
Int. J. Appl. Math. Comput. Sci., 2020, Vol. 30, No. 1, 173–184
DOI: 10.34768/amcs-2020-0014

A GENETIC ALGORITHM FOR THE MAXIMUM 2–PACKING SET PROBLEM

JOEL ANTONIO TREJO-SÁNCHEZ a, DANIEL FAJARDO-DELGADO b,
J. OCTAVIO GUTIERREZ-GARCIA c,∗

aCenter for Research in Mathematics
National Council of Science and Technology

Carretera Sierra Papacal, Chuburna Puerto km 5, Mérida, 97302, Mexico
e-mail: joel.trejo@cimat.mx

bDepartment of Systems and Computation
National Technological Institute of Mexico—Ciudad Guzman
Av. Tecnológico 100, Ciudad Guzmán, Jalisco, 49000, Mexico

e-mail: dfajardo@itcg.edu.mx

cDepartment of Computer Science
Mexico Autonomous Institute of Technology (ITAM)

Rı́o Hondo 1, Ciudad de México, 01080, Mexico
e-mail: octavio.gutierrez@itam.mx

Given an undirected connected graph G = (V,E), a subset of vertices S is a maximum 2-packing set if the number of
edges in the shortest path between any pair of vertices in S is at least 3 and S has the maximum cardinality. In this paper,
we present a genetic algorithm for the maximum 2-packing set problem on arbitrary graphs, which is an NP-hard problem.
To the best of our knowledge, this work is a pioneering effort to tackle this problem for arbitrary graphs. For comparison,
we extended and outperformed a well-known genetic algorithm originally designed for the maximum independent set
problem. We also compared our genetic algorithm with a polynomial-time one for the maximum 2-packing set problem
on cactus graphs. Empirical results show that our genetic algorithm is capable of finding 2-packing sets with a cardinality
relatively close (or equal) to that of the maximum 2-packing sets. Moreover, the cardinality of the 2-packing sets found by
our genetic algorithm increases linearly with the number of vertices and with a larger population and a larger number of
generations. Furthermore, we provide a theoretical proof demonstrating that our genetic algorithm increases the fitness for
each candidate solution when certain conditions are met.

Keywords: maximum 2-packing set, genetic algorithms, graph algorithms.

1. Introduction

A k-packing set of graph vertices (Garey and Johnson,
2002) is a collection of vertices, such that the shortest
path between any pair of vertices has at least k + 1 edges.
Notice that the 1-packing set is commonly referred to
as the independent set. In this paper, we focus on the
problem of finding a 2-packing set, i.e., finding a subset
S of vertices such that two given vertices in S have no
common neighbors.

Graphs have been used widely for modeling multiple
real-world problems. For instance, in the work of Baran

∗Corresponding author

(2018), the problem of finding closest paths in graphs
is used for pattern recognition in the context of X-ray
imaging. In this regard, in this paper, the problem
of finding 2-packing sets in graphs has as a variety of
applications when we need mutual exclusion between
nodes with overlapping neighbourhoods (Gairing et al.,
2004a); for instance, in network modeling (Agrawal et al.,
1995), facility allocation (Feitelson, 1996), or frequency
assignment (Hale, 1980), among others. In addition,
recently, this problem has attracted the attention of the
distributed computing community, mainly for the design
of self-stabilizing algorithms (see, e.g., Gairing et al.,

mailto:joel.trejo@cimat.mx
mailto:dfajardo@itcg.edu.mx
mailto:octavio.gutierrez@itam.mx

174 J.A. Trejo-Sánchez et al.

2004a; 2004b; Manne and Mjelde, 2006; Turau, 2012;
Shi, 2012; Trejo-Sánchez and Fenández-Zepeda, 2012,
Trejo-Sánchez et al., 2017).

The problem of computing a maximum 2-packing
set for arbitrary graphs is NP-hard (Hochbaum and
Shmoys, 1985). Although it is possible to obtain optimal
solutions for trivial instances of this problem, as the
size of the problem grows, the execution time increases
exponentially. Genetic algorithms (GAs) (Holland,
1975) have been successfully applied to this kind of
problems, where efficient exact algorithms are unknown,
as, for example, the problem of setting optimal times
to traffic lights in junctions (Adacher and Gemma,
2017). GAs are search methods based on the principles
of biological evolution to efficiently solve multi-modal
and multi-dimensional optimization problems (Eiben and
Smith, 2015). In this context, a set of individuals,
representing candidate solutions to a given problem,
evolves towards a population of better individuals through
operations based on natural selection (survival and
reproduction of the fittest) and genetics (crossover and
mutation). When the GA finishes its execution, the
resulting solution is represented by the individual with the
highest fitness value. Solutions provided by a simple GA
can be improved through the addition of other methods or
data structures incorporated within them.

In this paper, we present a genetic algorithm
called gen2pack for the maximum 2-packing set
problem. We enhance the algorithm with a local
improvement procedure specifically designed for the
maximum 2-packing set problem. By doing so, gen2pack
is capable of finding (sub)optimal 2-packing sets on
arbitrary graphs (as supported by our empirical evidence).
We also provide a theoretical proof demonstrating that
gen2pack increases the fitness for each candidate solution
when certain conditions are met. We evaluate the
effectiveness of gene2pack by performing comparisons
with (i) the optimal solution, (ii) an extended version
of the genetic algorithm proposed by Back and Khuri
(1994), originally designed for the maximum independent
set problem, and (iii) a polynomial-time algorithm to
compute maximum 2-packing sets on cactus graphs
proposed by Flores-Lamas et al. (2018).

This paper is organized as follows. Section 2
provides some basic definitions and concepts. Section 3
presents the previous work on the maximum 2-packing
set problem and similar issues. Section 4 presents
our algorithm and some theoretical results. Section 5
discusses our empirical results. Finally, in Section 6, we
present some concluding remarks and future work.

2. Preliminaries

Let G = (V,E) be an undirected graph. The distance
between two vertices in G is the number of edges in a

shortest path connecting them. The neighborhood of a
vertex x, denoted as N(x), is the set of vertices at distance
one from x, i.e., N(x) = {y|∃{x, y} ∈ E}. The two-
distance neighborhood of a vertex x, denoted as N2(x),
consists of the set of vertices that are at distance two from
x, i.e., N2(x) = {z|∃y ∈ V such that {x, y} ∧ {y, z} ∈
E}.

