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The classic interval has precise borders A = [a, a] . Therefore, it can be called a type 1 interval. Because of great practical
importance of such interval data, several versions of type 1 interval arithmetic have been created. However, sometimes
precise borders a and a of intervals cannot be determined in practice. If the borders are uncertain, then we have to do
with type 2 intervals. A type 2 interval can be denoted as AT2 =

[
[aL, aR], [aL, aR]

]
. The paper presents multidimen-

sional decomposition RDM type 2 interval arithmetic (D-RDM-T2-I arithmetic), where RDM means relative-distance mea-
sure. The decomposition approach considerably simplifies calculations and is transparent for users. Apart from this arith-
metic, examples of its applications are also presented. To the authors’ best knowledge, no papers on this arithmetic exist.
D-RDM-T2-I arithmetic is necessary to create type 2 fuzzy arithmetic based on horizontal μ-cuts, which the authors aim to
do.

Keywords: multi-dimensional RDM interval arithmetic, type 2 interval arithmetic, RDM type 2 interval arithmetic, de-
composition type 2 interval arithmetic, interval arithmetic.

1. Introduction

Interval arithmetic is based on type 1 intervals which
have precise borders, A = [a, a]. It is of great practical
importance because such intervals allow modeling data
uncertainty in the simplest way. For calculation with type
1 intervals, several versions of type 1 interval arithmetic
have been proposed:

• standard interval arithmetic (SI-arithmetic) of
Warmus (1956), Sunaga (2009) and Moore (1966);

• extended interval arithmetic of Kaucher (1980);

• affine interval arithmetic of De Figuiredo and Stolphi
(2004);

• constrained interval arithmetic of Lodwick (1999;
2015);

• instantiation interval arithmetic of Dubois (2015);

• multidimensional RDM interval arithmetic
(Landowski, 2015; Piegat and Landowski, 2013;
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2015; 2017; 2018; Piegat and Pluciński, 2015; 2017;
Plucinski, 2015).

In some problems there are difficulties with
specification of interval borders. For example, an expert
being asked: “In what interval is an uncertain variable
value a contained?” may answer: “Mostly a ∈
[1100, 1200]”. It is rarely less than 1100, but never
less than 1000 (a ≥ 1000). It is rarely greater than
1200, but never exceeds 1300 (a ≤ 1300). Another
possibility of a type 2 interval is when two or more experts
define different intervals for the evaluation of one and
the same uncertain value. Then the resulting interval
borders are uncertain. A similar knowledge can also result
from technical, medical, or environmental measurements
delivered by measuring instruments. Such knowledge can
be mathematically expressed by type 2 intervals. Figure 1
shows a type 1 interval and its interpretation.

In the case of a type 1 interval, the membership
function μ(x) informs us in which interval the true
value x∗ of variable is surely contained, while the
non-membership function μ(x) indicates in which
domains it is surely not contained. In the case of type 1
intervals, both functions have common borders x and x.
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Fig. 1. Membership function μ(x) of a type 1 interval [x, x] (a)
and a non-membership function μ(x) = μL(x)∪μR(x)
of the value x to interval X = [x, x] (b); x∗: the true,
but not precisely known value of variable x.

Fig. 2. Membership function of sure membership μ(x) to set X
(a) and a function γ(x) of sure non-membership to set
X (b); x∗: the true, but not precisely known value of
variable x.

In the case of type 2 intervals, these borders are not equal;
cf. Fig. 2.

The membership function μ(x) and the
non-membership function γ(x) = γL(x) ∪ γR(x)
provide complete information we sometimes possess
about the true value of x∗ that is not precisely known.
Both functions of type 1 can be aggregated in one
membership function of type 2 shown in Fig. 3.

The inner membership function (MF) μ(x) defines a
domain in which the true value x∗ most probably lies—it
is a domain of high credibility. Outside of this domain lie
intervals [xL, xR] and [xL, xR], in which the true value
can be contained, although, with low credibility. The
global, exterior type 1 MF γ(x) after aggregation with the
inner MF creates a type 2 membership function μT2(x)
with uncertain borders xL ∈ [xL, xL] and xR ∈ [xR, xR].
Thus, the true value x∗ lies in the true interval [xL, xR]
whose borders are uncertain; see Fig. 3(b). There is
a need to elaborate on type 2 interval arithmetic. The
concept of such arithmetic based on the decomposition
of the interval type 2 and on multidimensional RDM
type 1 arithmetic will be presented in Section 3. RDM
means relative-distance measure. It turns the interval
into a mini-Cartesian coordinate-system, in a “small
world”. Hence, Section 2 presents briefly interval RDM
type 1 interval arithmetic. Section 4 contains application
examples of D-RDM-T2 arithmetic, while Section 5
draws conclusions.

2. Outline of multidimensional RDM type 1
interval arithmetic (M-RDM-T1-I
arithmetic)

A number of positive features of M-RDM-T1-I arithmetic
will be described below. The authors do not suggest,
however, that this arithmetic is perfect and has no
weaknesses that should be improved in the future, or that
it excels all the other types of interval arithmetic (IA).
Each of the existing IA-types has a range of applications
that it solves well or satisfactorily. For this reason, the
different variants of IA are in use on the scientific market.
Some types of IA are less complicated mathematically, or
easier to calculate or understand than others. The ease
of understanding the theory has significant impact on a
number of applications. Ultimately, this number is the
most important measure of the usefulness of each theory
(with the exception of completely new theories). The
accuracy of the solutions provided by each theory is also
important.

The main features which differentiate M-RDM-T1-I
arithmetic from other existing versions of interval
arithmetic are given below; RDM-arithmetic has revised
the notion of the uncertain result (solution):

• In M-RDM-T1-I-arithmetic, the direct result
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of arithmetic calculations is not an interval (a
one-dimensional mathematical object) as in other
existing types of interval arithmetic. The direct
calculation result is a multidimensional set of
possible point-results (Piegat and Pluciński,
2015; 2017). The results (solutions) delivered by
M-RDM-I arithmetic are universal algebraic results
(solutions). This means that they satisfy all possible
forms of an equation. For example, in the case of
the equation A + X = B, the delivered solution
X satisfies the forms A + X = B, A = B − X ,
X = B − A, A + X − B = 0 and not only one
single form A +X = B. It prevents the occurrence
of calculation paradoxes in the form of multiple
results (solutions).

• In M-RDM-T1-I arithmetic, in the case of sequential
calculations (e.g., solving linear equation systems)
according to successive terms, the dimensionality
of particular terms is not reduced to one dimension
(intervals). It brings precise results (solutions).

• What in other arithmetic types is assumed to
be the direct calculation result (an interval) in
M-RDM-T1-I-arithmetic is considered to be only
a secondary result, or more precisely an indicator
of the full, multidimensional set of possible
point-results. To precisely determine secondary
results, e.g., the span of the direct result, it is
necessary to possess a full multidimensional result.
Otherwise, in the general case, determining precise
secondary results is not possible. Hence, using
multidimensional interval arithmetic is necessary for
the achievement of high calculation accuracy.

