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The biclustering of two-dimensional homogeneous data consists in finding a subset of rows and a subset of columns whose
intersection provides a set of cells whose values fulfil a specified condition. Usually it is defined as equality or comparability.
One of the presented approaches is based on the model of Boolean reasoning, in which finding biclusters in binary or discrete
data comes down to the problem of finding prime implicants of some Boolean function. Due to the high computational
complexity of this task, the application of some heuristics should be considered. In the paper, a modification of the well-
known Johnson strategy for prime implicant approximation induction is presented, which is necessary for the biclustering
problem. The new method is applied to artificial and biomedical datasets.
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1. Introduction

Finding biclusters in the twodimensional matrix of values
is the problem of finding some subsets of rows and subsets
of columns, whose intersection defines the region of
similar cells, called the bicluster. It depends on the nature
of the input data and the goal of the analysis whether all
cells from the bicluster should have the same value (exact
biclusters) or some level of differences between them is
allowed. It is usually expected that the bicluster should
be inclusion-maximal, which means that adding any new
row (or column) to the bicluster violates the constraint
mentioned above.

Amongst many approaches to find biclusters, a
new one has been developed, with strong mathematical
background and involving the Boolean reasoning
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paradigm. In our previous research it was defined and
proved that Boolean representation of discrete (or binary)
data may be successfully used to find inclusion-maximal
exact biclusters (Michalak and Ślęzak, 2018). This
approach was further generalized for matrices with
continuous values (Michalak and Ślęzak, 2019) for
finding biclusters of similarity (the difference between
any two cells does not exceed the assumed level of
similarity: σ) and even biclusters of dissimilarity (the
difference between any two different cells is not smaller
than the assumed level of dissimilarity: χ). The high
computational complexity of such an approach to
finding all and inclusion-maximal biclusters implies
the development of some faster heuristics for finding
a smaller number of biclusters but having the same
properties.
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In the paper, a new heuristic approach to find exact
biclusters in binary data is presented. It is based on
two assumptions: firstly, binary data are coded with a
Boolean function and biclusters are coded with its prime
implicants, and secondly, covering all data with biclusters
is performed with the sequential covering strategy: the
bicluster found is removed from the data and a new
bicluster in the remaining data is the second of the search.

The paper is organized as follows: it starts with
a short description of the biclustering problem; then
the background of Boolean reasoning in biclustering is
presented; afterwards, the Johnson heuristic of prime
implicant search is described, together with its new
modification (for the problem of searching for prime
implicants that code exact biclusters in binary data);
finally, the experiments and their results for artificial and
biomedical data are presented and discussed; the paper
ends with some conclusions and perspectives of future
works in this area.

2. Related works

Biclustering is a technique of two-dimensional data
analysis. It was started by Hartigan in the 1970s
(Hartigan, 1972). The goal of the analysis of scalar
data in two dimensions was continuously presented on
the example of voting results from American presidential
elections in different states.

Since then biclustering has been successfully
applied in many areas, such as text mining (Chagoyen
et al., 2006; Orzechowski and Boryczko, 2016), gene
expression analysis (Tanay et al., 2005), data explorations
(Latkowski, 2003) and many more (Busygin et al.,
2008). It has also received several equivalent names like
two-mode clustering, co-clustering or two-dimensional
clustering.

Biclustering is commonly mistaken for the clustering
of two-dimensional data. But in such a case, the clustering
algorithm (regardless of clustering rows or clustering
columns) introduces the partition (of a set of rows or a set
of columns accordingly) in the sense of its mathematical
definition. The domains of rows and columns may differ
(the data are heterogeneous). In the case of biclustering
we are looking for some regions in homogeneous data
that are more similar to each other than to the other
elements in the data. The difference between clustering
and biclustering is explained more precisely in Figs. 1
and 2.

In Fig. 1 the results of clustering objects (left)
and clustering features (right) are presented. In both
cases the operation resulted in introducing a partition
in the mathematical sense. In the centre of Fig. 2 a
sample matrix of discrete data is presented, whose data
were biclustered in two ways: exact biclustering means
finding inclusion-maximal biclusters of cells with the

same value while similarity biclustering means finding
an inclusion-maximal bicluster of cells of such values,
whose maximal difference does not exceed an assumed
level (here: level = 5). The biclusters found are presented
below and also marked with different shades in the matrix.