A subset of vertices I ⊆ V is an independent set
if there is no edge {x, y} ∈ E such that both x and y
belong to I . The problem of finding an independent set of
maximum cardinality is an NP-hard one (Karp, 1972). A
subset S ⊆ V is a 2-packing set of G if, given two vertices
x, y ∈ S, there exist at least three edges between them,
i.e., the distance dist(x, y) ≥ 3. A 2-packing set S is
maximal if there is no 2-packing set S′ such that S ⊂ S′.
The maximum 2-packing set S′ is the maximal 2-packing
set of the largest cardinality.

3. Related work

Most of the results for the 2-packing set are in the context
of distributed algorithms (Gairing et al., 2004a; 2004b;
Manne and Mjelde, 2006; Shi, 2012; Trejo-Sánchez and
Fernández-Zepeda, 2012; 2014; Trejo-Sánchez et al.,
2017). However, these algorithms compute a maximal
2-packing set on the input graph, and not necessarily a
maximum 2-packing set. In contrast, our present work is
focused on finding maximum 2-packing sets.

In addition, some of the research efforts tackling
the 2-packing set problem are only focused on particular
types of graphs (for which polynomial-time algorithms
can be implemented), such as those of Trejo-Sánchez and
Fernández-Zepeda (2012) or Trejo-Sánchez et al. (2017)
for cactus graphs, Trejo-Sánchez and Fernández-Zepeda
(2014) for outer planar graphs, and Soto et al. (2018)
for 2-token graphs. Following this vein, Mjelde
(2004) designed an exact algorithm to compute a
maximum 2-packing set on rooted trees by using dynamic
programming. More recently, Flores-Lamas et al. (2018)
devised an exact algorithm to compute a maximum
2-packing set on a cactus graph, firstly computing a
maximum 2-packing set in unicyclic graphs, and then
extending such result for general cacti. Soto et al. (2018)
compute the size of the maximum 2-packing set in 2-token
graphs, and prove that this value is useful for error
correcting codes.

It should be noted that, to the best of our knowledge,
there is no research effort dealing with the maximum
2-packing set problem for arbitrary graphs. Nevertheless,
several metaheuristic approaches have been designed
for the maximum independent set problem for arbitrary
graphs. In this regard, Back and Khuri (1994) defined an
evolutionary algorithm for the maximum independent set
problem. They represent each individual of the population
as a binary string of a length equal to the number of

A genetic algorithm for the maximum 2-packing set problem 175

vertices in the graph. If a vertex belongs to an independent
set, it is represented as a 1-bit, otherwise it is the
0-bit. Back and Khuri’s algorithm performs crossover and
mutation operations according to the traditional canonical
genetic algorithms. Lamm et al. (2017) designed
evolutionary heuristics that compute independent sets on
very large sparse graphs. The algorithm of Lamm et al.
(2017) combines complex reduction rules to reduce the
size of the input graph to a smaller one, in such a way that
the solution in the reduced graph is valid for the original.
However, such reduction rules are not necessarily valid for
the maximum 2-packing set problem because the vertices
of a 2-packing set of a reduced graph may be in conflict
with other vertices of the original graph.

Also in the context of the maximum independent set
problem, Andrade et al. (2012) designed a local search
method to compute independent sets. A local search is
a technique that, given a solution Si of the problem, it
always tries to improve the current solution in the next
iteration Si+1 of the algorithm. Andrade et al.’s (2012)
local search swaps j vertices from a current independent
set with k vertices where k > j. Their algorithm
guarantees an improvement of an independent set, if
possible. Following this line of work, Nogueira et al.
(2018) designed a local search algorithm for the weighted
maximum independent set problem (which consists of
finding an independent set I with weighted vertices, such
that the sum of the weights in I is maximum). Nogueira
et al.’s (2018) algorithm, similar to that of Andrade et al.
(2012), swaps some vertices from a given solution to
obtain a better weighted independent set.

In this work, we propose a pioneering research
effort to address the maximum 2-packing set problem for
arbitrary graphs, which is described next.

4. Gene2pack: A genetic algorithm for the
maximum 2-packing set problem

Gene2pack produces approximated solutions for the
maximum 2-packing set problem for arbitrary graphs. The
input of the gene2pack algorithm is a (0,1)-adjacency
matrix that represents an unweighted undirected graph
G = (V,E), where |V | = n, and each vertex has a unique
integer identifier between 1 and n. The output is a set
S ⊆ V that represents a 2-packing set of G.

The representation of each individual in
the gene2pack algorithm is a binary vector
�x = (x1, x2, . . . xn) ∈ {0, 1}n, such that xi = 1
indicates that vertex vi belongs to S and xi = 0
otherwise, ∀i ∈ [1 . . . n]. Pseudo-code 1 shows an outline
of the gene2pack algorithm.

Step 1 of Pseudo-code 1 consists in adding a
self-edge (loop) to each vertex of the input graph G. This
step takesO(n) time to complete. We refer to this graph as
G′ and to its corresponding adjacency matrix as A′. Step 2

Algorithm 1. Gene2pack algorithm.
Input: An adjacency matrix A corresponding to an

undirected connected graph G = (V,E).
Output: A set S that represents the vertices of the

2-packing solution of G.
1: Compute matrix A′ obtained by setting every element

{aii} of A to 1.
2: Compute C = A′ ×A′ and set every element {cii} =

0.
3: (Initialization) Produce a set of μ individuals at

random as the initial population.
4: (Evaluation) Evaluate the fitness for each individual

of the initial population.
5: repeat
6: (Parent selection) Build a pool of μ individuals

using a roulette wheel method.
7: (Crossover) Recombine pairs of the selected

parents to generate λ = Pcμ offspring, where Pc

is the crossover rate.
8: (Mutation) Mutate each offspring with probability

Pm selected randomly and uniformly.
9: (Local improvement) Execute Local Improvement

procedure to the set of offspring.
10: (Evaluation) Evaluate the fitness of each offspring.

11: (Survivor selection) Create a new generation of
μ individuals using deterministic fitness-based
replacement.

12: until complete τ generations.
13: return the best individual of the last generation.

computes A′ × A′ and stores the results in matrix C in
O(n3) time. The value of each element cij ofC represents
the number of walks of a length of 2 from vertex i to vertex
j. Therefore, when cij = 0, the distance between vertices
i and j is at least three edges.