• The M-RDM-T1-I arithmetic enables taking into
account in calculations dependencies and relations
existing between uncertain variables in a problem.
It enables well-founded uncertainty decreasing of
calculation results.

• The M-RDM-T1-I arithmetic possesses almost the
same mathematical properties as crisp number
arithmetic. In particular, it features the inverse
additive element (X − X = 0) and the inverse
multiplicative element (X · (1/X) = 1). The
distribution law X(Y + Z) = XY + XZ and
the cancellation law IF (XZ = Y Z)THEN (X =
Y ), Z �= 0, hold. It enables free and unconstrained
formula transformations for determining problem
solutions. This feature is not contained in standard
interval arithmetic.

In M-RDM-T1-I arithmetic the mathematical model
of the true and possible value of a variable contained in

Fig. 3. Aggregation of a highly credible membership function
μ(x) and a sure non-membership function γ(x) (a) in
one single type 2 membership function μT2(x) of set
XT2 (b); x∗: the true, but not precisely known value of
variable x.

Fig. 4. Illustration of the sense of RDM variable αx, which de-
termines the relative distance of a value x∗ from its left
border x.

the type 1 interval, X = [x, x], is determined by

x = x+ αx(x− x), αx ∈ [0, 1]. (1)

If, e.g., x ∈ [12, 14], then, according to (1), x =
12 + 2αx, αx ∈ [0, 1]. The variable αx is called an RDM
(relative-distance-measure) variable; cf. Fig. 4.

If we want to perform an arithmetic operation ∗, ∗ ∈
{+,−, ·, /}, on two uncertain variables x and y of which
we know that x ∈ X = [x, x] and y ∈ Y = [y, y], the
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result of individual operations is given by the formulas

x+ y = z = [x+ (x− x)αx] + [y + (y − y)αy],

αx, αy ∈ [0, 1]

x− y = z = [x+ (x− x)αx]− [y + (y − y)αy],

αx, αy ∈ [0, 1]

x · y = z = [x+ (x− x)αx] · [y + (y − y)αy],

αx, αy ∈ [0, 1]

x/y = z = [x+ (x− x)αx]/[y + (y − y)αy],

αx, αy ∈ [0, 1], y �= 0.

(2)

It should be noted that the set Z of possible results of
an operation is not one-dimensional (it is not an interval as
suggested by all known interval arithmetic versions). This
set exists in the 3D space X×Y ×Z , which is equivalent
to Ax × Ay × Z . As an example, analyze addition of
two uncertain variable values x and y, knowing that x ∈
X = [3, 5] and y ∈ Y = [7, 10]. RDM models of their
true/possible values have, according to (1), the forms x =
3 + 2αx and y = 7 + 3αy . The addition result is

z = x+ y

= (3 + 2αx) + (7 + 3αy), αx, αy ∈ [0, 1].
(3)

Equation (3) allows generating the set Z of triples
(x, y, z). For instance, for αx = 0.2 and αy = 0.5,
we have x = 3.4, y = 8.5 and z = 11.9, the triple
(3.4, 8.5, 11.9). The result set can be determined as Z =
{(x, y, z = x+y)}. Note that each triple (x, y, z = x+y)
is specific for x and y. In other words, each result z is
addressed by specific, numeric values of x and y. Figure 5
shows the addition result set Z in full 3D space X×Y ×Z ,
and Fig. 6 shows its projection onto 2D space X × Y .

Figure 5 illustrates well the three-dimensional
character of the addition result set Z (of the result granule)
and allows better realization of its multi-dimensionality.
In turn, Fig. 6 shows that the result set can be shown in
a simpler way as a 2D-projection. All existing interval
arithmetic versions as the calculation result give the span
SZ of the result set. Figure 5 shows that the span is
information of weak specificity of the result set, not the
result itself. The result is the full 3D-set Z .

Incorrectness of such thinking can be explained by a
comparison of houses. Imagine two houses of different
architecture and that someone represents them by their
heights only. Two different houses can be of equal
heights h1 and h2, but their geometrical form, length,
width, etc. can be considerably different. The same
situation occurs when one tries to represent two different
multi-dimensional solution sets by their spans only. This
causes a great loss of information, the specificity and
possibility of distinguishing between different results
(solutions) sets. The span of the result set for any
arithmetic operation ∗ ∈ {+,−, ·, /} and for other

Fig. 5. Result set Z of the addition (3) in 3D space X×Y ×Z.

Fig. 6. Result set Z of the addition (3) in 2D space X ×Y ; val-
ues of possible numeric results z are shown by isolines
of constant values z = x+ y = const.

two-element mathematical operations can be calculated
from

SZ = [ min
αx,αy

z(αx, αy), max
αx,αy

z(αx, αy)],

αx, αy ∈ [0, 1],
(4)

where z(αx, αy) is a shortcut of the function z =
fz(αx, αy),

In the case of the discussed addition (3) the span is
given by

SZ = [ min
αx,αy

((3 + 2αx) + (7 + 3αy)),

max
αx,αy

((3 + 2αx) + (7 + 3αy))] = [10, 15],

αx, αy ∈ [0, 1].

(5)

Each of the existing arithmetic types has some
weak points besides its advantages. The first weak
point of M-RDM-T1-I arithmetic is its non-intuitive
nature, which makes it difficult to understand. This is
due to the multidimensionality of this arithmetic. The
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multidimensional solution to the problem mostly cannot
be visualized, seen, imagined, nor easily understood.
However, multidimensional solutions to problems in
M-RDM-T1-I arithmetic have been introduced for a
reason. These solutions allow high accuracy of the results.

The second weak point of M-RDM-T1-I arithmetic
is the difficulty in calculating secondary indicators
(secondary results) of achieved multidimensional
solutions such as span, cardinality histogram, center
of gravity, in the case of a large number of uncertain
parameters and variables. For the span Sz , it is necessary
to find the minimum and maximum values of a function
in which variables are RDM variables αx, αy; see (4).
Optimal values of RDM variables can often be found by
a simple analysis of the function (4) and this is quite easy
for monotonic functions. Optimal values of these RDM
variables, indeterminable by function analysis, can be
determined by an exhaustive search. If it is difficult or too
time-consuming, search methods of artificial intelligence
such as genetic and evolutionary algorithms, artificial life
and others can be used. Searching for optimal values of
RDM variables αx, αy may not be easy but is generally
beneficial, as it allows you to precisely determine the
multidimensional results/solutions.

The third temporarily weak point of the current
version of M-RDM-T1-I arithmetic is the lack of
assessment of the impact of computer-made rounding. For
this reason, the calculated span values should be slightly
increased with the rounding error. The quantitative
assessment of the impact of rounding is an issue for future
investigation.

