 − η
hj

0 |2H

+

t∫

0

〈
whj (s)− y(s), uhj(s)− u0(s)

〉
ds

+

t∫

0

〈
y(s)− y0(s), uhj (s)− u0(s)

〉
ds

+ c4

t∫

0

ν0(s) ds+ c2(δ(hj) + h2
j).

(31)

The first term on the right-hand side of the inequality
(31) tends to zero as j → ∞. This follows from Theorem
1 and the inclusions ηhj (·) ∈ η

hj

Tj
(y(·)); notice that

whj (t) − y(t) = μhj (t). Thanks to uhj(·) ⇀ u0(·)
(see (25)), the sequence {uhj(·) − u0(·)} is bounded.
Moreover, Theorem 1 also yields that supt∈(0,T ) |y(t) −
whj (t)|H tends to zero. Therefore, also the third term
converges to zero. The convergence to zero of the fourth
term follows again from uhj (·) ⇀ u0(·). Also, from (5)
we deduce |y0 − η

hj

0 |2H → 0 as j → ∞. In view of all
these convergence result, from (31) we obtain

ν0(t) ≤ lim
j→∞

ν
hj
∗ (t) + 2c4

t∫

0

ν0(s) ds, t ∈ [0, T ],

(32)
where

lim
j→∞

ν
hj
∗ (t) = 0 as j → ∞. (33)

Therefore, by virtue of (32), (33) and the Gronwall
lemma, we deduce that

sup
t∈T

ν0(t) = 0.

Consequently, it follows that

y0(t) = y(t), t ∈ [0, T ],

and hence
u0(·) = u(·).

We have the contradiction with (25) and (26). Thus,

uhj (·) ⇀ u(·) in L2(0, T ;H
1(Ω)) as j → ∞.

(34)
In the sequel, by | · |L2 we denote the norm

of L2(0, T ;H
1(Ω)). Since norms are weakly lower

semicontinuous, from (34) we derive

lim
j→∞

|uhj (·)|L2 ≥ |u(·)|L2 . (35)

From (15), we obtain the inequality

|uhj (·)|2L2
≤ |u(·)|2L2

+ C3(δ
1/2(hj) + hj)α

−1(hj).

Owing to the assumptions of the theorem, this
implies

lim
j→∞

|uhj (·)|L2 ≤ |u(·)|L2 , (36)



14 V. Maksimov and F. Tröltzsch

and, invoking (35) and (36),

lim
j→∞

|uhj (·)|L2 ≤ |u(·)|L2 ≤ lim
j→∞

|uhj(·)|L2 .

Therefore, we have the convergence of norms

|uhj (·)|L2 → |u(·)|L2 as j → ∞. (37)

In view of the weak convergence (34), we conclude
that

uhj (·) → u(·) in L2 as j → ∞.

The theorem is proved. �

Under some additional conditions, we are able to
derive a convergence rate of the reconstruction algorithm
(see Theorem 3 below).

In what follows, we need the lemma below.

Lemma 4. (Maksimov, 2002, p. 47) Let u(·) ∈ L∞(a, b)
and v(·) ∈ BV (a, b), −∞ < a < b < +∞, satisfy

∣∣∣
t∫

a

u(τ) dτ
∣∣∣ ≤ ε∗,

|v(t)| ≤ C, ∀ t ∈ [a, b].

Then, for all t ∈ [a, b], the inequality

∣∣∣
t∫

a

u(τ)v(τ) dτ
∣∣∣ ≤ ε∗(C + var([a, b]; v(·)))

is valid.

Here, the symbol var([a, b]; v(·)) denotes the total
variation of the function v(·) in the interval [a, b], and
BV (a, b) is the space of all real functions v : [a, b] → R

of bounded variation.

Assumption 2. The set Uad has the special form

Uad = {u ∈ H1(Ω) : u = u1 ω(·), u1 ∈ [a, b]}.
Here, ω ∈ H1(Ω) is a given function with

|ω|H1(Ω) �= 0, −∞ < a < b < +∞. Thus the role
of the control to be reconstructed is now played by the
Lebesgue measurable function u1 : [0, T ] → [a, b]. Now
the problem of reconstruction of u(·) is equivalent to that
of finding a function u1(·) ∈ L2(0, T ). The result of
the algorithm will be a scalar function uh

1 (·) ∈ L2(0, T ).
Then, the rule Uh (see (9)) of forming the control u(·) (or
u1(·)) in the model (7) takes the form

Uh(η, w
h) =

{
uh
1 : 〈wh − η, ω〉uh

1 + α(h)(uh
1 )

2|ω|2V
}

≤ inf
{
〈wh − η, ω〉u1 + α(h)(u1)

2|ω|2V :

u1 ∈ [a, b]}+ h
}
.