Step 3 of Pseudo-code 1 generates an initial
population of μ random binary vectors as solutions of the
input graph G. Encoding and storing a candidate solution
as a random �x require O(n) time; then, encoding the
entire initial population requires O(μn) time. A random
binary vector at this stage is, in general, not a solution for
the 2-packing set problem. To guide the search towards
a feasible region for the problem, we use the penalty
function approach of Back and Khuri (1994) implemented
on the fitness function expressed in (1). Based on this
function, Steps 4 and 10 evaluate the fitness for each
individual �x of the population in O(μn) time,

f(�x) =
n∑

i=1

(xi − n · xi ·
n∑

j=1

xjcij). (1)

Let v be a vertex of V in graph G, and assume that
v ∈ S. We denote as S(v) (S2(v)) the set of vertices

176 J.A. Trejo-Sánchez et al.

in N(v) (N2(v)) belonging to S. Therefore, the set
Cv = {S(v) ∪ S2(v)} includes the vertices in conflict
with vertex v. In the fitness function expressed in (1), the
penalty increases proportionally to the cardinality of Cv .
Additionally, the penalty also depends on the closeness
of the vertices that cause the conflict, in such a way that
the fitness function penalizes more heavily the vertices in
S(v) than the vertices in S2(v). This is only possible
due to the extension of the adjacency matrix computed
by Steps 1 and 2 of Pseudo-code 1. Figure 1 shows three
different candidate solutions for a 2-packing set. Solid
vertices (of a candidate solution) are assumed to belong
to the 2-packing set whereas hollow vertices are not.
Using our fitness function, the configuration of Fig. 1(a)
has a penalty greater than that of Fig. 1(b), and for the
configuration of Fig. 1(c) there is no penalty.

Regarding evolutionary operators, the gene2pack
algorithm uses a roulette wheel method in combination
with the linear dynamic scaling technique (Step 6 of
Pseudo-code 1), where the probability of an individual
to be a parent is proportional to its fitness value. It
is acknowledged that gene2pack can use other parent
selection methods (e.g., tournament selection), although
preliminary trials showed no significant difference (see
Section 5.4). The implementation of the roulette
wheel method requires O(μn2) time in each generation.
The algorithm uses the well-known operators (one-point
crossover and bit-flip mutation) to recombine pairs of
individuals from the pool of selected individuals (Step 7)
and to flip the value of every bit of �x with probability
Pm (Step 8), respectively. Steps 7 and 8 both require
O(μn) time for recombining and mutating the entire
population in each generation. The algorithm uses a
fitness-based replacement scheme (implemented with a
sorting algorithm in O(μ logμ) time) to generate a new
population from the union of the μ individuals of the
previous generation and the λ offspring (Step 11). This
scheme introduces elitism into the evolutionary process
and guarantees the survival of the fittest individual.
The gene2pack algorithm iterates until it completes τ
generations. After that, the algorithm returns the best

x w u v y
(a)

u w y v x
(b)

w u v x y
(c)

Fig. 1. Example of the evaluation of individuals by the fitness
function for the 2-packing set problem.

Algorithm 2. Local Improvement procedure.
Input: A genotype �x of an individual from the

population.
Output: An improved genotype �x′.

1: Decode genotype �x to a phenotype S
2: if S = ∅ then
3: Randomly choose a vertex from V and insert it into

S.
4: end if
5: Build set A = {v|v ∈ V and t(v) ≥ 2}.
6: for each vertex v ∈ A do
7: if v ∈ S then
8: S = S \ v
9: end if

10: Remove from S one neighbor vertex of v.
11: end for
12: Encode S to a new genotype �x′.
13: return �x′

individual found in the last generation (Step 13).
Step 9 of Pseudo-code 1 introduces a novel local

improvement procedure for the gene2pack algorithm. It
allows this algorithm to generate higher quality solutions
for the maximum 2-packing set problem. Pseudo-code 2
shows the proposed local improvement procedure.

The procedure takes as input a genotype �x and
returns an improved version �x′ (if possible, if not then
�x′ = �x). The procedure decodes �x as a candidate solution
S for the 2-packing set problem in O(n) time (Step 1 of
Pseudo-code 2). If S is empty, it randomly chooses a
vertex v ∈ V and inserts v into S in O(1) time (Steps 2–4
of Pseudo-code 2). Step 5 of Pseudo-code 2 identifies a set
A of vertices with a tightness of 2 or more. We say that the
tightness of any vertex v, denoted as t(v), is the number
of vertices in S belonging to the closed neighborhood of
v, i.e., t(v) = |N [v] ∩ S|. Since each vertex evaluates
all its neighborhood to determine its tightness, Step 5
can take O(n2) time for dense graphs. Notice that, in a
valid solution for the 2-packing set problem, every vertex
v ∈ V can be t(v) = 1 or t(v) = 0. Therefore, a way
to improve a candidate solution is by deletion of vertices
with a tightness 2 or more until a feasible solution is
reached. Finally, in Steps 6–11 of Pseudo-code 2, each
vertex v of A chooses one neighbor in S and removes
it from S in O(1) time. Additionally, if v is in S, v is
also removed from it. Applying the Local Improvement
procedure to the set of λ offspring takes O(λn2) time in
Step 9 of Pseudo-code 1.

In summary, the overall execution time of the
gene2pack algorithm is O(n3 + μn+ τ(μn2 + μ logμ)).

Figure 2(a) shows an instance graph G with a
candidate solution S = {r, s, t, w, x, y} for the 2-packing
problem. Notice that vertices r, s, and t have a tightness
of 1, w and x have a tightness of 2, and the remaining

A genetic algorithm for the maximum 2-packing set problem 177

vertices have a tightness of 3. Figure 2(b) shows the
same graph after the execution of the local improvement
procedure, whose candidate solution is S′ = {r, t}. It
is important to note that the candidate solution S′ is not
a valid 2-packing set; however, it is a better candidate
solution than S according to the fitness function.

Next, we prove that the local improvement procedure
always improves the fitness of the offspring when there are
vertices in conflict.

Let C�x be the set of vertices in conflict for a
2-packing set solution for individual �x. We say that a
vertex v is valid in the 2-packing set if v /∈ Cx. Observe
that, when C�x = ∅, the 2-packing set is valid. The next
results follow from our local improvement procedure.

Lemma 1. After a local improvement to an individual �x
with vertices in conflict, the set C�x decreases in cardinal-
ity.

Proof. Let |C−
�x | be the cardinality of C�x before local

improvement, and let |C+
�x | be the cardinality of C�x after

local improvement. Notice that all the vertices in C�x

have at least one neighbor in A. After Steps 8 and 10
of Pseudo-code 2, each vertex in A removes one or two
vertices from C�x. Thus |C−

�x | > |C+
�x |. �

Lemma 2. For a valid 2-packing set, no local improve-
ment is possible.