All biclusters presented above fulfilled the condition
of being non-extendable (inclusion-maximal). That
means that any row or any column could be added to
the bicluster without breaking the restriction set to the
bicluster cells values. If we define the bicluster as an
ordered pair of a subset of rows and a subset of columns,
the nonextendability can be defined with the inclusion
relation. A non-extendable bicluster is defined with a
subset of rows and a subset of columns that are maximal in
the sense of inclusion. Accordingly, this kind of biclusters
will be named maximal in the sense of inclusion (in short:
inclusion-maximal).

Many approaches to bicluster induction have been
successfully developed. In the paper of Cheng and
Church (2000) a bicluster is searched by minimizing the
squares of residuals between the average value of bicluster
cells. In the original approach the bicluster found is later
replaced with random data and the procedure is repeated
for the modified data. In the modified version of this
algorithm FLOC Yang et al. (2003) provide a solution
that allows biclusters to overlap each other, and when a
bicluster is found it is not replaced by random values.

For discretized data, Murali and Kasif (2003)
developed the xMotif algorithm. In this approach the set
of genes that is simultaneously conserved across a subset
of conditions is the goal of the analysis. This means
that this approach requires the initial discretization of
continuous data. The algorithm starts with random initial
sets of rows and columns and proceeds in an iterative way.
To assure finding several biclusters, the method should be
invoked several times with different initial sets of rows
and columns.

One of specific approaches for finding biclusters is
represented, for example, by the BiMax algorithm (Prelić
et al., 2006), where data to be biclustered are binary. In
this approach the separate-and-conquer strategy is applied
for finding inclusion-maximal biclusters.

A more detailed description of the algorithms
mentioned and a presentation of many more biclustering
algorithms (such as FABIA (Hochreiter et al., 2010)) can
be found in the work of Kasim et al. (2016).

However, the issue of finding biclusters in data can
be also defined in different data analysis paradigms: in
terms of the formal concept analysis, extracting a concept
lattice for a given context is equivalent to the problem of
finding all inclusion-maximal exact biclusters in a binary
matrix (Ignatov and Watson, 2016); in the domain of
the basket analysis, the exact bicluster will correspond
to the frequent itemset (Serin and Vingron, 2011); if the
binary matrix represents some graph contingency matrix
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f1 f2 f3 f4
o1 1 2 30 40
o2 2 3 31 41
o3 10 11 -5 -8
o4 11 12 -4 -7
o5 101 102 103 104

f1 f2 f3 f4
o1 31 32 88 91
o2 1 4 87 95
o3 2 4 90 93
o4 50 52 91 94
o5 50 53 90 94

Fig. 1. Possible results of object (left) and feature (right) clustering.

Fig. 2. Possible results of discrete data biclustering: the original data are presented in the centre, results of exact biclustering are
presented on the left-hand side, while results of similarity based biclustering (here: the maximal difference between bicluster
elements is not higher than 5) are presented on the right-hand side; in both the cases only non-trivial (not single cell) biclusters
are mentioned.

the inclusion-maximal bicluster may refer to the clique
in the graph or to the two subsets of its vertexes which
are directly accessible: each vertex from the first subset is
directly accessible from each vertex in the second subset
and vice versa.

3. Context of Boolean reasoning based
biclustering

Similarly to many other data analysis tasks, such as
reducts finding, bireducts finding and many more, the
issue of searching biclusters in binary data can be
described in terms of Boolean reasoning. This means
that the problem can be coded as a Boolean function and
the goal may be interpreted from prime implicants of this
formula.

Let us consider the binary matrix presented in
Table 1. Let us also define the problem of finding all
inclusion-maximal exact biclusters, covering ones in the
presented matrix. As the bicluster, the ordered pair of a
subset of rows and a subset of columns is considered.