The second indicator of the result set Z is the
cardinality distribution or histogram of possible numeric
results z. This indicator is much more informative than
the span. It can be seen in Figs. 5 and 6 that only one
numeric result z = x+ y = 10 and z = 15 is possible.

Fig. 7. Histogram of area-cardinality Acard of the result set Z
for addition (3) as one of possible information indicators
of this set.

However, there is an infinite number of pairs (x, y)
giving the same sum value, e.g., z = 12. These can be, for
example, tuples such as (5.0, 7.0), (4.9, 7.1), (4.8, 7.2),
etc. A measure of the number of possible pairs (x, y) : x+
y = z, zi ≤ z < zj is the a[zi,zj] band area contained in
Fig. 6 between isolines zi and zj . The band areas between
the isolines are easy to calculate on this basis of Fig. 6. We
get the following results: a[z10,z11] = 0.5, a[z11,z12] = 1.5,
a[z12,z13] = 2.0, a[z13,z14] = 1.5, a[z14,z15] = 0.5. In
this way, we obtain a histogram of the area cardinality
Acard[zi,zj] of the addition result (3) shown in Fig. 7.
Because in the general case the distances of subsequent
isolines in Figs. 5 and 6 do not have to be the same, to
properly determine the area cardinality Acard[zi,zj], the
area a[zi,zj] of the single isoline band should be divided
by its width (zj − zi),

Acard[zi,zj] =
a[zi,zj ]

zj − zi
. (6)

Equation (6) allows determining the area histogram shown
in Fig. 7.

If the number of system inputs is greater than 2, then
the measure of cardinality is no longer the surface area but
the volume or hyper-volume between the isoline surfaces
(hyper-surfaces). Because they cannot be visualized and
seen, it is difficult to calculate them, except in special
cases. Therefore, the use of the area (volume) cardinality
in the case of a larger dimensionality of the problem
is practically impossible. However, we can then apply
counting cardinalityC. In the case of adding (3), the count
cardinality histogram is obtained by randomly generating
numbers x and y: x ∈ [x, x], y ∈ [y, y]. Next, we
create pairs (x, y), and for each pair the value of the result
z = f(x, y) is calculated, which in the addition case is
the sum z = x + y. Then we count the number of results
in the intervals [zi, zj] we have assumed. This number
is denoted as Count[zi,zj ]. Since in the general case of
the inter-isoline intervals their widths may be unequal, the
number Count[zi,zj] of the results contained should be
divided by the width of the interval (zj−zi). Accordingly,
we get the correct count histogram

Ccard[zi,zj ] =
Count[zi,zj]

(zj − zi)
. (7)

With an increasing number of generated pairs (x, y),
the histogram Ccard[zi,zj ] will become very close to the
exact histogram Acard[zi,zj]. The cardinality histogram
only provides information about the number of possible
results in inter-isoline space and is not a histogram
of probability. Only with the additional assumption
of uniform probability density functions pdf(x) and
pdf(y), but only then, can this histogram be conditionally
interpreted as a non-normalized histogram of probability.

The concept of the cardinality distribution of the
calculation result of interval arithmetic is described by
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Piegat and Landowski (2013). The very concept of
cardinality of the set has been known in mathematics for
a long time. In the case of a countable set, the power
of the set means the number of its elements, e.g., the
set of people in a family. It should be noted that to the
individual elements of the set no probability in this case
is assigned. In the case of uncountable sets (these can
also be sets that are theoretically countable but practically
uncountable, e.g., a collection of grains of sugar in a sack
whose counting would not make sense), the concept of
cardinality measure of the set is also applied. In the case
of the ‘sugar sack,’ this measure may be the weight of the
sack. Here, no likelihood is attributed either to the sack
itself or to individual grains of sugar.

The same applies, for example, to the histogram
of the cardinality of the set of possible addition results
x + y = z, x ∈ [3, 5], y ∈ [7, 10] shown in Fig. 7.
This histogram tells us which subset of possible results
is largest. The largest is the subset of results contained
in [12, 13]. The measure of the number of possible
results is in this case the area between the isolines z12
and z13 shown in Figs. 5 and 6, related to the width
(zj − zi), of the inner-isoline band; cf. (6). In the
case of a linear operation such as adding, this surface is
easy to calculate. As in the case of sets’ cardinality, no
probability is assigned either to individual elements of
the set or to the number of these elements. Hence the
cardinality histogram shown in Fig. 7 is not a histogram of
probability. If we have 3 bags of sugar weighing B1 = 10
kg, B2 = 30 kg, B3 = 20 kg, these weights are not
information about the likelihood of sugar in bags. They
are a measure of the number of sugar grains in individual
bags.

Some scientists tend to interpret the histograms of
cardinality as probability histograms. In the general case,
this interpretation is incorrect. If the cardinality histogram
had the same meaning as the probability histogram,
mathematicians would not call it the cardinality histogram
but the probability histogram. If we are interested in the
number of possible events, we do not need to know the
probability of individual events. However, with certain
assumptions, we can obtain a probability histogram based
on the cardinality histogram, which, however, will only be
valid if certain assumptions are met.

The first situation is when we know the probability
density distribution (pdf ) of input tuples ((x, y) in the
addition example). We can then easily determine the
probability histogram of output z. The second case
is the situation when we do not know the distribution
pdf(x, y) but we need to know what the probability
histogram would be if the pdf of tuples (x, y) was of a
certain type, e.g., uniform one. This allows us to make
an analysis of the type “what would happen if . . . ?”.
If we assume a uniform distribution, then the obtained
probability histogram will be geometrically identical to

the distribution of cardinality. With this, and only
with this, assumption, the cardinality histogram can be
interpreted geometrically as a probability histogram in the
a priori sense.

Another indicator of the result set Z of an arithmetic
operation can be the position of the center of gravity
ZCOG:

ZCOG =

∫ z

z zAcard[zi,zj](z) dz
∫ z

z Acard[zi,zj](z)
dz. (8)

In the case of the addition (3), the position of the gravity
center equals zCOG = 12.5, Fig. 7. In conclusion,
three different indicators of the result set of an arithmetic
operation are presented: span, cardinality distribution or
histogram, and center of gravity. Note that they are not
algebraic results or solutions of uncertain calculations
but only simplified indicators (information pieces) of full
solution sets. If we use, e.g., the span as a result, as
all versions of the existing interval arithmetic suggest,
then we achieve problem solutions that are (more or
less) inaccurate, sometimes even paradoxical (Piegat and
Landowski, 2018). This is caused by the phenomenon of
increasing entropy (Dymowa, 2011).