Proof. Since t(v) < 2 for all v in �x, the set A is empty.
Thus, no local improvement is possible. �

Lemma 3. The local improvement procedure does not
remove valid vertices.

Proof. We prove by contradiction. Assume that the local
improvement procedure removes a valid vertex v. This is
due to the following two cases:

Case a. Vertex v is in the set A. If v is in A, then t(v) ≥ 2,
which is a contradiction.

Case b. Vertex v is not in the set A. Then ∃u ∈ N(v),
such that t(u) ≥ 2, i.e., u ∈ A. Then, u has at least
two neighbors in the 2-packing set, v and some vertex w.
Thus, v is not a valid vertex, which is a contradiction.

By contradiction of Case a and Case b, the result
follows. �

Theorem 1. The local improvement procedure increases
the fitness for each individual with vertices in conflict.

Proof. The result follows from Lemmas 2 and 3. �

5. Evaluation

Experiments were conducted to evaluate the performance
of gene2pack (described in Section 4) for the maximum
2-packing set problem. Gene2pack was implemented

using DEAP, an open-source evolutionary computation
framework (Fortin et al., 2012), version 1.2.2. The
experiments were carried on a Mac Pro with the following
specifications: 2.7 GHz 12-Core Intel Xeon E5 and 64 GB
1866 MHz DDR3 with a macOS High Sierra operating
system, version 10.13.1.

5.1. Objectives. We conducted three series of
experiments to evaluate the effectiveness of gene2pack.

The first series was designed to evaluate the
effectiveness of gene2pack on arbitrary graphs, namely,
connected Erdös–Rényi graphs. We selected these
because they are well-known and commonly used to
evaluate graph algorithms (Gregor and Lumsdaine, 2005).

The second series of experiments was designed to
evaluate the effectiveness of gene2pack on cycle graphs
of linearly increasing order. A cycle graph (also known
as a circular or ring graph) is a simple connected graph
where all vertices have a degree 2. We selected cycle
graphs because the cardinality of a maximum 2-packing
set of a cycle graph C can be mathematically computed
as �|C|/3, where |C| is the order of the cycle graph.
In doing so, we were able to establish a baseline against
which to measure the effectiveness of gene2pack.

The third series of experiments was designed to
evaluate the effectiveness of gene2pack on randomly
generated cactus graphs of linearly increasing order. A
cactus graph is a connected outerplanar graph where
any two simple cycles share at most one vertex. We
selected cactus graphs because there is a polynomial-time
algorithm to compute the cardinality of maximum
2-packing sets on cactus graph (see Flores-Lamas et al.,
2018).

s

t w

r

y

x

u v

(a)

r

t

s u v y

x

w

(b)

Fig. 2. Example of the execution of the local improvement func-
tion for an individual �x: the individual �x before the local
improvement (a), the resulting individual �x′ after the lo-
cal improvement (b).

178 J.A. Trejo-Sánchez et al.

5.2. Benchmarks. We used three benchmarks to
evaluate the effectiveness of gene2pack: (i) a comparison
with an extended version of a genetic algorithm to
compute maximum 2-packing sets on arbitrary graphs
proposed by Back and Khuri (1994), hereafter referred to
as the extended BK genetic algorithm; (ii) a comparison
with the optimal solution on Erdös–Rényi graphs and
cycle graphs; and (iii) a comparison with an exact
algorithm to compute maximum 2-packing sets on cactus
graphs proposed by Flores-Lamas et al. (2018), hereafter
referred to as the Flores-Lamas algorithm.

• Comparing against the extended BK genetic algo-
rithm for arbitrary graphs. The genetic algorithm
proposed by Back and Khuri (1994) is focused
on solving the maximum independent set problem;
however, we adapted it for the maximum 2-packing
set one. The modification consisted of penalizing
unfeasible individuals for every vertex that does
not belong to a maximum 2-packing set (instead
of a maximum independent set). The algorithm
proposed by Back and Khuri was extended and
implemented for comparison because it (i) also uses
an evolutionary approach, (ii) solves a very similar
problem, and (iii) could be adapted for the maximum
2-packing set problem relatively easily while keeping
its algorithmic structure. With this adaptation,
the extended BK genetic algorithm is capable
of solving the maximum 2-packing set problem.
Notice that this algorithm does not include a local
improvement procedure. It should be noted that
we re-implemented the genetic algorithm proposed
by Back and Khuri also using DEAP (Fortin et al.,
2012). It is worth mentioning that we did not
select a genetic algorithm approach (or any other
approach) specifically designed for the maximum
2-packing set problem for arbitrary graphs as a
benchmark because, to the best of our knowledge,
we are the first to address the maximum 2-packing
set problem for arbitrary graphs. We would like
to indicate that we explored adapting other methods
(specifically designed for the maximum independent
set problem) such as that of Lamm et al. (2017),
based on graph reduction rules, and of Andrade et al.
(2012) and Nogueira et al. (2018), based on local
search methods. However, these extensions imply
major and complex adaptations, which may have
resulted in completely different approaches.

• Comparing against optimal solutions on Erdös-
Rényi graphs and cycle graphs. With respect
to Erdös–Rényi graphs (see Section 5.3 for a
description of their creation), we computed their
maximum 2-packing sets by utilizing a brute-force
algorithm. It was implemented using (i) the C
programming language to prevent the overhead

derived from interpreting code and (ii) openMP to
take advantage of the multicore processor where
the experiments were carried on. In addition, it
should be noted that, due to the exponential growth
in execution time when solving NP-hard problems
using brute-force algorithms, we obtained maximum
2-packing sets of only relatively small arbitrary
graphs ranging in order from 20 to 40 vertices. To
illustrate this exponential growth in execution time,
the parallel brute-force algorithm obtained maximum
2-packing sets of 40-vertex graphs in approximately
3 to 4 days and, given that the brute-force algorithm
faces exponential growth as the number of vertices
increases, obtaining a maximum 2-packing set of a
50-vertex graph may take 3,072 days approximately
using the same computer where the experiments
were carried out. With respect to cycle graphs, as
explained in Section 5.1, we obtained the cardinality
of their maximum 2-packing sets using a simple
mathematical expression (�|C|/3).

