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An insufficient number or lack of training samples is a bottleneck in traditional machine learning and object recognition.
Recently, unsupervised domain adaptation has been proposed and then widely applied for cross-domain object recognition,
which can utilize the labeled samples from a source domain to improve the classification performance in a target domain
where no labeled sample is available. The two domains have the same feature and label spaces but different distributions.
Most existing approaches aim to learn new representations of samples in source and target domains by reducing the dis-
tribution discrepancy between domains while maximizing the covariance of all samples. However, they ignore subspace
discrimination, which is essential for classification. Recently, some approaches have incorporated discriminative infor-
mation of source samples, but the learned space tends to be overfitted on these samples, because they do not consider the
structure information of target samples. Therefore, we propose a feature reduction approach to learn robust transfer features
for reducing the distribution discrepancy between domains and preserving discriminative information of the source domain
and the local structure of the target domain. Experimental results on several well-known cross-domain datasets show that
the proposed method outperforms state-of-the-art techniques in most cases.
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1. Introduction

Object recognition is an important task in machine
learning and computer vision, where a classifier is
trained with several labeled images (training data), and
then it predicts the category of unlabeled images (test
data). Learning methods generally assume that the
test and training data are independent and identically
distributed. Consequently, these methods perform well
only when the data distribution satisfies this assumption.
In real-world applications, environment variations (e.g.,
changes in illumination, viewpoint, background, and
camera resolution) hinder the collection of enough labeled
images following the distribution of test data. On the other
hand, abundant labeled images from different domains,
which are neglected in conventional object recognition,
can be employed to enhance classifiers and gather more
information across domains. For example, one may
want to recognize objects in images captured with a
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mobile phone camera under natural conditions, whereas
training data are captured with a high-resolution camera
in laboratory settings. In this case, the distribution
discrepancy between domains impedes direct usage of
the training images to train the target classifier. To
address this type of object recognition problem in
which the training data and test data are from different
domains, unsupervised domain adaptation (UDA) has
been proposed to utilize labeled images from a source
domain to learn a better classifier in a different target
domain, which contains no labeled images for training
(Pan et al., 2011; Long et al., 2013; Tahmoresnezhad and
Hashemi, 2016; Tao et al., 2015).

UDA is a machine learning approach that does not
require the training and test data to be independent and
identically distributed. In fact, UDA assumes that there is
a labeled source domain and an unlabeled target domain
with the same label spaces but different data distributions.
The goal of UDA is transferring knowledge from the
source to the target domain to enhance learning in target
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classifiers. A common strategy for UDA is discovering a
common subspace between the source and target domains
aiming to reduce the distribution discrepancy, such that
the source samples can be used to train the target classifier.
For instance, joint distribution adaptation (JDA) (Long
et al., 2013) and transfer component analysis (Pan et al.,
2011) aim to learn new representations by minimizing
the maximum mean discrepancy (MMD) (Gretton et al.,
2012) between domains, with the covariance of all
samples being maximized as illustrated in Fig. 1(a).

Despite the distribution discrepancy being effectively
reduced, discriminative information in the source samples
is ignored, thus degrading the classification performance.
To overcome this drawback, some discriminative methods
(Tahmoresnezhad and Hashemi, 2016; Zhang et al.,
2017; Li et al., 2018) have been proposed to not only
reduce the MMD between domains, but also preserve
discriminative information of the source samples, as
illustrated in Fig. 1(b). However, the performance
of these discriminative methods tends to degrade for
large distribution discrepancies. Specifically, such
discriminative methods tend to find embedding spaces
that are overfitted to the labeled source samples, because
they just pursue the discriminative ability of source
samples but neglect the structural information of the target
samples. Various works on dimensionality reduction
(Roweis and Saul, 2000; He and Niyogi, 2004; Belkin and
Niyogi, 2003) have shown the benefits of preserving local
structures when learning subspaces.