M-RDM-T1 arithmetic is in a sense similar
to affine-arithmetic (A-arithmetic) of Stolphi and
De Figueiredo (2003). The philosophy of both these
types of arithmetic has similarities as well as differences.
Therefore, both arithmetics provide different results.
The advantage of A-arithmetic is that, when calculating
the value of a function, it provides self-validated
enclosures, whereas in the case of M-RDM-T1 arithmetic
this problem has not yet been fully examined in
terms of the influence of rounding errors generated
in computer calculations. The new multi-dimensional
type 1 RDM arithmetic has a series of applications
(Mazandarani et al., 2018; Pluciński, 2015; Sharghi
et al., 2017; Lala, 2017). It is also successfully applied
in fuzzy RDM arithmetic (Mazandarani et al., 2018;
Najariyan and Zhao, 2017; Piegat and Landowski, 2015;
Piegat and Pluciński, 2015; 2017), where the approach
of μ-cuts and horizontal membership functions is used in
calculations.

3. Multidimensional decomposition RDM
type 2 interval arithmetic
(MD-RDM-T2-I arithmetic)

Let us assume that arithmetic operation ∗ ∈ {+,−, ·, /}
on two uncertain variable values x and y is to be executed,
and that the possessed knowledge about these values is
expressed by two type 2 membership functions; μT2(x)
and μT2(y); cf. Figs. 8 and 9.

Let Xμ be a set of all values xμ contained in the inner
interval, and let Xγ be the set of all values xγ contained
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in the outer interval:

Xμ : xμ ∈ [xR, xL], Xγ : xγ ∈ [xL, xR]. (9)

Accordingly, the sense of sets Yμ, Yγ is determined by

Yμ : yμ ∈ [y
R
, yL], Yγ : yγ ∈ [y

L
, yR]. (10)

From the relations (9) and (10), we get the relations

xL ≤ xR ≤ xL ≤ xR, (11)

y
L
≤ y

R
≤ yL ≤ yR, (12)

Xμ ⊆ Xγ , Yμ ⊆ Yγ . (13)

Sets Xμ, Xγ , Yμ, Yγ shown in Fig. 8 can, in terms of
RDM arithmetic, be expressed by

Xμ : xμ = xR + (xL − xR)αxμ, αxμ ∈ [0, 1],

xμ = 2 + 2αxμ,

Xγ : xγ = xL + (xR − xL)αxγ , αxγ ∈ [0, 1],

xγ = 1 + 4αxγ ,

(14)

Fig. 8. Type 1 membership function μT2(x) of uncertain x-
value and its decomposition into the inner type 1 func-
tion μ(x) and the outer function γ(x);αxμ, αxγ ∈ [0, 1]
are RDM variables.

Yμ : yμ = y
R
+ (yL − y

R
)αyμ, αyμ ∈ [0, 1],

yμ = 9 + 3αyμ,

Yγ : yγ = y
L
+ (yR − y

L
)αyγ , αyγ ∈ [0, 1],

yγ = 7 + 6αyγ .

(15)

Let us now examine, as an example, addition of two
uncertain variable values x and y when our knowledge
about them has the form of type 2 intervals. The true value
of the result z = x + y corresponds to one of the pairs
(x, y) contained in relation Xμ × Yμ, which is a relation
of great but not full credibility (confidence); cf. Fig. 10.
Instead, the true result value surely corresponds to one of
the pairs (x, y) contained in relation Xγ × Yγ , Fig. 10.

From the condition Xμ × Yμ ⊆ Xγ × Yγ it follows
that each result value z = x+ y contained in the inner set
Xμ × Yμ is also contained in the outer set Xγ × Yγ . This
means that, e.g., the span SZμ of the inner set is contained
in the outer set

SZμ ⊆ SZγ , [zμ, zμ] ⊆ [zγ , zγ ]. (16)

Fig. 9. Type 1 membership function type μT2(y) of uncertain
y-value and its decomposition into the inner type 1 func-
tion μ(y) and the outer function γ(y);αyμ, αyγ ∈ [0, 1]
are RDM variables.
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Fig. 10. Inner relational set Xμ × Yμ and outer set Xγ × Yγ

of the possible pairs (x, y) generating addition results
z = x+ y.

The inner result set Zμ of the addition results z =
x+ y is determined by the general formula

Zμ : zμ = xμ + yμ

= [xR + (xL − xR)αxμ]

+ [y
R
+ (yL − y

R
)αyμ], αxμ, αyμ ∈ [0, 1].

(17)

For the discussed addition example, the specific inner
result set is given by

Zμ : zμ = xμ + yμ = (2 + 2αxμ) + (9 + 3αyμ),

αxμ, αyμ ∈ [0, 1].
(18)

The outer set Zγ of the addition results is given by

Zγ : zγ = xγ + yγ

= [xR + (xL − xR)αxγ ]

+ [y
R
+ (yL − y

R
)αyγ ], αxγ , αyγ ∈ [0, 1].

(19)

For the example considered the specific outer result
set is given by

Zγ : zγ = xγ + yγ = (1 + 4αxγ) + (7 + 6αyγ),

αxγ , αyγ ∈ [0, 1].
(20)

Both the inner set Zμ and the outer set Zγ exist in 3D
space X×Y×Z which is equivalent to space Ax×Ay×Z .
Figure 11 presents projection of both result sets from full
3D space X × Y × Z on 2D subspace X × Y . Possible

Fig. 11. Projection of the inner addition result set Zμ and the
outer set Zγ from full 3D space Xγ × Yγ on 2D sub-
space X×Y ; Z: possible true set of the addition results
z.

result values are denoted in Fig. 12 by isolines of constant
z-values.

The sets Zμ and Zγ are inner and outer sets of
addition results. Because the true borders of the added
type 2 intervals are not exactly known, also the borders
of the true set Z of the addition results in Fig. 11 are
not exactly known. They lie somewhere between the
borders of the inner and outer sets Zμ and Zγ as shown
in Fig. 11. Figure 12 shows histograms of the area
cardinality Acardzμ and Acardzγ of the inner and the
outer set of the addition results. These histograms are
border ones and the true but not exactly known histogram
Acardz lies somewhere between them.

The cardinality histograms shown in Fig. 12 are
only simplified indicators delivering low-dimensional
information about multidimensional result sets. Similarly,
the spans and centers of gravity are not direct results of the
addition of type 2 intervals. The spans can be determined
with (21) and (22); zμ and zγ are given by (18) and (20):

Szμ = [ min
αxμ,αyμ

zμ(αxμ, αyμ),

max
αxμ,αyμ

zμ(αxμ, αyμ)] = [11, 16],
(21)

Szγ = [ min
αxγ ,αyγ

zγ(αxγ , αyγ),

max
αxγ ,αyγ

zγ(αxγ , αyγ)] = [8, 18].
(22)

The positions of gravity centers can be calculated
with the formula (8) on the basis of histograms shown
in Fig. 12. The center of gravity of the inner set has
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a position zCOGμ = 13.5 and that of the outer set
zCOGγ = 13.0. The position of the center of gravity can
be interpreted as an a priori expected value of the addition
result. The spans and membership functions of the outer
and inner result sets are shown in Fig. 13.