• Comparing against the Flores-Lamas algorithm for
cactus graphs. The polynomial-time algorithm
proposed by Flores-Lamas et al. (2018) was designed
for cactus graphs. Flores-Lamas et al. (2018) solve
the maximum 2-packing set problem for a unicyclic
graph, and then generalize the solution to cactus
graphs composed of simple cycles. It should be noted
that the Flores-Lamas algorithm cannot be fully
compared with gene2pack because the former works
only for cactus graphs and obtains optimal solutions,
whereas the latter works for arbitrary graphs (which
also include cactus graphs) and obtains (sub)optimal
solutions. Nevertheless, the results obtained from
the Flores-Lamas algorithm enabled us to establish a
baseline against which to measure the effectiveness
of gene2pack for relatively large graphs of up to
1,000 vertices.

5.3. Input data source: Erdös–Rényi and cac-
tus graphs. With respect to Erdös–Rényi graphs, we
created a database of connected random graphs ranging
in order from 20 to 40 vertices. This type of random
graphs has been proved to efficiently describe the structure
of some real-world distributed systems (Adamic and
Huberman, 2000); e.g., they adequately simulate network
motifs in biological networks (Amaral et al., 2000; Alon,
2007; Knudsen and Wiuf, 2008). To avoid biased results
due to specific structures of random graphs, we generated
50 graphs for each order category, for an overall total
of 1,050 connected arbitrary graphs. To ensure that
an Erdös–Rényi graph G = (V,E) is connected, we
attempted to compute a spanning tree T = (VT , ET)
such as |V | = |VT | and rejected the graph if it was
not possible. We computed all maximum 2-packing sets

A genetic algorithm for the maximum 2-packing set problem 179

for all the connected Erdös–Rényi graphs by using our
parallel brute-force algorithm described in Section 5.2.

We also created 20 random cactus graphs ranging
from 50 to 1,000 vertices (in steps of 50) using the
procedure described by Trejo-Sánchez et al. (2018).
Unlike Erdös–Rényi graphs, cactus graphs have a
relatively regular structure, and that is why the cardinality
of their maximum 2-packing sets increased linearly with
the number of vertices (see Fig. 6). Hence, we did
not create multiple random cactus graphs (as we did for
Erdös–Rényi graphs).

It is worth mentioning that, to the best of
our knowledge, this is the first database containing
connected Erdös–Rényi and cactus graphs with the
corresponding cardinality of their maximum 2-packing
sets that can be used for benchmarking purposes.
This database of graphs (described using GML, a
portable file format for graphs) and a summary
can be downloaded from https://github.com/
trejoel/Gene2Pack/tree/amcs.

5.4. Experimental settings. In the first series of
experiments both the proposed gene2pack algorithm
and the extended BK genetic algorithm were evaluated
using the database of connected Erdös–Rényi graphs
described in Section 5.3. In addition, in order to
evaluate the effectiveness of the gene2pack algorithm
as the number of generations and individuals increased,
we conducted experiments using populations of (i) 50
individuals evolved for 50 generations, (ii) 100 individuals
evolved for 100 generations, and (iii) 200 individuals
evolved for 200 generations. In spite of the challenge
to accurately estimate the effects of any change in the
operator and parameter settings of the algorithm, we
performed several preliminary trials to find the best
settings consistently, which are reported in Table 1. For
instance, even though our experiments were executed
using roulette selection, we also conducted experiments
using tournament selection for 50 Erdös–Rényi graphs of
an order of 40. In this series of experiments, gene2pack
was executed 50 times for each graph using roulette
selection and 50 times for each graph using tournament
selection, resulting in a total of 5,000 executions.
However, the result of a two-tailed t-test showed that
there was not a significant difference (p > 0.05) between
the cardinalities of the maximum 2-packing sets obtained
by gene2pack using roulette selection and those obtained
using tournament selection (with a tournament size of 3).
Since both gene2pack and the extended BK genetic algo-
rithms make use of random search techniques to explore
the solution space, each algorithm was executed 50 times
for each connected arbitrary graph. This resulted in a total
of 157,500 executions of each algorithm.

In the second series of experiments, both the
proposed gene2pack algorithm and the extended BK ge-

netic algorithm were evaluated using cycle graphs of an
order ranging from 50 to 1,000 in steps of 50. In the third
series of experiments, the gene2pack algorithm, the ex-
tended BK genetic algorithm, and the Flores-Lamas al-
gorithm were evaluated using cactus graphs (of an order
ranging from 50 to 1,000 in steps of 50) described in
Section 5.3. It should be noted that we explored the
performance of gene2pack using cycle and cactus graphs
of up 1,000 vertices because these graphs were sufficiently
large to guarantee statistical significance and allow us
to observe clear patterns in the results. The control
parameters of the genetic algorithms were the same as
those reported for the first series of experiments. As in
the first series, the gene2pack algorithm and the extended
BK genetic algorithm were executed 50 times for each
graph. This resulted in a total of 3,000 executions of each
algorithm for the second and third series of experiments.

5.5. Performance measures. The performance
measures are (i) the average cardinality of the 2-packing
sets obtained by the algorithms and (ii) the number of
times a maximum 2-packing set was obtained by the
algorithms.

5.6. Results and analysis. Empirical results are shown
in Figs. 3–6. Figure 3 depicts the average cardinality of
the 2-packing sets obtained by the gene2pack algorithm
and the extended BK genetic algorithm as well as
the average cardinality of the maximum 2-packing sets
(grouped by order) for connected Erdös–Rényi graphs.
Also regarding connected Erdös–Rényi graphs, Fig. 4
shows the number of maximum 2-packing sets obtained
by the gene2pack algorithm and the extended BK genetic
algorithm as well as the number of possible maximum
2-packing sets grouped by graph order. Figure 5
shows results related to the cycle graphs also grouped
by graph order; in particular, it shows the cardinality
of the corresponding maximum 2-packing sets and the
average cardinality of the 2-packing sets obtained by the
gene2pack algorithm and the extended BK genetic algo-
rithm for cycle graphs. Figure 6 shows results related to
the cactus graphs grouped by graph order, in particular,
it shows the cardinality of the corresponding maximum
2-packing sets obtained by the Flores-Lamas algorithm

Table 1. Configuration set for the gene2pack algorithm.
Parameter Possible values

(μ , τ) : Population size (μ)
and number of generations
(τ) as completion criterion

{(50, 50), (100, 100),
(200, 200)}

Crossover rate (Pc) 0.9
Mutation rate (Pm) 0.3
Survival selection Fitness-based (μ+λ)

https://github.com/trejoel/Gene2Pack/tree/amcs
https://github.com/trejoel/Gene2Pack/tree/amcs