By redefining α, we are justified to simplify the rule in the
form

Uh(η, w
h) =

{
uh
1 : 〈wh − η, ω〉uh

1 + α(h)(uh
1 )

2
}

≤ inf
{
〈wh − η, ω〉u1 + α(h)(u1)

2 :

u1 ∈ [a, b]}+ h
}
.

(38)

Notice that we allow for an inexact minimization by
the appearance of the term +h in (38). Thanks to the
unrestricted minimization, we are able to determine the
explicit solution of the exact minimization in (38). The
solution is

uh
1 = P[a,b]

(
(2α(h))−1〈η − wh, ω〉

)
, (39)

where P[a,b] means pointwise projection onto the interval
[a, b], namely

P[a,b](s) = max{a,min{b, s}}.

In turn, the inequality (15) may be rewritten in the
form

T∫

0

(uh
1 (s))

2 ds

≤
T∫

0

(u1(s))
2 ds+ C3(δ

1/2(h) + h)α−1(h). (40)

Theorem 2 implies the convergence

uh
1 (·) → u1(·) in L2(0, T ) as h → 0.

Assumption 3. The initial value y0 and the
measurements ηhi satisfying (4) and (5) are elements of
the space L∞(Ω) such that

|ηhi − y(τi)|L∞(Ω) ≤ h. (41)

Note that, for all p ≤ 6, H1(Ω) is continuously
embedded in Lp(Ω), but H1(Ω) ⊂ L∞(Ω) only holds
for n = 1. From the work of Casas et al. (2013, Lemma
2.2), we obtain the following result.

Lemma 5. Let p > 5/2 and Assumptions 2 and 3 be
fulfilled. Then there exists a number C4 > 0 such that the
inequality

|y(·)|L∞(QT ) ≤ C4(1 + |y0|L∞(Ω))

is fulfilled uniformly with respect to y0 ∈ L∞(Ω), u(·) ∈
Uad.
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Here, y(·) = y(·; 0, y0, u(·)) is the weak solution of
Eqn. (3), and Uad is defined in Assumption 2

The integral operator Kλ is continuous in L∞(QT ).
Therefore, using the previous lemma, we conclude the
next result.

Lemma 6. Let the conditions of Lemma 5 and the in-
equalities (41) hold. Then there exists a number C5 > 0
such that the estimate

|wh(·)|L∞(QT ) ≤ C5(1 + |y0|L∞(Ω))

holds uniformly with respect to h ∈ (0, 1), uh(·) ∈
Uad, y0 ∈ L∞(Ω), the partitions Th of the interval
[0, T ] and the values ηhi satisfying the inequalities (41).
Here, wh(·) = w(·; 0, ηh0 , uh(·), ηh(·)) is the solution of
Eqn. (7).

Theorem 3. Suppose that Assumptions 1–3 are satisfied.
Let also u(t) = ω u1(t) and u1(·) ∈ W (0, T ). Then the
reconstruction algorithm has the following convergence
rate:

|u1(·)− uh(·)|2L2(0,T )

≤ C6 {h1/2 + α1/2(h) + δ1/4(h)

+ (h+ δ1/2(h))α−1(h)},
where C6 is some constant not depending on h, and
| · |L2(0,T ) is the norm of the space L2(0, T ).