It is obvious that most information about the
multi-dimensional result set is delivered by the result set
itself. Less information is delivered by histograms of
cardinality, and then by spans. However, spans can be
determined in the simplest way and therefore they are so
popular. Subtraction of two uncertain values expressed by
type 2 intervals is performed similarly to addition. So are
multiplication and division. However, in the latter case it
is more difficult to determine result cardinalities because
these arithmetic operations are nonlinear, and isolines of
constant result values are not straight lines as in Fig. 12
but curved ones.

4. Example applications of
multidimensional, decomposition
RDM type 2 interval arithmetic

Example 1. (Determining the trajectory of a moving ob-
ject in the conditions of uncertainty) An object starts
from a point (x, y) = (0, 0) (Fig. 14), and lands on a
slope at a height of 3 m above the starting point. Its
vertical acceleration is constant and known precisely as
g = 9.81 m/s2. Its initial velocity u in the x-direction is
known only approximately in the form of a type 2 interval:
u ∈ U =

[
[10, 11], [14, 15]

]
. Its velocity v in the vertical

y-direction is v ∈ V =
[
[12, 14], [16, 18]

]
. The landing

position x of the object on the slope is to be determined.
Figure 15 shows the knowledge of uncertain starting

velocities u and v of the object.
The position of the object after time t[s] is given by

x = ut, y = vt− 0.5gt2. (23)

Elimination of time t from (23) leads to
(

− g

2u2

)

x2 +

(
v

u

)

x− y = 0. (24)

It aggregates positions x and y of the object. For landing
on the slope at a height of 3 m, Eqn. (24) takes the form
of (

− g

2u2

)

x2 +

(
v

u

)

x− 3 = 0. (25)

Equation (25) has two roots x1 and x2 determined by

x1 =
u

g

(
v + (v2 − 58.8)0.5

)

= 0.10194u
(
v + (v2 − 58.8)0.5

)
,

x2 =
u

g

(
v − (v2 − 58.8)0.5

)

= 0.10194u
(
v − (v2 − 58.8)0.5

)
.

(26)

Fig. 12. Histograms of cardinality Acardzμ and Acardzγ of
the inner set Zμ and the outer set Zγ of possible numer-
ical addition results. Acardz are the true histograms
whose positions are not known exactly, COGμ and
COGγ are gravity centers of the result sets, and Szμ,
Szγ are the spans of the sets.

Fig. 13. Membership functions γ(z), μ(z), μ∗(z) of the outer
result set Zγ , the inner set Zμ and the true but pre-
cisely not known result set Z, and the spans of these
sets Szμ, Szγ , Sz .

Fig. 14. Trajectory of the moving object after start from a point
(x, y) = (0, 0), y(x1) = y(x2).
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Fig. 15. Type 2 intervals expressing knowledge of the uncertain
value of the start horizontal velocity u and the vertical
velocity v.

Fig. 16. Projection of the inner and outer 3D solution sets
X1μ and X1γ (possible landing positions of the mov-
ing object) onto 2D space U × V with a few iso-
lines of constant x1-values; the outer solution span
Sx1γ = [21.64, 52.42], the inner solution span Sx1μ =
[28.83, 42.88].

The object will be at a height of 3 m twice; cf.
Fig. 14. The landing position on the slope expresses the
greater root x1. Because the knowledge of velocities u
and v is uncertain, RDM models of these velocities should
be formulated. The models which correspond to the inner

intervals of the velocities are given by

uμ = 11 + 3αuμ, αuμ ∈ [0, 1],

vμ = 14 + 2αvμ, αvμ ∈ [0, 1], (27)

(see also Fig. 14).
The models which correspond to the outer intervals

are given by

uγ = 11 + 3αuγ , αuγ ∈ [0, 1],

vγ = 14 + 2αvγ , αvγ ∈ [0, 1]. (28)

Set X1μ of inner solutions is determined by

X1μ : x1μ = 0.10194uμ

(
vμ + (v2μ − 58.8)0.5

)

= 0.10194(11+ 3αuμ)
(
(14 + 2αvμ)

+ ((14 + 2αvμ)
2 − 58.8)0.5

)
,

αuμ, αvμ ∈ [0, 1].

(29)

Set X1γ of outer solutions is determined by

X1γ : x1γ = 0.10194uγ

(
vγ + (v2γ − 58.8)0.5

)

= 0.10194(10+ 5αuγ)
(
(12 + 6αvγ)

+ ((12 + 6αvγ)
2 − 58.8)0.5

)
,

αuγ , αvγ ∈ [0, 1].

(30)

Using (29), we can determine the span Sx1μ of the
inner set:

Sx1μ = [ min
αuμ,αvμ

x1μ(αuμ , αvμ),

max
αuμ,αvμ

x1μ(αuμ, αvμ)]

= [28.83, 42.88].

(31)

The minimal value of the position x1μ corresponds
here, because of the monotonicity of the function (29), to
RDM variables αuμ = αvμ = 0, while the maximal value
corresponds to αuμ = αvμ = 1. On the basis of (30) it is
easy to determine the span Sx1γ :

Sx1γ = [ min
αuγ ,αvγ

x1γ(αuγ , αvγ),

max
αuγ ,αvγ

x1γ(αuγ , αvγ)]

= [21.64, 52.42].

(32)

The minimal value of x1γ corresponds here to RDM
variable values αuγ = αvγ = 0 and the maximal value
corresponds to αuγ = αvγ = 1. Figure 16 shows
projection of 3D inner and outer solution sets X1μ and
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X1γ onto 2D space U × V and some isolines of constant
x1-values.

The histogram of cardinality shown in Fig. 17 has
been determined on the basis of the inner and outer
solution set.

Figure 18 shows another indicator of solution sets in
the form of membership functions of the inner and outer
sets X1μ and X1γ .

Figure 19 explains the sense of the achieved solution.
The inner range x1 ∈ [28.83, 42.88] is in the light of
the possessed knowledge the most credible landing range,
and the range x1 ∈ [21.64, 28.83] is the global range of
possible landing positions, comprising also less credible
positions.

As shown in the example, the most informative
indicator of the multi-dimensional solution sets (29) and
(30) is the cardinality distribution. Apart from the span of
possible solutions, it provides information about an a pri-
ori probability of each range of possible x1 values of the
landing position.

Most papers on uncertainty calculations use standard
interval arithmetic (SI arithmetic) (Moore, 1966). Also,
fuzzy arithmetic is mostly based on SI-arithmetic (α-cuts
method). Therefore, in the examples that follow a
comparison will be made of the results achieved with SI
arithmetic and D-RDM-T2 arithmetic. Formulas of the
basic arithmetic operations according to SI arithmetic are

X = [x, x], Y = [y, y],

X + Y = [x+ y, x+ y],

X · Y = [minS,maxS], S = [xy, xy, xy, xy].