The solution of the presented problem can be found
with coding all zero-cells of the matrix as the Boolean
formula in such a way that it is the conjunction of

Table 1. Sample binary matrix Mb.

a b c
1 1 0 1
2 1 0 0
3 1 1 1

two-literal clauses, whose variables correspond to the
following zero-cells indexes (row and column).

In the presented example we have three cells with
zero (with coordinates (1, b), (2, b) and (2, c)), which
implies the following Boolean formula fMb(0):

fMb(0) = (1 + b)(2 + b)(2 + c).

(From the clarity viewpoint we do not introduce separate
notation for Boolean variables: the meaning of “1”
depends whether it is used in the formula (literal) or in
the bicluster (row index)). The same formula presented in
the form of prime implicants would be as follows:

fMb(0) = 12 + 2b+ bc,

but we remember that 1 and 2 are literals, not digits, so
the first prime implicant is a two-literal one.
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The interpretation of the obtained prime implicants is
as follows: each prime implicant represents one exact and
inclusion-maximal bicluster of ones in the original data
in such a way that the prime implicant consists of only
those literals whose corresponding rows and columns are
not elements of the bicluster.

Let us take a closer look at prime implicants of the
function fMb(0): the first implicant consists of literals 1
and 2 while the matrix Mb has three rows {1, 2, 3} and
three columns {a, b, c}, so the bicluster coded with the
implicant 12 has the form ({3}, {a, b, c}). The graphical
visualization of all three biclusters coded by three prime
implicants of the formula fMb(0) is presented in Fig. 3.

The same steps may be performed to find biclusters
of zeros in the data. The only difference is in
the Boolean function construction: instead of coding
cells of zeros, cells of ones are coded in the formula
fMb(1), whose prime implicants will then correspond to
inclusion-maximal exact biclusters of zeros in the data.

The example described above joins prime implicants
of a Boolean function and exact, inclusion-maximal
biclusters in the data, from which the Boolean function
was derived. The correctness of such an approach to
bicluster finding was proved by Michalak and Ślęzak
(2018) in two aspects: correctness and maximality. In the
mentioned paper two theorems of binary biclustering were
presented. The weaker one says that for each implicant
of the Boolean formula there exists an exact bicluster in
the data as the complement of this implicant (correctness).
The stronger one says that for each prime implicant of the
Boolean formula there exists an inclusion-maximal exact
bicluster in the data (maximality).

The exhaustive strategy that assumes finding all
inclusion-maximal exact biclusters to cover the data
implies high computational complexity of the problem.
Even if it is the problem of just 2-CNF formulas
satisfiability, which is P-complete, the goal is still time
consuming in terms of calculations. These theorems
imply that the application of the heuristics of prime
implicants approximations should become interesting
from the point of view of exact bicluster searching:
as long the heuristics find implicants of the Boolean
function, the covering strategy of finding biclusters
will cover all required cells in the data with exact
non-overlapping biclusters.

4. Heuristics of bicluster searching

The issue of finding biclusters in the binary matrix boils
down to the problem of finding all prime implicants in the
Boolean formula derived from the data. Due to the high
computational complexity of this problem, the climbing
strategy of sequential data covering may be proposed. Let
us consider the following algorithm: as long as there are
uncovered cells in the data to be covered by the bicluster,

find the one implicant of the Boolean function and move
the corresponding bicluster to the result set; then mark all
cells of this bicluster as covered and generate the Boolean
function for the modified data. The presented approach
requires the algorithm of finding one prime implicant of
the Boolean function.

Instead of the one prime implicant we may take
into consideration some heuristics for finding the logical
statement that would be implicant but not the prime one.
As proved by Michalak and Ślęzak (2018), each prime
implicant of such a defined Boolean function for the
binary data biclustering corresponds to the exact bicluster.

In this section the classic problem of finding prime
implicants of the Boolean formula with the Johnson
heuristic will be presented, with a short discussion why
it cannot be directly applied for the purpose of exact
bicluster searching. Afterwards, a suitable modification
will be presented.