To enhance UDA, we propose a method to learn
robust transfer features aiming to reduce the distribution
discrepancy between domains and preserve both the
discriminative information of source samples and the local
structure of target samples, conforming a method called
RTF (robust transfer features) for short. Specifically,
to match distributions, RTF reduces the MMD distance
(Gretton et al., 2012) between the distributions of
source and target domains. To preserve discriminative
information of the source domain, RTF enforces the
projected source samples in the same category to be close,
and those in different categories to be distant. To preserve
the local structure of the target domain, we construct a
graph on target samples and employ the graph Laplacian
constraint for structure preservation. In other words, if
two target samples are close in the original space, they
should remain close after projection.

Reducing the distribution discrepancy can ensure
that the labeled source samples are used to learn the
target classifier, enabling the exploration of labeling
information from the source domain. In addition,
preserving the source discriminative information
allows learning more discriminative features and
facilitates prediction. Furthermore, preserving the local
structure of the target domain helps avoid overfitting
and improve the generalization ability of the target

classifier. RTF integrates optimization of finding matched,
discriminative and structure-preserved features into a
unified framework, which can be solved by generalized
eigenvalue decomposition. Our main contributions are
summarized as follows:

• RTF aims to learn robust transfer features from
the source and target data to (i) effectively reduce
the distribution divergence between domains, (ii)
fully exploit the labeling information of the source
domain to boost classification performance, and (iii)
preserve the local structure of the target domain
to avoid overfitting to the source samples. Then,
the classifier can be trained using standard machine
learning approaches on the newly learned features of
the labeled source data, and the resulting classifier
can be applied to the unlabeled target domain.

• The concepts of RTF are effectively incorporated into
a unified objective function, and the global optimal
solution can be obtained by solving generalized
eigenvalue decomposition, thus being an efficient
algorithm.

• Comprehensive experimental results on several
visual datasets (i.e., COIL20, USPS, MNIST,
Office, and Caltech-256) show that RTF outperforms
state-of-the-art UDA methods on most cross-domain
object recognition tasks.

The remainder of this paper is organized as follows.
Section 2 briefly reviews some related works. Section 3
describes the proposed DA algorithm. Section 4
reports and presents a discussion on the experimental
results on different cross-domain datasets to illustrate the
effectiveness of the proposed method. Finally, we draw
conclusions in Section 5.

2. Related work

In this section, we briefly review some related works on
UDA and introduce the MMD criterion.

2.1. Unsupervised domain adaptation. UDA
is a machine learning approach that can be roughly
categorized into three types: parameter-based,
instance-based, and feature-based transference.
Parameter-based methods (Saenko et al., 2010; Yang
et al., 2007; Duan et al., 2009) are intended to transfer
knowledge by sharing parameters or prior distributions
of hyperparameters of the classifier, which is trained
with the source instances. Instance-based methods (Gong
et al., 2013; Tan et al., 2012) aim to re-weight the
instances in the source domain such that the distributions
of the source and target domains agree. Feature-based
DA, which is adopted in this study, aims to learn a
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Fig. 1. Concepts motivating the proposed method. Triangles denote different samples, plus signs denote positive samples, minus signs
denote negative samples, and question marks denote unlabeled samples. The imaginary line denotes the projection direction.

common subspace where the source and target domains
have the same distribution.

Feature reduction is crucial for various image-based
applications such as visualization and classification.
However, general feature reduction methods do not
consider the distribution discrepancy problem (Mardia
et al., 1979; Fukunaga and Keinosuke, 1990; He, 2003).
Pan et al. (2011) proposed transfer component analysis
(TCA) to reduce the distribution discrepancy between
the source and target domains via learning a common
subspace underlying both domains. Likewise, JDA (Long
et al., 2013) jointly adapts the marginal and conditional
distributions between domains for principal dimension
reduction. Despite these methods being able to reduce the
distribution discrepancy between domains, they neglect
discriminative information of the original data, possibly
degrading the classification performance. In fact, besides
matching the distributions, these methods maximize the
global covariance of all samples to preserve the original
information at the expense of losing discriminative
information.

Recently, to preserve the discriminative ability of
original data, some methods such as visual domain
adaptation (VDA) (Tahmoresnezhad and Hashemi, 2016),
joint geometrical and statistical alignment (JGSA) (Zhang
et al., 2017), domain invariant and class discriminative
learning (DICD) (Li et al., 2018) have been proposed to
incorporate the labeling information of source samples
when learning the new representation. Despite achieving
better performance than TCA and JDA, these methods
may be overfitted to the source domain when the
distribution discrepancy is large, because they excessively
consider the discriminative information of source samples
while neglecting the data structure of target samples. In
contrast, our proposed method can simultaneously match
the distributions of domains and preserve the intrinsic

information of original data, including the discriminative
information of source samples and the local structure of
target samples, thus improving the discrimination and
generalization of the learned features.