Proof. Subtracting (16) from (17) and multiplying the
difference scalarly in H by v ∈ H1(Ω), integrating over
[0, t], and recalling μh = wh − y, we derive

∣∣∣
( t∫

0

ω (uh
1 (τ) − u1(τ)) dτ, v

)∣∣∣

=
∣∣∣(ω, v)

t∫

0

(uh
1 (τ) − u1(τ)) dτ

∣∣∣ ≤
5∑

j=1

I
(j)
t , (42)

where

I
(1)
t (v) = |(μh(t), v)− (μh(0), v)|,

I
(2)
t (v) =

2

3
|λ|

∣∣∣
( t∫

0

μh(τ) dτ, v
)∣∣∣,

I
(3)
t (v) =

∣∣∣
( t∫

0

(Kλ(y(·)− ηh(·))(τ) dτ, v
)∣∣∣,

I
(4)
t (v) =

∣∣∣
t∫

0

∫

Ω

(Rλ(τ, w
h(x, τ))

−Rλ(τ, y(x, τ)))v(x) dxdτ
∣∣∣,

I
(5)
t (v) =

∣∣∣
t∫

0

∫

Ω

(∇μh(x, τ),∇v(x))Rn dxdτ
∣∣∣.

The symbol (·, ·)Rn stands for the scalar product in the
space Rn. From Lemmas 5 and 6, we find

|Rλ(τ, w
h(x, τ)) −Rλ(τ, y(x, τ))|

≤ const|wh(x, τ) − y(x, τ)|.

Therefore,

sup
t∈(0,T )

sup
v∈H1(Ω),|v|H1(Ω)≤1

I
(4)
t (v) ≤ c1

t∫

0

|μh(τ)|H dτ.

(43)
Moreover,

sup
v∈H1(Ω),|v|H1(Ω)≤1

I
(2)
t (v) ≤ c2

t∫

0

|μh(τ)|H dτ, (44)

sup
v∈H1(Ω),|v|H1(Ω)≤1

I
(5)
t (v)

≤ c3

t∫

0

(∫

Ω

|∇μh(x, τ)|2
Rn dx

)1/2

dτ. (45)

Analogously to (20), we get

sup
v∈H1(Ω),|v|H1(Ω)≤1

I
(3)
t (v)

≤
( t∫

0

|Kλ(y(·)− ηh(·))|2H dτ
)1/2

≤ c4(h+ δ1/2(h)).

(46)

Let b1 = |ω|H1(Ω), b2 = |ω|H , v1 = ω/b1. Then
|v1|H1(Ω) = 1, (ω, v1) = b22/b1. Therefore,

sup
v∈H1(Ω),|v|H1(Ω)≤1

∣∣∣(ω, v)
t∫

0

(uh
1 (τ) − u1(τ)) dτ

∣∣∣

≥
∣∣∣(ω, v1)

t∫

0

(uh
1(τ) − u1(τ)) dτ

∣∣∣ (47)

= b22/b1

∣∣∣
t∫

0

(uh
1 (τ)− u1(τ)) dτ

∣∣∣.

From (42), (43)–(47) and the inequalities (14), we
derive

sup
t∈(0,T )

∣∣∣
t∫

0

(uh
1 (τ) − u1(τ)) dτ

∣∣∣

≤ c5(h
1/2 + α1/2(h) + δ1/4(h)). (48)
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In turn, from (40), we have

|uh
1 (·)− u1(·)|2L2(0,T )

≤ 2|u1(·)|2L2(0,T )

− 2

T∫

0

uh
1 (τ)u1(τ) dτ + C2(h+ δ1/2(h))α−1(h)

= 2

T∫

0

(u1(τ) − uh
1 (τ))u1(τ) dτ

+ C2(h+ δ1/2(h))α−1(h).

(49)

Using (48) and Lemma 5, we get

|uh(·)− u(·)|2L2(0,T )

≤ c6(h
1/2 + α(h)

1/2
+ δ1/4)(h)

+ C2(h+ δ1/2(h))α−1(h).

The theorem is proved. �

4. Reconstruction of unrestricted controls

Let us now discuss a method of solving the reconstruction
problem in the case of unrestricted controls.

As model M, we consider again Eqn. (7). The rule
of forming the control uh(·) in the model is now given by
the formula

Uh(η, w) = α−1(h)(η − w),

with fixed α(h) > 0. The right-hand side is the explicit
solution of the problem

min
u∈H

{
(w − η, u) +

1

2
α(h)|u|2H

}
;

cf. (38).
Let again a family of partitions of [0, T ] be given:

Th = {τh,i}mh
i=0, τh,0 = 0,

τh,mh
= T, τh,i+1 = τh,i + δ(h), (50)

and the function α(h) : (0, 1) → (0, 1) be fixed.
The solution algorithm is analogous to the one for

restricted inputs with one exception: the mapping Uh is
now defined by

Uh(η
h
i , w

h(τi)) = α−1(h)(ηhi − wh(τi)). (51)

The proof of the following result is analogous to that of
Lemma 2.