4.1. Classic Johnson approach. One of the most
popular and simple heuristics of the prime implicant
searching is Johnson’s approach (Johnson, 1974). For a
given formula f in the CNF, the set of literals that is the
approximation of the prime implicant is found on the basis
of the literals in the clauses occurrence frequency.

Consider the following Boolean formula in the CNF:

f = (a+b+c+e)(b+c+d)(e+f+g)(d+e+f)(h+i).

When we bring it to the DNF, we will obtain a formula
built from 20 prime implicants. The Johnson heuristic
searches for the most frequent literal in formula clauses
and moves it to the result set of variables. Then, all clauses
containing the literal found are removed from the formula
and the next step of the search is performed. Iterations
stop when the formula is empty (all clauses are covered
by at least one literal from the result set).

The frequency of literals for the given formula is
presented in Table 2.

The most frequent literal is e. Accordingly, the
new formula, after deleting clauses containing e, has
the following form (the set {. . .} in the lower index of
f points literals in the current result set—the implicant
approximation):

f ′
{e} =�������

(a+ b+ c+ e)(b + c+ d)�����
(e + f + g)������

(d+ e+ f)

× (h+ i) = (b + c+ d)(h+ i).

Table 2. Frequency of literals in the formula f .
literals a b c d e f g h i

occurrences 1 2 2 2 3 2 1 1 1
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a b c
1 1 0 1
2 1 0 0

3 1 1 1

12 : ({3}, {a, b, c})

a b c

1 1 0 1
2 1 0 0
3 1 1 1

2b : ({1, 3}, {a, c})

a b c

1 1 0 1

2 1 0 0

3 1 1 1

bc : ({1, 2, 3}, {a})

Fig. 3. Visualization of three exact and inclusion-maximal biclusters in matrix Mb, corresponding to prime implicants of the function
fMb(0).

With the next iteration of finding the most frequent literal
in the clauses, we may find b, which leads to the formula

f ′′
{e,b} =�����

(b+ c+ d)(h+ i) = (h+ i),

and at last the h as the most frequent one:

f ′′′
{e,b,h} = ∅.

Thus, finally, it appears that the set {e, b, f} is the Johnson
approximation of the prime implicant of the formula f .
This means that the set is the superset for at least one of
the real prime implicants.

4.2. Modified Johnson approach. One may suspect
that the heuristic presented above would be sufficient to
be applied to the problem of finding approximate prime
implicants for the Boolean function coding biclusters in
the binary data. Just a simple example will show that the
original Johnson algorithm requires modifications.

Consider the binary matrix Mb, presented in Table
3, with the goal of finding biclusters of ones in the data.
Remembering that the Boolean function for biclusters of
ones is built from the clauses that code cells with zero, the
proper formula looks as follows:

f

= (1 + a)(1 + b)(1 + e)(1 + f)(1 + g)(1 + h)

× (2 + a)(2 + d)(2 + e)(2 + f)(2 + g)(2 + h)

× (3 + a)(3 + c)(3 + d)(3 + e)(3 + f)(3 + g)(3 + h).

Frequencies of literals of the formula f are presented in
Table 4.

The most frequent literal is 3 (it appears seven times
in the formula). Removing all clauses covered by the

Table 3. Binary matrix Mb.
a b c d e f g h

1 0 0 1 1 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 1 0 0 0 0 0 0

Table 4. Frequency of literals in the formula f .
literals a b, c d e, f, g, h 1, 2 3

occurrences 3 1 2 3 6 7

literal 3 leads to the following form of the formula:

f ′ = (1 + a)(1 + b)(1 + e)(1 + f)(1 + g)(1 + h)

× (2 + a)(2 + d)(2 + e)(2 + f)(2 + g)(2 + h).