180 J.A. Trejo-Sánchez et al.

6.4
6.64 6.68 6.7

7.28 7.36 7.5 7.44
7.86 7.96

8.34 8.16 8.3 8.4 8.4 8.58 8.62 8.8 8.98
8.58

8.12

0

1

2

3

4

5

6

7

8

9

10

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C
ar

di
na

lit
y

of
 2

-p
ac

ki
ng

 s
et

Order of Erdös-Rényi graphs

Average cardinality of the maximum 2-packing sets

Gene2pack (200 individuals, 200 generations)

Extended BK genetic algorithm (200 individuals, 200 generations)

(a)

6.4
6.64 6.68 6.7

7.28 7.36 7.5 7.44
7.86 7.96

8.34 8.16 8.3 8.4 8.4 8.58 8.62 8.8 8.98
8.58

8.12

0

1

2

3

4

5

6

7

8

9

10

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C
ar

di
na

lit
y

of
 2

-p
ac

ki
ng

 s
et

Order of Erdös-Rényi graphs

Average cardinality of the maximum 2-packing sets

Gene2pack (100 individuals, 100 generations)

Extended BK genetic algorithm (100 individuals, 100 generations)

(b)

6.4
6.64 6.68 6.7

7.28 7.36 7.5 7.44
7.86 7.96

8.34 8.16 8.3 8.4 8.4 8.58 8.62 8.8 8.98
8.58

8.12

0

1

2

3

4

5

6

7

8

9

10

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C
ar

di
na

lit
y

of
 2

-p
ac

ki
ng

 s
et

Order of Erdös-Rényi graphs

Average cardinality of the maximum 2-packing sets

Gene2pack (50 individuals, 50 generations)

Extended BK genetic algorithm (50 individuals, 50 generations)

(c)

Fig. 3. Overall performance evaluation on Erdös–Rényi graphs.

A genetic algorithm for the maximum 2-packing set problem 181

as well as the average cardinality of the 2-packing sets
obtained by the gene2pack algorithm and the extended
BK genetic algorithm. The error bars and error bands
of Figs. 3, 5, and 6 represent (i) the standard deviation
and (ii) the maximum and minimum values, respectively.
In general, the results obtained by the algorithm with
the local improvement procedure (i.e., the gene2pack
algorithm) are better than those obtained by the algorithm
with no local improvement (i.e., the extended BK genetic
algorithm).

From these empirical results (shown in Figs. 3–6),
we draw four observations.

Observation 1. Performance on Erdös–Rényi graphs. By
(on average) obtaining 2-packing sets of higher cardinality
for connected Erdös–Rényi graphs of order ranging from
20 to 40, the gene2pack algorithm outperformed the ex-
tended BK genetic algorithm (see Fig. 3).

Analysis. For connected Erdös–Rényi graphs, the average
cardinality of the 2-packing sets found by the gene2pack
algorithm and the extended BK genetic algorithm were
7.28 and 6.49, respectively. On average, regardless of
the number of individuals and of generations they evolved
for, the gene2pack algorithm outperformed the extended
BK genetic algorithm in obtaining 2-packing sets of
higher cardinality for each order category of the connected
Erdös–Rényi graphs; see Fig. 3. In addition, the
gene2pack algorithm found 86,518 maximum 2-packing
sets (out of the 157,500 experiment runs exploring
connected Erdös–Rényi graphs), whereas the extended BK
genetic algorithm found only 55,258 maximum 2-packing
sets (see Fig. 4). However, it is acknowledged that,
as shown in Fig. 4, the number of maximum 2-packing
obtained by both the gene2pack algorithm and the ex-
tended BK genetic algorithm decreased as the graph
order increased. This may be improved increasing the
number of generations or the number of individuals (as
discussed in Observation 4). The gene2pack algorithm
achieved better results than the extended BK genetic algo-
rithm due to the local improvement procedure specifically
designed for the maximum 2-packing set problem.
Nonetheless, it should be acknowledged that due to the
local improvement procedure, the gene2pack algorithm
required on average 17.34% more execution time than
the extended BK genetic algorithm. Finally, it is worth
mentioning that we conducted a two-tailed t-test and
the results indicate that the means of the cardinality
of the 2-packing sets found by the two algorithms are
statistically different (p < 0.001).

Observation 2. Performance on cycle graphs. Whereas,
in general, the extended BK genetic algorithm obtained
feasible solutions for only cycle graphs of order 50 (in
addition to two feasible solutions for cycle graphs of order
100), the gene2pack algorithm obtained feasible solutions

for all the cycle graphs of order ranging from 50 to 1,000
vertices (see Fig. 5).

Analysis. Although the cardinality of a maximum
2-packing set of cycle graphs can be mathematically
calculated, neither the gene2pack algorithm nor the
extended BK genetic algorithm were designed taking
into account special types of graphs. Regardless of
the particularities of cycle graphs and unlike the ex-
tended BK genetic algorithm, the gene2pack algorithm
(by using a local improvement procedure) was capable
of finding feasible 2-packing sets whose cardinality
increased linearly with the number of vertices. It
is acknowledged that the 2-packing sets found by the
gene2pack algorithm were not maximum; however, the
larger the graphs, the higher the cardinality of the
2-packing sets.

Observation 3. Performance on cactus graphs.
Gene2pack obtained 2-packing sets for cactus graphs
of up to 1,000 vertices, whereas the extended BK ge-
netic algorithm only obtained feasible 2-packing sets for
50-vertex cactus graphs and 100-vertex cactus graphs
(although in this case only 3 times out of 150 experiment
runs); see Fig. 6.

Analysis. The maximum 2-packing sets of the cactus
graphs were obtained using the Flores-Lamas algo-
rithm, which is an exact, polynomial-time algorithm.
The cardinality of the maximum 2-packing sets of the
cactus graphs increased linearly with the graph order.
In this regard, unlike the extended BK genetic algo-
rithm, the cardinality of the 2-packing sets obtained by
gene2pack also increased linearly with the graph order.
Nevertheless, we acknowledge that the Flores-Lamas al-
gorithm outperformed both gene2pack and the extended
BK genetic algorithm. However, whereas gene2pack is
capable of finding feasible 2-packing sets for Erdös–Rényi
graphs (Fig. 3), cycle graphs (Fig. 5), and cactus graphs
(Fig. 6), the Flores-Lamas algorithm is unable to find
2-packing sets for arbitrary graphs because it relies on
assumptions that can only be found in the structure of
cactus graphs.

Observation 4. Impact of generations and population
size. By increasing the number of individuals and of
generations these individuals evolved for, the gene2pack
algorithm found 2-packing sets of higher cardinality.