(33)

SI arithmetic and D-RDM-T2 arithmetic used for
solving Example 1 have given an identical result span
of the x1-position of the moving object. The span of
the inner result is x1μ ∈ [28.83, 42.88] and that of
the outer results is x1γ ∈ [21.64, 52.42]. However,
such equal result uncertainties occur seldom because
SI arithmetic calculates the span on the basis of a
simplified one-dimensional approach, not the complete,
multidimensional set of results, which will be shown in
Examples 2 and 3. �

Example 2. (Computing with words problem) A person
frequently takes part in gambling (the gambling expert) in
which 0 or 1 or 10 EUR can be won. His or hers evaluation
of the winning probability is as follows: “the probability
of winning 10 EUR is small, of 1 EUR is medium and
of zero is large. What is the expected value of the win?
The expert defined the meaning of the linguistic values of
probability as type 2 intervals; cf. Fig. 20.

Fig. 17. Histogram of cardinality of the inner and outer solution
sets X1μ and X1γ .

Fig. 18. Membership function μ(x1) of the inner solution set
X1μ and function γ(x1) of the outer solution set X1γ

(landing position); X1COGγ = 35.48, X1COGμ = 35.56
are positions of gravity centers.

Fig. 19. Illustration of the sense of the achieved solutions of
landing position x1 of the moving object.

For instance, the gambling expert with high
credibility classifies probabilities p ∈ [0, 1/3] as small,
but probabilities p ∈ [3/12, 4/12] are classified by him as
small with lower credibility. A similar situation concerns
medium and large probability evaluations. The formulas
(34) and (35) present one-dimensional, uncoupled RDM
definitions of the inner μ and outer γ probability
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evaluations:

s∗μ =
3

12
αsμ,

m∗
μ =

5

12
+

2

12
αmμ,

l∗μ =
9

12
+

3

12
αlμ, αsμ,

αmμ, αlμ ∈ [0, 1].

(34)

s∗γ =
4

12
αsγ ,

m∗
γ =

4

12
+

4

12
αmγ ,

l∗γ =
8

12
+

4

12
αlγ , αsγ ,

αmγ , αlγ ∈ [0, 1].

(35)

The 1D definitions are only initial ones because
they do not take into account the fact that the sum
of probabilities, whether numeric or linguistic ones,
has to equal one. The formulas (36) and (37) show
precise, coupled definitions of linguistic probability
values expressed in RDM terms:

sμ =
s∗μ
Dμ

, mμ =
m∗

μ

Dμ
, lμ =

l∗μ
Dμ

,

Dμ = s∗μ +m∗
μ + l∗μ.

(36)

sγ =
s∗γ
Dγ

, mγ =
m∗

γ

Dγ
, lγ =

l∗γ
Dγ

,

Dγ = s∗γ +m∗
γ + l∗γ .

(37)

The formulas (36) and (37) show that uncertain
linguistic probability values have to be defined not in 1D
spaces, but in a 4D space (in each definition, 4 RDM
variables occur) if basic principles of probability are to
be satisfied. Simple 1D definitions are incorrect. The
expected inner income value Elμ of the gambling win can
be calculated from

Elμ = 0 · lμ + 1 ·mμ + 10 · sμ
=

5 + 2αmμ + 30αsμ

14 + 3αsμ + 2αmμ + 3αlμ

αsμ, αmμ, αlμ ∈ [0, 1].

(38)

The outer expected income value Elγ can be calculated
from

Elγ = 0 · lγ + 1 ·mγ + 10 · sγ
=

4 + 4αmγ + 40αsγ

12 + 4αsγ + 4αmγ + 4αlγ

αsγ , αmγ , αlγ ∈ [0, 1].

(39)

Equations (38) and (39) are exact definitions of sets
of all possible expected income values. Figure 21 shows

Fig. 20. Outer sγ ,mγ , lγ and inner sμ,mμ, lμ membership
functions of linguistic probability values: small,
medium and large.

Fig. 21. Inner μEl and outer γEl membership functions of the
expected win from gambling.

spans SElμ and SElγ of the inner and outer expected
income. These spans,

SElμ
= [ min

αsμ,αmμ,αlμ

Elμ, max
αsμ,αmμ,αlμ

Elμ],

αsμ, αmμ, αlμ ∈ [0, 1].
(40)

SElγ
= [ min

αsγ ,αmγ ,αlγ

Elγ , max
αsγ ,αmγ ,αlγ

Elγ ],

αsγ , αmγ , αlγ ∈ [0, 1].
(41)

have been calculated from (38) and (39).
Calculations produced the following inner spans:

SElμ
= [0.294, 2.059] corresponding to (αsμ =

0, αmμ = 0, αlμ = 1) and to (αsμ = 1, αmμ =
0, αlμ = 0), and the outer spans SElγ

= [0.250, 2.750]
corresponding to (αsγ = 0, αmγ = 0, αlγ = 1) and to
(αsγ = 1, αmγ = 0, αlγ = 0). The spans SElμ

and
SElγ

are not direct solutions of the problem considered
as suggested by all existing interval arithmetics. They are
only indicators of multidimensional solution sets Elμ and
Elγ defined by (38) and (39). More informative than spans
are cardinality histograms Acardμ and Acardγ . Because
the solution sets are four-dimensional, the histograms
cannot be determined analytically. However, they can
be determined by computer simulation, by counting
the result number for various combinations of values
(αsμ, αmμ, αlμ) and (αsγ , αmγ , αlγ). The histograms are
shown in Fig. 22.
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The results, expected incomes Elμ and Elγ and
their uncertainty (widths) Δ achieved by SI arithmetic and
D-RDM-T2 arithmetic are shown in Table 1.

Table 1 shows that in any case SI arithmetic gives
much more uncertain results than D-RDM-T2 arithmetic.
This is because SI arithmetic is not able to take
into account dependences existing between probabilities
(adding up probabilities to 1). In the result it calculates
excessive, exaggerated, imprecise, overestimated result
spans that do not really occur in the problem. By
contrast, D-RDM-T2 arithmetic calculates only possible
results. It can be verified with analytical methods or with
point-calculations (Monte-Carlo simulation). �

Example 3. (Solving uncertain linear equation sys-
tems (LESs)) LESs are very important for description of
many MIMO plants, for economic balance systems, for
heat and energy balances, etc. Because in real systems
the variable and coefficient values are often known
only approximately, uncertain LESs are investigated in
many scientific papers (Abolmasoumi and Alavi, 2014;
Allahviranloo and Babakordi, 2017). An LES in which
the knowledge of uncertain coefficients is given in the
form of type 2 intervals will be further considered. The
following formula presents a general description of the
LES in which x1, x2 are system inputs, y1, y2 are output
variables, and a1, a2, b1, b2 are coefficients:

a1x1 + b1x2 = y1,

a2x1 + b2x2 = y2.
(42)

The task consists in determining the input values
x1, x2 in a situation where the knowledge of the outputs

Fig. 22. Cardinality histograms AcardElμ and AcardElγ of
the inner and outer four-dimensional sets Elμ and Elγ

of the expected incomes from the gambling consid-
ered with centers of gravity COGElμ = 1.165 and
COGElγ = 1.415.