Now it is easy to observe that the most frequent literal
for the formula f ′ would be 1 (or 2: this would depend
on the algorithm of finding the most frequent item in the
collection), and after removing the first (second) row of
the matrix the most frequent literal in the new Boolean
function would be 2 (respectively, 1). Thus, finally, the
original Johnson strategy will point the set of variables
{1, 2, 3} as the approximation of the prime implicant
of the Boolean function for the matrix Mb. Despite
the fact that the result fulfils the criterion of being the
approximation of some prime implicant of the Boolean
function for the matrix Mb, it is a very disappointing
result in the context of binary biclustering, as it defines an
empty bicluster—the one corresponding to no rows and
some columns or some rows but no columns. This simple
observation leads us to a modification of the Johnson
strategy of finding the prime implicant approximation in
the context of binary biclustering. The main problem
of the original solution is that the prime implicant
approximation is built without any distinction between
Boolean variables corresponding to rows and Boolean
variables corresponding to columns.

An intuitive modification of the original Johnson
approach consists in building the prime implicant
approximation on the rows and columns simultaneously.
In each iteration the pair of most frequent literals coding
rows and columns should be taken into consideration.

Let us go back to the matrix Mb. The most frequent
row-based literal is still 3, while the most frequent
column-based one is b, so the pair {3, b} is moved to
the final prime implicant approximation set. The matrix
corresponding to the formula in the next iteration is
presented in Table 5.



166 M. Michalak et al.

Table 5. Binary matrix M ′
b.

a c d e f g h
1 0 1 1 0 0 0 0
2 0 1 0 0 0 0 0

After this step the pair of the most frequent rows
and columns literals is (2, c). As the last pair of
frequent literals (1, c) should be taken into consideration.
But adding this pair of variables would also affect the
empty bicluster, as all rows are represented in the prime
implicant approximation. But at this moment we should
note that this addition will be effective in generating
another empty bicluster, as literals coding all rows would
be present in the resulting set. Therefore, the final
strategy of finding the prime implicant approximation in
the formula coding the background cells should be defined
as in Algorithm 1.

The pseudocode of three methods used in
Algorithm 1 is not supplied, but their names explain
most of their meaning: TheMostFrequentColumnLiteral()
returns the column coding literal that appears most
often in the formula, which is the function argument;
TheMostFrequentRowLiteral() returns the most frequent
row coding literal analogously; RemoveCoveredClauses()
removes clauses from the formula, covered by literals
from the list of literals coding rows (tRows) and literals
from the list of literals coding columns (tColumns).

4.3. Sequential biclustering heuristic. Solving the
problem of finding the approximate prime implicant of the
Boolean function does not solve the general problem of
Boolean reasoning about the bicluster, which consists in
finding all prime implicants of the formula to cover all the
data in the matrix. Having the modified Johnson strategy
of finding one prime implicant for the formula, we can
provide the heuristic of sequential covering of all the data
in the matrix.

Let us start with the original formula that codes the
problem of finding biclusters of ones (with coding all
cells with zero in the formula). As proved by Michalak
and Ślęzak (2018), each implicant of this formula (not
necessarily the prime one) codes one exact bicluster. The
bicluster found with the presented strategy describes a part
of the data in the matrix. Then we may remove the data
covered by this bicluster in such a way that these cells
will be changed from 1 to 0. The new matrix contains
only the ones that are not covered yet. Therefore, in
another iteration, a new formula is built and its implicant
approximation is found. The procedure is applied as long
as there are any ones in the matrix. The pseudocode of
this procedure is presented as Algorithm 2.

The meanings of three methods used in the

Algorithm 2 are as follows: BuildFormula() codes
all background cells (zeros in the case of searching
for biclusters of ones and vice versa) as presented in
Section 3; in the fifth line Algorithm 1 is invoked;
RemoveOnesCoveredByBicluster() replaces ones (or
zeros) in the matrix with zeros (ones) covered by a newly
found bicluster.

4.4. Complexity study. Consider a matrix with r rows,
c columns and w ones. Let us also define the following
variables:

• l = min(r, c): the lower bound of matrix
dimensions;

• L = max(r, c): the upper bound of matrix
dimensions;

• |f | = r × c − w: the length (number of clauses) of
formula f .

The loop in the 4th line of Algorithm 1 may be executed
up to |f | times. Each iteration consists of two sortings
(row literals and column literals separately), which
gives the r log r + c log c addend and Boolean formula
shortening, with the complexity of its length: r × c − w.
In the most pessimistic case, Algorithm 2 may invoke
Algorithm 1 in the 5th line up to r × c − w times. This
finally gives us the complexity of the algorithm as follows:

O((r × c− w)(r log r + c log c)).