Lemma 7. Let |uh(·)|Lp(QT ) ≤ M0 hold for all h ∈
(0, 1). Then there exists a number C7 = C7(y(·),M0) >
0 such that the inequality

vrai sup
t∈(0,T )

|wh(t)|2H +

T∫

0

|ẇh(t)|2H dt

≤ C7{|y0|2V +

T∫

0

{|uh(t)|2H + |f(t)|2H} dt+ 1}

holds for all partitions T of the interval [0, T ] with di-
ameter δ = δ(h) ∈ (0, 1) and all functions ηh(·) ∈
ηh
T (y(·)), h ∈ (0, 1).

Note that for every fixed h the solution wh(·) of
Eqn. (7) is bounded in Lp(QT ).

Moreover, we need the following lemma.

Lemma 8. (Discrete Gronwall inequality) (cf. Samarskii,
1971) Let constants c0 > 0 and κ > 0 be given. Assume
that numbers 0 ≤ φj , 0 ≤ fj , j ∈ [0 : m], are given
with φ1 ≤ f0 and fj ≤ fj+1, j ∈ [0 : m − 1]. Then the
inequalities

φj+1 ≤ c0κ

j∑
i=1

φi + fj , j ∈ [1 : m− 1],

imply

φj+1 ≤ fj exp(c0jκ), j ∈ [0 : m− 1].

Assumption 4. The functions h �→ δ(h) ∈ (0, 1) and
h �→ α(h) ∈ (0, 1) are such that α(h) → 0, δ(h) → 0,

hα−1(h) → 0, (52)

h2δ−1(h)α−1(h) → 0, (53)

δ(h)α−2(h) → 0 (54)

as h → +0.

Theorem 4. Let Assumption 4 be satisfied and let
there exist h∗ ∈ (0, 1), M > 0 such that the inequality
|uh(·)|Lp(QT ) ≤ M holds for all h ∈ (0, h∗) and all
admissible measurements ηh(·) ∈ ηh

Th
(y(·)). Then, uni-

formly with respect to h ∈ (0, 1), the inequalities

εh(t) ≤ C8α(h), t ∈ [0, T ], (55)

T∫

0

|uh(t)|2H dt ≤
T∫

0

|u(t)|2H dt+ C9ρ(h)α
−1(h) (56)

are fulfilled. Here, C8 > 0 and C9 > 0 are constants that
do not depend on h, α(h) and δ(h), the function εh(·) is
defined as in Theorem 1, and

ρ(h) = h2δ−1(h) + δ1/2(h) + h+ δ(h)α−1(h).
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Proof. We follow the proof of Theorem 1 and confirm the
inequality (18). It is easily seen that the inequality

(μh(t), uh(t)− u(t))

≤ (uh(t)− u(t), wh(τi)− ηhi ) + �i(t, h)

is fulfilled for a.a. t ∈ Ji, where

�i(t, h) = c1(|uh(t)|H + |u(t)|H)(h

+

t∫

τi

{|ẇh(τ)|H + |ẏ(τ)|H} dτ).

Therefore, for a.a. t ∈Ji, the inequality

1

2

dεh(t)

dt
≤ (uh(t)− u(t), wh(τi)− ηhi )

+ φt + �i(t, h)
(57)

holds, where

φt =
∣∣(Kλ(y(·)− ηh(·)))(t), μh(t))

∣∣ .
Consequently, the relation (57) implies the inequality

dεh(t)

dt
+ α(h){|uh(t)|2H − |u(t)|2H}

≤ 2(uh(t), wh(τi)− ηhi ) + α(h)|uh(t)|2H

− 2(u(t), wh(τi)− ηhi )− α(h)|u(t)|2H

+ 2�i(t, h) + 2φt for a.a. t ∈ Ji.

(58)

Let

εh(t) = εh(t) + α(h)

t∫

0

{|uh(τ)|2H − |u(τ)|2H} dτ.