Analysis. For Erdös–Rényi graphs (Fig. 3), cycle graphs
(Fig. 5), and cactus graphs (Fig. 6), the larger the
population size and the higher the number of generations,
the better the solutions found by gene2pack. Moreover,
in the case of cycle and cactus graphs, the cardinality
of the 2-packing sets obtained increased linearly with
the number of vertices. In this regard, it is important
to notice that the slope of the results obtained by the
gene2pack increased as both the number of generations

182 J.A. Trejo-Sánchez et al.

0

500

1000

1500

2000

2500

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

N
um

be
r o

f t
im

es
 th

e
ge

ne
tic

 a
lg

or
ith

m

ob
ta

in
ed

 th
e

m
ax

im
um

 2
-p

ac
ki

ng
 s

et

Order of Erdös-Rényi graphs

Number of possible maximum 2-packing sets Gene2pack (200 individuals, 200 generations)
Extended BK genetic algorithm (200 individuals, 200 generations) Gene2pack (100 individuals, 100 generations)
Extended BK genetic algorithm (100 individuals, 100 generations) Gene2pack (50 individuals, 50 generations)
Extended BK genetic algorithm (50 individuals, 50 generations)

Fig. 4. Number of maximum 2-packing sets obtained for Erdös–Rényi graphs.

16
33

50
66

83
100

116
133

150
166

183
200

216
233

250
266

283
300

316
333

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

C
ar

di
na

lit
y

of
 2

-p
ac

ki
ng

 s
et

Order of cycle graphs

Cardinality of the maximum 2-packing set
Gene2pack (200 individuals, 200 generations)
Extended BK genetic algorithm (200 individuals, 200 generations)
Gene2pack (100 individuals, 100 generations)
Extended BK genetic algorithm (100 individuals, 100 generations)
Gene2pack (50 individuals, 50 generations)
Extended BK genetic algorithm (50 individuals, 50 generations)

Fig. 5. Overall performance evaluation on cycle graphs.

17
31

49
65

82
100

116
133

148
166

179
199

214
232

250
264

282
300

315
332

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

C
ar

di
na

lit
y

of
 2

-p
ac

ki
ng

 s
et

Order of cactus graphs

Cardinality of the maximum 2-packing set
Gene2pack (200 individuals, 200 generations)
Extended BK genetic algorithm (200 individuals, 200 generations)
Gene2pack (100 individuals, 100 generations)
Extended BK genetic algorithm (100 individuals, 100 generations)
Gene2pack (50 individuals, 50 generations)
Extended BK genetic algorithm (50 individuals, 50 generations)

Fig. 6. Overall performance evaluation on cactus graphs.

A genetic algorithm for the maximum 2-packing set problem 183

and the population size increased (see Figs. 5 and 6).
These results suggest that the number of generations
and/or individuals should be higher for larger graphs in
order to obtain 2-packing sets of higher cardinality when
using gene2pack. In addition, these results also suggest
that by adjusting the control parameters of the gene2pack
algorithm (such as increasing the number of generations),
may obtain a maximum 2-packing set for relatively large
graphs (of up to 1,000 vertices).

6. Conclusion

The novelty of this work is twofold. First, and most
importantly, to the best of our knowledge, it is the earliest
research effort to provide a solution for the maximum
2-packing set problem for arbitrary graphs. Second, it
contributes the first database containing the cardinality of
maximum 2-packing sets of 1,070 graphs, namely, 1,050
Erdös–Rényi graphs and 20 cactus graphs, which can be
used for benchmarking purposes. The significance of this
research effort is that, by obtaining (maximum) 2-packing
sets from arbitrary graphs, our work provides the research
community and industry with a tool that can be applied to
problems that require distance-two mutual exclusion, e.g.,
the frequency assignment problem (Hale, 1980).

The main contribution of this work is as follows.
We designed and implemented a genetic algorithm for
the maximum 2-packing set problem capable of finding
feasible 2-packing sets whose cardinality increases
linearly with the number of graph vertices. Moreover,
the empirical evidence suggests that, as the number
of generations and the population size of gene2pack
increase, the higher the cardinality of the 2-packing
sets gets. Furthermore, by using a local improvement
procedure, our algorithm outperformed the extended BK
genetic algorithm (Back and Khuri, 1994) by obtaining
2-packing sets of higher cardinality. In this regard, we
also provided a theoretical proof demonstrating that our
local improvement procedure increases the fitness for each
individual with vertices in conflict.

A potential future research direction is to define
graph reduction techniques compatible with the maximum
2-packing set problem. In doing so, our genetic algorithm
may find 2-packing sets of higher cardinality in relatively
smaller graphs in a relatively shorter time. Another future
research direction is to combine our genetic algorithm’s
local improvement procedure with other neighborhood
search heuristics in order to obtain 2-packing sets of
higher cardinality.

Acknowledgment

D. Fajardo-Delgado gratefully acknowledges the financial
support from Tecnológico Nacional de México (TecNM)
under the project 6307.17-P and from PRODEP through

the research group ITCGUZ-CA-7. J.O. Gutierrez-Garcia
gratefully acknowledges the financial support from
Asociación Mexicana de Cultura, A.C.

References
Adacher, L. and Gemma, A. (2017). A robust algorithm

to solve the signal setting problem considering different
traffic assignment approaches, International Journal of Ap-
plied Mathematics and Computer Science 27(4): 815–826,
DOI: 10.1515/amcs-2017-0057.

Adamic, L.A. and Huberman, B.A. (2000). Power-law
distribution of the world wide web, Science
287(5461): 2115–2115.

Agrawal, A., Klein, P. and Ravi, R. (1995). When trees
collide: An approximation algorithm for the generalized
Steiner problem on networks, SIAM Journal on Comput-
ing 24(3): 440–456.

Alon, U. (2007). An Introduction to Systems Biology: Design
Principles of Biological Circuits, Chapman & Hall/CRC,
Boca Raton, FL.

Amaral, L.A.N., Scala, A., Barthélémy, M. and Stanley, H.E.
(2000). Classes of small-world networks, Proceedings of
the National Academy of Sciences 97(21): 11149–11152.

Andrade, D.V., Resende, M.G. and Werneck, R.F. (2012). Fast
local search for the maximum independent set problem,
Journal of Heuristics 18(4): 525–547.

Back, T. and Khuri, S. (1994). An evolutionary heuristic
for the maximum independent set problem, IEEE World
Congress on Computational Intelligence, Orlando, FL,
USA, pp. 531–535.

Baran, M. (2018). Closest paths in graph drawings under
an elastic metric, International Journal of Applied Math-
ematics and Computer Science 28(2): 387–397, DOI:
10.2478/amcs-2018-0029.