If n means the final size of the data n = r × c, the
approximation of the method can be expressed as

O((n − w)(n log n)).

This suggests that in the most pessimistic case the method
has the complexity of O(n2 logn), but it decreases
significantly as the matrix has more cells to be biclustered
(up to n logn, approximately).

4.5. Discussion of results quality. In Section 3 the
theorem from the paper by Michalak and Ślęzak (2018)
was recalled. The theorem says that each implicant
of such an earlier defined Boolean formula corresponds
to the exact bicluster in the data. This means that
each bicluster found by the FindSingleBicluster() function
must be an exact bicluster, because this function builds the
implicant of the Boolean function.

Considering Algorithm 2, it must be stated that it
provides a set of biclusters generated by Algorithm 1 and
all of them are exact (as already proved). The loop in
line 3 of this algorithm also must finish as each iteration
covers at least one cell in the data, so in each iteration the
number of ones in the matrix decreases (ones covered by
the newly generated bicluster are replaced by zeros).
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Algorithm 1. Modified Johnson algorithm of prime implicant approximation searching for formulas coding biclusters.
1: function FindSingleBicluster(formula)
2: columnLiterals := ∅ {the set of column literals (initially empty)}
3: rowLiterals := ∅ {the set of row literals (initially empty)}
4: while formula �= ∅ do
5: {find the most frequent literal coding row and column in the formula}
6: mostFrequentColumn := TheMostFrequentColumnLiteral(formula)
7: mostFrequentRow := TheMostFrequentRowLiteral(formula)
8: tColumns := columnLiterals ∪ mostFrequentColumn
9: tRows := rowLiterals ∪ mostFrequentRow

10: if (tColumns == allColumns) or (tRows == allRows) then
11: {adding the pair will lead to the empty bicluster}
12: tRows := all but one last rows not covered by the rowLiterals
13: tColumns := literals coding clauses not covered by literals from tRows
14: formula := ∅
15: else
16: {adding the pair is safe}
17: rowLiterals := rowLiterals ∪ tRows
18: columnLiterals := columnLiterals ∪ tColumns
19: {remove clauses from the formula, covered by the pair of mostFrequentRow and mostFrequentColumn literals}
20: formula := RemoveCoveredClauses(formula, tRows, tColumns)
21: end if
22: end while
23: return columnLiterals ∪ rowLiterals

Algorithm 2. Heuristic of sequential biclustering.

1: biclusters := ∅ {the set of generated biclusters (initially empty)}
2: {count the number of ones in matrix}
3: while numberOfOnesInMatrix > 0 do
4: formula := BuildFormula(matrix)
5: bicluster := FindSingleBicluster(formula)
6: matrix := RemoveOnesCoveredByBicluster(matrix, bicluster)
7: biclusters := biclusters ∪ { bicluster }
8: {update the number of ones in matrix}
9: end while

10: return biclusters

Concluding, it is not possible to obtain wrong results
such as a non-exact bicluster (zeros in the bicluster of ones
or vice versa) or having some cells of ones in the data
non-covered by any bicluster.

5. Experiments

Experiments were performed on artificial and real data,
using self-developed software. The first experiment was
planned to show the ability of reducing the computational
complexity of the problem with the heuristic approach.
The goal of the second experiment was to show the real
application of the methodology.

5.1. Artificial data. The artificial data contain 100
rows and 100 columns (presented in Fig. 4), and four

discrete values are observed in the data: 0, 77, 237 and
255. The 255 value is considered the background while
the remaining three values are intended to be covered by
biclusters. To apply the strategy of binary biclustering,
the binarization of the original data should be done.
Therefore, for the final experiments three datasets were
used: #0, #77 and #237 (also presented in Fig. 4).

Table 6 presents the results of biclustering. For each
of the three datasets, simple information of the input data
is shown (the number of ones in the data and the number
of clauses in the original formula). The last two columns
provide the number of biclusters found in an exhaustive
way and with the application of the modified Johnson
strategy.