Therefore, by the rule (51) of forming the control uh(·),
we conclude from (58) that, for t ∈ Ji, i ∈ [0 : m− 1],

εh(t) ≤ εh(τi) + 2c1

t∫

τi

{|uh(τ)|H + |u(τ)|H} dτ

×
(
h+

t∫

τi

{|ẇh(τ)|H + |ẏ(τ)|H} dτ
)

+ 2

t∫

τi

φτ dτ

≤ εh(τi) + c2h
2

+ c3δ(h)

t∫

τi

{|uh(τ)|2H + |u(τ)|2H} dτ

+ c4δ(h)

t∫

τi

{|ẇh(τ)|2H + |ẏ(τ)|2H} dτ

+ 2

t∫

τi

φτ dτ.

(59)

Summing the right-hand and left-hand parts of (59)
over i and taking into account Lemmas 2 and 7, for t ∈
(0, T ), we obtain

εh(t) ≤ εh(0) + c5h
2δ(h)

−1

+ c6δ(h)
{
1 +

t∫

0

{|uh(τ)|2H + |u(τ)|2H
}
dτ}

+ 2

t∫

0

φτ dτ.

(60)

Now, we use the inclusion u(·) ∈ L2(0, T ;H) and
the relation

t∫

0

|uh(τ)|2H dτ

=

ih(t)−1∑
j=0

τj+1∫

τj

|uh(τ)|2H dτ +

t∫

τih(t)

|uh(τ)|2H dτ

≤ δ

ih(t)∑
j=0

|uh
j |2H .

Here the symbol ih(t) stands for the integer part of the
value tδ−1(h).

By virtue of (60), we deduce that

εh(t) ≤ εh(0) + c7h
2δ(h)

−1
+ c8δ(h)

+ c9γh,δ(h)(t) + 2

t∫

0

φτ dτ,
(61)

where

γh,δ(h)(t) = δ(h)
2
ih(t)∑
j=0

|uh
j |2H .

Note that, in view of (5), we have

εh(0) ≤ c10h
2. (62)
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Moreover, from (20), it follows that

T∫

0

φτ dτ ≤ c11(h+ δ1/2(h)). (63)

Thus, from (61)–(63), we derive, for δ ∈ (0, 1),

εh(t) ≤ c12(δ
1/2(h) + h2δ−1(h)

+ h+ α(h) + γh,δ(h)(t)).
(64)

By (4), (5) and the rule (51) of forming uh
i , we

deduce that

|uh
i |2H ≤ c13(�

h
i + h2)α−2(h), (65)

where �hi = |y(τi)− wh(τi)|2H . In addition, we have

�hi ≤ εi, (66)

where εi = εh(τi). For t ∈ [τi, τi+1], using (65) and (66),
we conclude that

γh,δ(h)(t) ≤ c13δ
2(h)

ih(t)∑
j=0

(εj + h2)α(h)
−2

.

Therefore,

γh,δ(h)(τi) ≤ c13δ
2(h)

i∑
j=0

(εj + h2)α−2(h). (67)

From (64) and (67), we deduce

εi+1 ≤ c12(δ
1/2(h) + h2δ−1(h) + h+ α(h))

+ c14δ(h)h
2α−2(h)

+ c14δ
2(h)α−2(h)

i∑
j=0

εj .

(68)

In view of Lemma 8, from (68) we get

εi ≤ c15(α(h) + δ1/2(h) + h2δ−1(h) + h

+ δ(h)h2α−2(h)) exp{c14Tδ(h)α−2(h)}.
(69)

From the relations

h2δ−1(h)α−1(h) ≤ const,

δα−2(h) ≤ const as h → 0

(see Assumption 4 ) and (69), we derive

εi ≤ c16α(h), i ∈ [0 : m].

This inequality and (67) imply the estimate

γh,δ(h)(τi) ≤ c17(δ(h)α
−1(h) + δ(h)h2α−2(h))

≤ c18δ(h)α
−1(h),

(70)

i ∈ [0 : m], h ∈ (0, 1), δ(h) ∈ (0, 1).

The function t → γh,δ(h)(t) is nondecreasing; therefore,
using (64) and (70), we deduce that

εh(t) ≤ c12(δ
1/2(h) + h2δ−1(h)

+ h+ α(h) + γh,δ(h)(T ))

≤ c19(α(h) + δ(h)α−1(h))

≤ c20α(h), t ∈ [0, T ].