Table 1. Spans and uncertainties Δ of the inner Elμ and the
outer expected income Elγ achieved by SI-arithmetic
and D-RDM-T2 arithmetic in Example 2.

El SI-arithmetic Δ D-RDM-T2 Δ

Elμ [0.227, 2.642] 2.415 [0.294, 2.059] 1.765
Elγ [0.167, 4.000] 3.833 [0.250, 2.750] 2.500

y1, y2 and the system parameters a1, a2, b1, b2 is only
approximate and is given in the form of type 2 intervals

a1 ∈ A1 =
[
[1, 1.5], [2.5, 3]

]
,

b1 ∈ B1 =
[
[4, 4.5], [5.5, 6]

]
,

y1 ∈ Y1 =
[
[17, 18], [20, 21]

]
,

a2 ∈ A2 =
[
[3, 3.5], [4.5, 5]

]
,

b2 ∈ B2 =
[
[−2,−1.5], [−0.5, 0]

]
,

y2 ∈ Y2 =
[
[5, 6], [8, 9]

]
.

(43)

In the first step, the inner solution (x1μ, x2μ) will be
determined. It corresponds to coefficients and variables
a1μ, b1μ, y1μ, a2μ, b2μ, y2μ. Their intervals are given by

a1μ ∈ A1μ = [1.5, 2.5],

b1μ ∈ B1μ = [4.5, 5.5],

y1μ ∈ Y1μ = [18, 20],

a2μ ∈ A2μ = [3.5, 4.5],

b2μ ∈ B2μ = [−1.5,−0.5],

y2μ ∈ Y2μ = [6, 8].

(44)

Equation (45) gives RDM models of true/possible
values of uncertain coefficients and variables of the LES
considered:

a1μ = 1.5 + αa1μ,

b1μ = 4.5 + αb1μ,

y1μ = 18 + 2αy1μ,

a2μ = 3.5 + αa2μ,

b2μ = −1.5 + αb2μ,

y2μ = 6 + 2αy2μ.

(45)

The LES (42) can be solved with the use of generally
known Cramer equations, which for the inner solutions
(x1μ, x2μ) are given by (46).

Examination of the determinant of the solutions
(46), Dμ = a1μb2μ − a2μb1μ, shows that it is always
negative and its span does not contain zero. For the case
where 0 ∈ Dμ, solutions are multi-granular (see Piegat
and Pluciński, 2017). Intervals of outer parameters and
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x1μ =
b2μy1μ − b1μy2μ
a1μb2μ − a2μb1μ

=
(−1.5 + αb2μ)(18 + 2αy1μ)− (4.5 + αb1μ)(6 + 2αy2μ)

(1.5 + αa1μ)(−1.5 + αb2μ)− (3.5 + αa2μ)(4.5 + αb1μ)
,

x2μ =
a1μy2μ − a2μy1μ
a1μb2μ − a2μb1μ

=
(1.5 + αa1μ)(6 + 2αy2μ)− (3.5 + αa1μ)(18 + 2αy1μ)

(1.5 + αa1μ)(−1.5 + αb2μ)− (3.5 + αa2μ)(4.5 + αb1μ)
,

αa1μ , αa2μ , αb1μ , αb2μ , αy1μ , αy2μ ∈ [0, 1].

(46)

variables are defined by

a1γ ∈ A1γ = [1, 3],

b1γ ∈ B1γ = [4, 6],

y1γ ∈ Y1γ = [17, 21],

a2γ ∈ A2γ = [3, 5],

b2γ ∈ B2γ = [−2, 0],

y2γ ∈ Y2γ = [5, 9].

(47)

The following formula gives RDM models of
true/possible values of uncertain coefficients and output
variables of the LES considered:

a1γ = 1 + 2αa1γ , αa1γ ∈ [0, 1],

b1γ = 4 + 2αb1γ , αb1γ ∈ [0, 1],

y1γ = 17 + 4αy1γ , αy1γ ∈ [0, 1],

a2γ = 3 + 2αa2γ , αa2γ ∈ [0, 1],

b2γ = −2 + 2αb2γ , αb2γ ∈ [0, 1],

y2γ = 5 + 4αy2γ , αy2γ ∈ [0, 1]. (48)

The outer LES can be solved with Cramer equations;
cf. (49).

Examination of the determinant Dγ shows that,
similarly to the determinant Dμ, it is always negative
and does not contain zero, 0 /∈ Dγ . Inner and outer
solutions x1μ, x2μ and x1γ , x2γ are multidimensional and
exist in a 7D space. Therefore they cannot be visualized.
These solutions are universal and independent of the
mathematical form of the LES; after their substitution
in any possible LES-form, the equality of left-hand and
right-hand sides of equations is achieved. An analysis of
the solutions (46) and (49) shows that certain coefficients
and variables occur both in nominators and denominators
of the solutions x1μ, x2μ and x1γ , x2γ . This implies
the existence of couplings between the nominators and
denominators. Similarly, couplings by coefficients and by
denominators exist between solutions x1 and x2.

Standard interval arithmetic (Moore, 1966; Sunaga,
2009; Warmus, 1956) is not able to take into account
these couplings, which results in more or less incorrect,
imprecise solutions (the phenomenon of increasing
entropy of solutions (Dymowa, 2011)), in increasing
spans of solution sets. RDM arithmetic, by taking
the couplings into account, enables achieving exact

multi-dimensional solution sets and then, on their
basis, obtaining exact spans, cardinality histograms
(distributions) and gravity centers of the solutions. In the
case of an LES their inner and outer solutions x1μ, x2μ

and x1γ , x2γ are monotonic functions. Hence their
minima and maxima lie not inside the multidimensional
solution sets but on their borders and can relatively
easily be determined with a computer program examining
solutions for all combinations of border values 0
and 1 of RDM variables αa1 , αa2 , αb1 , αb2 , αy1 , αy2 .
The examination shows that spans of inner and outer
multidimensional solution sets are

Sx1μ = [ min
αa1μ ,αa2μ ,αb1μ

,αb2μ
,αy1μ ,αy2μ

x1μ,

max
αa1μ ,αa2μ ,αb1μ

,αb2μ
,αy1μ ,αy2μ

x1μ]

= [1.61, 3.67].

Sx2μ = [ min
αa1μ ,αa2μ ,αb1μ

,αb2μ
,αy1μ ,αy2μ

x2μ,

max
αa1μ ,αa2μ ,αb1μ

,αb2μ
,αy1μ ,αy2μ

x2μ]

= [1.87, 3.86].

Sx1γ = [ min
αa1γ ,αa2γ ,αb1γ

,αb2γ
,αy1γ ,αy2γ

x1γ ,

max
αa1γ ,αa2γ ,αb1γ

,αb2γ
,αy1γ ,αy2γ

x1γ ]

= [1.00, 5.57].