As expected, the total number of exact biclusters,
covering ones in each of the matrices considered,
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Fig. 4. Artificial data of 100 rows and columns (left) and the following binarized data matrices: # 0 (left center), # 77 (right center)
and #237 (right).

Table 6. Comparison of the exhaustive and heuristic approach to biclustering.
number of

data ones clauses exhaustive biclusters Johnson biclusters

#0 1 415 2 256 5 463 (+2 empty) 224
#77 1 327 4 560 503 (+2 empty) 129

#237 2 148 5 267 30 194 (+2 empty) 201

decreased compared with the total number of
inclusion-maximal exact biclusters generated in an
exhaustive way. The total computation time also
decreased significantly: the exhaustive computation time
was in weeks (up to 8 weeks for the #237 matrix), while
computations for the modified Johnson strategy took
minutes (hours). However, the quality of the obtained
results cannot be directly compared. In the first case the
result contains all exact and inclusion-maximal biclusters
(which may overlap themselves) covering all the data
while in the second case the result contains only exact
biclusters (which do not overlap) covering all the data.

5.2. Comparison with other methods. The new
heuristics was compared with several methods of binary
biclustering: BiMax (Prelić et al., 2006), Boolean
reasoning (Michalak and Ślęzak, 2018), whose results
are identical when empty biclusters are removed from
BR results, iBBiG (Gusenleitner et al., 2012), and BiBit
(Rodriguez-Baena et al., 2011). The experiments with the
latter two methods were performed in the R (R Studio)
environment. The results of comparison are presented
in Table 7. The first column denotes the label of the
dataset, the next one contains the name of the method.
In the third column the total number of biclusters found is
provided. The last two columns describe the complexity
and redundancy of data description. The total coverage
means the fraction of ones in the binary matrix covered by
at least one bicluster from the resulting set. The maximal
possible value is one and any lower value reflects the
situation when there is at least one 1 in the matrix that
is not covered by any bicluster. The measure called the
overlapping level reflects how many ones in the data are

covered more than once by biclusters. For the matrix
with 25 ones and the set of biclusters of a total area
80, the overlapping level equals 2.2, which comes from
(80 − 25)/25. The interpretation says that each cell is
covered by 2.2 additional (redundant) biclusters. The
overlapping level equals 0, which means that there is no
cell covered by two biclusters.

The first two methods generate the highest number
of biclusters because they find all inclusion-maximal
bilusters. This implies also the maximal total coverage
(equal to one) and the highest overlapping level. The next
two methods (iBBiG and BiBit) provided smaller sets of
biclusters, which covered the data almost entirely (up to
ten ones in the data were not covered). However, the
results of iBBiG are not exact biclusters (the accuracy of
biclusters was from the range [.75, 1]), while the results
of BiBit are characterized by quite high redundancy
(overlapping level).

The above comparison shows that the new presented
approach has properties that are not provided by other
comparable methods. It keeps the maximal total coverage
like BiMax or the exhaustive Boolean reasoning approach
without the effect of overlapped biclusters (like BiBit).
The next subsection presents the method application
on real data, whose results are significant from the
biomedical point of view.

5.3. Biomedical data. Data obtained using three
various methods were downloaded from The Cancer
Genome Atlas (TCGA) database for 2,088 patients
diagnosed with either thyroid, breast or prostate cancer.
For each patient we obtained the copy number variation,
methylation and gene expression data, which were
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Table 7. Comparison of the results of different biclustering approaches.
data method # biclusters total coverage overlapping level