The estimate (55) follows from these inequalities.
Let us prove (56). From (61), by virtue of (62), we obtain
the inequality

α(h)

T∫

0

|uh(t)|2H dt ≤ α(h)

T∫

0

|u(t)|2H dt

+ c21(h
2δ−1(h) + δ(h))

+ c9γh,δ(h)(T ) + 2

T∫

0

φτ dτ,

which, by means of (63) and (70), implies

α(h)

T∫

0

|uh(t)|2H dt ≤ α(h)

T∫

0

|u(t)|2H dt+ c22ρ(h).

The relation (56) follows from this inequality. The
theorem is proved. �

The proof of the next theorem is analogous to that of
Theorem 2.

Theorem 5. Let the conditions of Theorem 4 hold. As-
sume that the sequence Z = {uhj(·)} of controls of the
form (51) with h = hj converges weakly in L2(0, T ;H)
to a limit uZ(·) that generates a unique associated solu-
tion y(·; 0, y0, uZ(·)) of Eqn. (3). Then we have

uh(·) → uZ(·) in L2(0, T ;H) as h → 0.

Theorem 4 implies the following.

Corollary 1. Let the assumptions of Theorem 4 hold.
Let also δ(h) = h, α(h) = h1/2−ν , and fix some number
ν ∈ (0, 1/2). Then the inequalities

εh(t) ≤ C10h
1/2−ν , t ∈ (0, T ),

T∫

0

|uh(t)|2H dt ≤
T∫

0

|u(t)|2H dt+ C11h
ν

are fulfilled. Here, C10 and C11 > 0 are constants inde-
pendent of h ∈ (0, 1) and ν ∈ (0, 1/2).
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Remark 2. Comparing the formulas (9) and (51),
we conclude that the reconstruction algorithm described
in this section (in essence, the algorithm for forming
the control in model (7)) is simpler than that described
in Section 3. However, its convergence requires the
additional correlation condition (53) on the parameters:
h2/(δ(h)α(h)) → 0 as h → 0. Moreover, this
algorithm guarantees the convergence of the functions
uh(·) to the real control in the norm of the space
L2(0, T ;L2(Ω)), whereas the algorithm from Section 3
provides the convergence in the stronger norm of the space
L2(0, T ;H

1(Ω)).

5. Numerical examples

In this section, we present two numerical examples. For
simplicity, we consider the case of the pure Schlögl model.
For this purpose, in both examples we set a = 0 so that
the integral operator Kλ vanishes.

Example 1. The given quantities in Eqn. (3) are as
follows:

Ω = [0, 1], T = 2, y1 = 0.1, y2 = 0.2,

y3 = 0.3, k = 1, λ = 0, f(t, x) = 0.

As the initial state of (3), we take the function y0(x) =
0.25 (1− x), x ∈ Ω. We assume

Uad = {u ∈ H1(Ω) : u(·) = u1 ω(·), u1 ∈ [−2, 2]};

cf. Assumption 2 The input in the right-hand part of
Eqn. (3) is u(x, t) = u1(t)ω(x) with ω(x) = 0.5 x(1−x)
for x ∈ Ω, and

u1(t) =

{
1, t ∈ [0, 1/4),

sin t, t ∈ [1/4, 2].

This function u plays the role of the unknown
exact control generating the unknown state function y.
According to the rule (39), the control uh(x, t) =
uh
1(t)ω(x) in the right-hand part of Eqn. (7) is calculated

by the formulas

uh(x, t) = uh
1i ω(x) for x ∈ Ω, t ∈ [τi, τi+1),

uh
1,i = argmin{

(
wh(τi)− ηhi , ω

)
L2(0,1)

u1

+ α(h)u2
1 : u1 ∈ [−2, 2]},

i.e.,

uh
1,i = P[−2,2]

{
(2α(h))−1(ηhi − wh(τi), ω)L2(0,1)

}
.