Sx2γ = [ min
αa1γ ,αa2γ ,αb1γ

,αb2γ
,αy1γ ,αy2γ

x2γ ,

max
αa1γ ,αa2γ ,αb1γ

,αb2γ
,αy1γ ,αy2γ

x2γ ]

= [1.00, 5.00].

(50)

Figure 23 shows membership functions and spans of
the inner and outer solutions. The spans presented in the
figure provide simplified, low-dimensional information
about the 7D-solution sets. More informative indicators
of these sets are cardinality histograms shown in Figs. 24
and 25.

Table 2 presents spans and uncertainties Δ of
the inner and outer result sets produced by SI
arithmetic and D-RDM-T2 arithmetic. As seen in
the table, the uncertainties of results x1 and x2

delivered by SI arithmetic are considerably greater
(sometimes almost four times) than those delivered by
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x1γ =
b2γy1γ − b1γy2γ
a1γb2γ − a2γb1γ

=
(−2 + 2αb2γ)(17 + 4αy1γ)− (4 + 2αb1γ)(5 + 4αy2γ)

(1 + 2αa1γ)(−2 + 2αb2γ)− (3 + 2αa2γ)(4 + 2αb1γ)
,

x2γ =
a1γy2γ − a2γy1γ
a1γb2γ − a2γb1γ

=
(1 + 2αa1γ)(5 + 4αy2γ)− (3 + 2αa2γ)(17 + 4αy1γ)

(1 + 2αa1γ)(−2 + 2αb2γ)− (3 + 2αa2γ)(4 + 2αb1γ)
,

αa1γ , αa2γ , αb1γ , αb2γ , αy1γ , αy2γ ∈ [0, 1].

(49)

D-RDM-T2 arithmetic. This is caused by the increasing
entropy phenomenon (Dymowa, 2011) and by neglecting
dependences (couplings) existing between variables and
coefficients in the formulas. Due to great uncertainties,
generally the results delivered by SI arithmetic cannot be
used in practice. Their uncertainty considerably increases
with the nonlinearity and dimensionality of the problem
under consideration. These big uncertainties are to a large
extent artificial. They are caused by the imperfection of
SI-arithmetic. �

5. Conclusions

The paper presented multi-dimensional RDM type 2
arithmetic based on the decomposition of type 2
intervals in inner and outer type 1 membership functions.
This approach is intuitive, easy to understand and
uncomplicated in calculations. It delivers exact
indicators of multidimensional solution sets as cardinality
distributions (histograms), spans, and gravity centers,
because it does not decrease, in the course of calculations,

Fig. 23. Membership functions of possible values of inner and
outer solutions X1μ, X2μ, X1γ , X2γ of the uncertain
linear equation system (42).

Table 2. Comparison of spans and uncertainties (widths of
spans) Δ of inner and outer results sets of solutions
x1 and x2 of the linear equation system (42) achieved
with SI arithmetic and D-RDM-T2 arithmetic.

x SI arithmetic Δ D-RDM-T2 Δ

x1μ [1.263, 4.484] 3.321 [1.615, 3.667] 2.052
x1γ [-3.667, 9.000] 12.667 [1.000, 5.571] 4.571

x2μ [1.509, 4.909] 3.400 [1.870, 3.857] 1.987
x2γ [0.800, 16.667] 15.867 [1.000, 5.000] 4.000

the dimensionality of intermediate and component results
that occur, e.g., in sequential calculations. Besides, it
takes into account correlations and couplings existing
between variables and coefficients. Type 2 intervals are
the simplest type 2 uncertainty models and are easy for
practical identification. Therefore, D-RDM-T2 arithmetic
has considerable chances to be applied in practice. Three
examples given in the paper show how this arithmetic can
be used. D-RDM-T2 arithmetic forms a basis for the
construction of fuzzy type 2 arithmetic, which is the next
scientific aim of the authors.

References
Abolmasoumi, S. and Alavi, M. (2014). A method for

calculating interval linear system, Journal of Mathematics
and Computer Science 8(3): 193–204.

Allahviranloo, T. and Babakordi, F. (2017). Algebraic solution
of fuzzy linear system as: AX + BX = Y, Soft Computing
21(24): 7463–7472.

De Figueiredo, L.H. and Stolphi, J. (2004). Affine
arithmetic: Concepts and applications, Numerical Algo-
rithms 37(1–4): 147–158.

Dymowa, L. (2011). Soft Computing in Economics and Finance,
Springer, Berlin/Heidelberg.

Kaucher, E. (1980). Interval analysis in the extended interval
space IR, in G. Alefeld and R.O. Grigorieff (Eds), Fun-
damentals of Numerical Computation (Computer-Oriented
Numerical Analysis), Springer, Vienna, pp. 33–49.

Lala, Z.M. (2017). Application of RDM interval arithmetic
in decision making problem under uncertainty, Procedia
Computer Science 120: 788–796.

Landowski, M. (2015). Differences between Moore and RDM
interval arithmetic, in P. Angelov et al. (Eds), Intelli-



200 A. Piegat and L. Dobryakova

Fig. 24. Cardinality histograms of the inner (μ) and outer (γ)
solution sets X1μ and X1γ of the uncertain (46).

gent Systems’2014, Springer, Heidelberg/New York, NY,
pp. 331–340.

Lodwick, W.A. (1999). Constrained interval arithmetic,
CCM report, University of Colorado at Denver, Denver,
CO, http://www-math.ucdenver.edu/ccm/
reports/index.shtml.

Lodwick, W.A. and Dubois, D. (2015). Interval linear systems
as a necessary step in fuzzy linear systems, Fuzzy Sets and
Systems 281(15): 227–251.

Mazandarani, M., Pariz, N. and Kamyad, A.V. (2018). Granular
differentiability of fuzzy-number-valued functions, IEEE
Transactions on Fuzzy Systems 26(1): 310–323.

Moore, R. (1966). Interval Analysis, Prentice-Hall, Englewood
Cliff, NJ.

Najariyan, M. and Zhao, Y. (2017). Fuzzy fractional quadratic
regulator problem under granular fuzzy fractional
derivatives, IEEE Transactions on Fuzzy Systems 26(4):
2273–2288.

Piegat, A. and Landowski, M. (2013). Two interpretations of
multidimensional RDM interval arithmetic: Multiplication
and division, International Journal of Fuzzy Systems
15(4): 486–496.

Piegat, A. and Landowski, M. (2015). Horizontal membership
function and examples of its applications, International
Journal of Fuzzy Systems 17(1): 22–30.

Piegat, A. and Landowski, M. (2017). Is an interval the right
result of arithmetic operations on intervals?, International
Journal of Applied Mathematics and Computer Science
27(3): 575–590, DOI: 10.1515/amcs-2017-0041.

Piegat, A. and Landowski, M. (2018). Solving different practical
granular problems under the same system of equations,
Granular Computing 3(1): 39–48.

Fig. 25. Cardinality histograms of the inner (μ) and outer (γ)
solution sets X2μ and X2γ of the uncertain (49).
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