#0

BiMax / Boolean reasoning 5 463 1.0000 453.81
iBBiG 45 0.9964 0.61
BiBit 849 0.9985 78.61

modif. Johnson strat. 224 1.0000 0.00

#77

BiMax / Boolean reasoning 503 1.0000 34.80
iBBiG 45 0.9925 0.28
BiBit 302 0.9977 23.11

modif. Johnson strat. 129 1.0000 0.00

#237

BiMax / Boolean reasoning 30 194 1.0000 3246.28
iBBiG 45 0.9995 0.56
BiBit 1 287 0.9990 94.20

modif. Johnson strat. 201 1.0000 0.00

further converted into the binary format, for each
method separately, where zero represents normal state
and one—abnormalities associated with an individual
gene. Only 7,018 genes associated with known cancer
processes were retained for further study, resulting in three
7,018×2,088 binary tables. In the preprocessing step
these binary data were sorted horizontally and vertically,
decreasingly according to the number of ones in rows and
columns. Going further, their size was limited into 1,000
rows and 1,000 columns to select only the most important
biclusters in the data. These three datasets are presented
in Fig. 5.

For the given data only the heuristic strategy of
finding all covering biclusters was applied. The raw
results for each dataset are presented in Table 8.

However, the number of biclusters found is not
as important as the meaning of the largest ones. The
main goal of this biomedical datasets analysis was to
find interesting, interpretable and wide biclusters. Let
us consider patients from the largest bicluster found
in the CNV data: it contained 24 patients and 24
genes. It appears that the patients from the bicluster are
characterized with a completely different survival curve
than the remaining ones. The comparison of these two
survival curves is presented in Fig. 6.

The gray line represents 24 patients that belong to the
selected cluster, which is associated with abnormalities in

Table 8. Number of biclusters found in each dataset and their
subset which shows significant association with pa-
tients survival data (adjusted p-value< 0.01).

data number of biclusters
all p < 0.01

CNV 2 300 21
EXP 8 411 138

METH 1 738 18

the copy number of 24 specific genes. The survival times
of the patients from this cluster are much shorter (with
p-value < 0.0001), emphasizing the significance of those
genes for cancer-related processes.

A low p-value indicates that it is very unlikely to
select a random set of 24 patients that would show such
significantly different survival time, compared with the
remaining cases used in the study. Additionally, some
of the genes which form the identified cluster are already
known to be associated with cancer, including SOX7,
ESCO2 and IL24, recognized for their tumor suppressor
properties, which further increases the credibility of this
finding.

6. Conclusions and further work

In the paper, a novel approach to exact biclustering
in binary matrices was proposed. It is based on the
paradigm of Boolean reasoning. The high computational
complexity of finding all exact and inclusion-maximal
biclusters implied the application of some heuristic to find
biclusters covering all the required cells in the matrix.
It appeared that one of the most popular heuristics for
finding the approximation of the prime implicant of the
Boolean formula cannot be applied in this case directly.
The paper presents the necessary modification of the
procedure on some boundary conditions.

The new biclustering algorithm was successfully
applied to artificial and biomedical data. It was shown on
the artificial data that total computational time of covering
all the data decreases by several orders of magnitude and
the total number of resulting biclusters also decreases.
It was also shown on the biomedical data that large
biclusters can be interpreted from the point of view of
survival time analysis of patients.

The presented results give a wide variety of further
algorithm development possibilities, starting with other
heuristics analysis and modifications, through further
modifications of the Johnson approach (e.g., for finding
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Fig. 5. Three biomedical datasets: CNV (left), EXP (center) and METH (right).

Fig. 6. Comparison of survival curves of two groups of patients:
from the bicluster (gray) and the remaining ones (black).

just the top of the largest biclusters in the data),
ending with considering the possibility of controlling the
proportions between the number of rows and columns in
the bicluster.

The promising results of prime implicant
approximation for exact biclustering of binary data
suggest that such an approach should also be applied to
biclustering continuous data.
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Michalak, M. and Ślȩzak, D. (2019). On Boolean representation
of continuous data biclustering, Fundamenta Informaticae
167(3): 193–217.

Murali, T.M. and Kasif, S. (2003). Extracting conserved gene
expression motifs from gene expression data, Proceedings
of the Pacific Symposium on Biocomputing, Kauai, HI,
USA, pp. 77–88.

Orzechowski, P. and Boryczko, K. (2016). Text mining with
hybrid biclustering algorithms, Proceedings of the 15th In-
ternational Conference on Artificial Intelligence and Soft
Computing, Zakopane, Poland, pp. 102–113.
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