Equations (3) and (7) are solved by a finite difference
method with mesh size Δx in the domain Ω and time step

δ in the time interval [0, T ]. The associated results are
presented in Figs. 2–4 for the following mesh sizes: Δx =
1/200, δ = 1/1000. The regularization parameter α is
fixed by α = 0.00005, hence independent of h. In the
numerical tests, we assume

ηhi = ηh(τi, xj) = y(τi, xj) + h,

where xj = jΔx, j = 0, . . . , 1/Δx. The results for h =
0.3, h = 0.1, and h = 0.01 are displayed in Figs. 2–4.
The solid line represents the reconstructed function uh

1(·),
the dashed line shows the exact control function u1(·). For
h = 0.01, the corresponding curves show a fairly good
coincidence. The norms d(h) = ‖uh

1 − u‖L2(0,T ) are
as follows: d(h) = 0.1766, 0.10363, 0.10255, 0.10224,
0.10185 for h = 0.3, 0.2, 0.1, 0.05, 0.01, respectively.
This fits the estimate of Theorem 3: since α = 0.00005 is
very small, there should approximately hold

d2(h) ≤ c6(h+
√
δ)/α = c6 (20000 h+ 632).

This is indeed satisfied, but d2(h) becomes
essentially smaller than the right-hand side for decreasing
h. The estimate of Theorem 3 appears to be too
pessimistic. �

Example 2. We can present this example here by
courtesy of Minh Huyen Ly Le (Technische Universität
Berlin); it is adopted from her MSc thesis (Le, 2019, pp.
64–67), and allows for the more general ansatz

uh(x, t) =

m∑
i=1

uh
i (t)ωi(x), (71)

where the functions ωi : Ω → R, i = 1, . . .m, are
standard piecewise linear and continuous finite element
functions (“hat functions”) associated with a uniform
partition 0 = x1 < · · · < xm = 20 of Ω = (0, 20).
The functions ωi satisfy ωi(xj) = δij . Though the ansatz
(71) is not covered by our theory, the example shows that
our method of dynamical reconstruction works also for
this more general setting.

Here, the given quantities in Eqn. (3) are

Ω = (0, 20), T = 5, y1 = −2.5,

y2 = 0, y3 =
√
3, k = 1/3,

λ = 0, f(t, x) = 0.

As the initial state of (3), we take the function y0 =
1.2

√
3χ[8,12]. We impose the restrictions

−2 ≤ uh
i (t) ≤ 2, i = 1, . . . ,m,

on the controls to be reconstructed; cf. Assumption 2.
The example is related to Example 5.2 of Buchholz

et al. (2013), where a control is found to achieve a desired
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Fig. 2. Example 1: reconstruction for h = 0.3.

Fig. 3. Example 1: reconstruction for h = 0.1.

Fig. 4. Example 1: reconstruction for h = 0.01.

solution yQ. For 0 ≤ t ≤ 2.5, yQ is the solution of the
uncontrolled Schlögl model, i.e., for the control u = 0
with initial data y0 = 1.2

√
3χ[8,12] that is denoted by

ynat. From 2.5 < t ≤ 5, it is shifted to the left,

yQ(x, t)

=

{
ynat(x, t), t ∈ [0, 2.5]
ynat(x+ 1.62 (t− 2.5), 2.5), t ∈ (2.5, 5];

cf. Fig. 5.1 of Buchholz et al. (2013). In the work of
Buchholz et al. (2013), this control was determined by
an optimization technique. Here, the associated control
was found by the application of our reconstruction method
to the given perturbed state observation yQ + h̃ with
h̃ = 0.0001 for α̃ = 0.1 and m = 50. This control,
denoted by u, is taken as a reference control; see Fig. 6.
The associated reference state is denoted by y; see Fig. 5.

With our method, uh was reconstructed in the form
(71) for different values of h and m. The approximation
of the associated functions uh

i (t) is displayed in Fig. 7 for
α = 0.005 and h = 0.001. Graphically, the associated
function uh is hard to be distinguished from the control u
in Fig. 6. For further details, we refer to the thesis of Le
(2019). �
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of the Schlögl and FitzHugh–Nagumo systems, Evolution
Equations and Control Theory 6(4): 559–586.

Maksimov, V. and Mordukhovich, B.S. (2017). Feedback design
of differential equations of reconstruction for second-order
distributed systems, International Journal of Applied
Mathematics and Computer Science 27(3): 467–475, DOI:
10.1515/amcs-2017-0032.

Maksimov, V. and Pandolfi, L. (2002). The problem of
dynamical reconstruction of Dirichlet boundary control in
semilinear hyperbolic equations, Journal of Inverse and Ill-
Posed Problems 8(4): 399–411.

Mordukhovich, B.S. (2008). Optimization and feedback design
of state-constrained parabolic systems, Pacific Journal of
Optimization 4(3): 549–570
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