Eiben, A.E. and Smith, J.E. (2015). Introduction to Evolu-
tionary Computing, Natural Computing Series, 2nd Edn,
Springer-Verlag, Berlin/Heidelberg.

Feitelson, D.G. (1996). Packing schemes for gang scheduling,
in D. G. Feitelson and L. Rudolph (Eds), Workshop on Job
Scheduling Strategies for Parallel Processing, Springer,
Berlin/Heidelberg, pp. 89–110.

Flores-Lamas, A., Fernández-Zepeda, J.A. and Trejo-Sánchez,
J.A. (2018). Algorithm to find a maximum 2-packing set
in a cactus, Theoretical Computer Science 725: 31–51.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M.
and Gagné, C. (2012). DEAP: Evolutionary algorithms
made easy, Journal of Machine Learning Research
13(7): 2171–2175.

Gairing, M., Geist, R.M., Hedetniemi, S.T. and Kristiansen,
P. (2004a). A self-stabilizing algorithm for maximal
2-packing, Nordic Journal of Computing 11(1): 1–11.

Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P.
and McRae, A.A. (2004b). Distance-two information
in self-stabilizing algorithms, Parallel Processing Letters
14(03n04): 387–398.

184 J.A. Trejo-Sánchez et al.

Garey, M.R. and Johnson, D.S. (2002). Computers and In-
tractability, Vol. 29, WH Freeman New York, NY.

Gregor, D. and Lumsdaine, A. (2005). The parallel BGL: A
generic library for distributed graph computations, Parallel
Object-Oriented Scientific Computing (POOSC), Glasgow,
UK, pp. 1–18.

Hale, W.K. (1980). Frequency assignment: Theory and
applications, Proceedings of the IEEE 68(12): 1497–1514.

Hochbaum, D.S. and Shmoys, D.B. (1985). A best possible
heuristic for the k-center problem, Mathematics of Oper-
ations Research 10(2): 180–184.

Holland, J.H. (1975). Adaptation in Natural and Artificial Sys-
tems: An Introductory Analysis with Applications to Bi-
ology, Control, and Artificial Intelligence, University of
Michigan Press, Ann Arbor, MI.

Karp, R.M. (1972). Reducibility among combinatorial problems,
in R.E. Miller et al. (Eds), Complexity of Computer Com-
putations, Springer, Boston, MA, pp. 85–103.

Knudsen, M. and Wiuf, C. (2008). A Markov chain approach to
randomly grown graphs, Journal of Applied Mathematics
2008: 1–14.

Lamm, S., Sanders, P., Schulz, C., Strash, D. and Werneck, R.F.
(2017). Finding near-optimal independent sets at scale,
Journal of Heuristics 23(4): 207–229.

Manne, F. and Mjelde, M. (2006). A memory efficient
self-stabilizing algorithm for maximal k-packing, in
A.K. Datta and M. Gradinariu (Eds), Symposium on
Self-Stabilizing Systems, Springer, Berlin/Heidelberg,
pp. 428–439.

Mjelde, M. (2004). k-Packing and k-Domination on Tree
Graphs, Master’s thesis, University of Bergen, Bergen.

Newman, M.E.J. (2002). Handbook of Graphs and Networks,
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, DOI:
10.1002/3527602755.

Nogueira, B., Pinheiro, R.G. and Subramanian, A. (2018). A
hybrid iterated local search heuristic for the maximum
weight independent set problem, Optimization Letters
12(3): 567–583.

Shi, Z. (2012). A self-stabilizing algorithm to maximal
2-packing with improved complexity, Information Pro-
cessing Letters 112(13): 525–531.

Soto, J.G., Leanos, J., Rı́os-Castro, L. and Rivera, L. (2018).
The packing number of the double vertex graph of the path
graph, Discrete Applied Mathematics 247: 327–340.

Trejo-Sánchez, J. A., Vela-Navarro, A., Flores-Lamas,
A., López-Martı́nez, J.L., Bermejo-Sabbagh, C.,
Cuevas-Cuevas, N.L. and Toral-Cruz, H. (2018). Fast
random cactus graph generation, in M. Torres et al. (Eds),
International Conference on Supercomputing in Mexico,
Springer, Cham, pp. 129–136.

Trejo-Sánchez, J.A. and Fernández-Zepeda, J.A. (2012). A
self-stabilizing algorithm for the maximal 2-packing in a
cactus graph, 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Fo-
rum (IPDPSW), Shanghai, China, pp. 863–871.

Trejo-Sánchez, J.A. and Fernández-Zepeda, J.A. (2014).
Distributed algorithm for the maximal 2-packing in
geometric outerplanar graphs, Journal of Parallel and Dis-
tributed Computing 74(3): 2193–2202.

Trejo-Sánchez, J.A., Fernández-Zepeda, J.A. and
Ramı́rez-Pacheco, J.C. (2017). A self-stabilizing
algorithm for a maximal 2-packing in a cactus graph under
any scheduler, International Journal of Foundations of
Computer Science 28(08): 1021–1045.

Turau, V. (2012). Efficient transformation of distance-2
self-stabilizing algorithms, Journal of Parallel and Dis-
tributed Computing 72(4): 603–612.

Joel Antonio Trejo-Sánchez received his PhD
in computer sciences from CICESE in 2014. He
is research fellow at CONACyT—Centro de In-
vestigación en Matemáticas. His research inter-
ests include combinatorial optimization as well
as distributed and parallel computing.

Daniel Fajardo-Delgado received his MSc and
DSc degrees from CICESE, Mexico, in 2011.
He is currently a titular professor in the De-
partment of Systems and Computation, Instituto
Tecnológico de Ciudad Guzmán, Jalisco, Mex-
ico. His research interests include evolutionary
algorithms, algorithmic game theory, and self-
stabilization.

J. Octavio Gutierrez-Garcia received his PhD
in electrical engineering and computer science
from CINVESTAV and the Grenoble Institute
of Technology, respectively. Currently, he is a
tenured professor in the Department of Computer
Science at ITAM. His research interests include
computational intelligence and distributed sys-
tems.

Received: 1 February 2019
Revised: 13 August 2019
Accepted: 7 September 2019

	Introduction
	Preliminaries
	Related work
	Gene2pack: A genetic algorithm for the maximum 2-packing set problem
	Evaluation
	Objectives
	Benchmarks
	Input data source: Erdös–Rényi and cactus graphs
	Experimental settings
	Performance measures
	Results and analysis

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