Two methods very similar to ours are structure
preservation and distribution alignment (SPDA) (Ting
et al., 2019) and structure-preserved unsupervised domain
adaptation (SP-UDA) (Hongfu et al., 2019). The
similarity between SPDA, SP-UDA and RTF is that all
of them aim to preserve the structure of original data.
SPDA and SP-UDA can outperform most existing domain
adaptation methods, which shows the effectiveness
of preserving structure information for improving the
performance. However, both of them ignore the
discriminative information of original data, while RTF can
preserve the discriminative information and the structure
information simultaneously.

2.2. Maximum mean discrepancy. One of the
challenges of feature-based UDA is measuring the
distribution discrepancy. As parametric criteria
require an intermediate stage of density estimation,
the nonparametric MMD criterion (Gretton et al., 2012)
is always adopted (Pan et al., 2011; Long et al., 2014;
2013; Tahmoresnezhad and Hashemi, 2016). Given
X = {x1, . . . ,xm} ∼ p and Y = {y1, . . . ,yn} ∼ q,
MMD between distributions p and q is defined as

distMMD (p, q) = sup
φ∈H

(Ex∼p [φ(x)]−Ey∼p [φ(y)]) ,

(1)
where Ex∼p [·] denotes the expectation operator under
distribution p and φ(·) is any function belonging in the
unit ball from a reproducing kernel Hilbert space H.
Condition distMMD (p, q) = 0 holds if and only if p = q.
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The empirical estimation of MMD proceeds as follows:

distMMD (p, q) =

∥
∥
∥
∥
∥

1

m

m∑

i=1

φ(xi)−
1

n

n∑

j=1

φ(yj)

∥
∥
∥
∥
∥
H
. (2)

3. Finding robust transfer features

This section details the finding process of robust transfer
features for effective UDA.

3.1. Problem formulation and motivation. In order
to facilitate the understanding, we first give the definitions
of “domain” and “task”. A domain D consists of two
components: a feature space X and a marginal probability
distribution p(X) (Pan and Yang, 2010), where X =
{x1, . . . ,xn} ∈ X (i.e., D = {X , p(X)}). If two
domains are different, they may have different feature
spaces or different marginal probability distributions. For
a domain D, a task T consists of a label space Y and a
prediction function f (x), i.e., T = {Y, f (x)} (Pan and
Yang, 2010). From a probabilistic viewpoint, f(x) can be
regarded as the conditional probability p(y|x).

In this study, we focus on UDA, in which the training
dataset {Xs,Ys} = {xi

s, y
i
s}ns

i=1 is sampled from the
source domain Ds and the source task Ts, and the test
dataset {Xt} = {xj

t}nt

j=1 and its unknown labels are
sampled from the target domain Dt and target task Tt.
Generally, UDA assumes that the training data and test
data have the same feature space and label space, i.e.,
Xs = Xt andYs = Yt, but different marginal distributions
and conditional distributions, i.e., p(Xs) �= p(Xt) and
p(y|xs) �= p(y|xt). The goal of UDA is learning a
prediction function ft : xt → yt to obtain the minimized
expected error on the target domain.

To address the UDA problem, learning feature
transformation T ∈ R

d×r is very useful for mapping
an original sample x ∈ R

d into a low-dimensional
representation z ∈ R

r (i.e., z = TTx), such that the
distribution discrepancy between domains is reduced and
the intrinsic information (i.e., discriminative information
and structure information) of the original data is mostly
preserved.

Aligning the distributions of the source and target
domains enables the use of source samples to learn a target
classifier and achieve good generalization performance
on the target domain. To this end, we adopt the MMD
criterion because it does not require an intermediate
density estimation. However, minimizing the MMD
between domains may result in all samples being
projected onto one cluster or even one point (e.g., zero),
thus degrading classification performance. Therefore,
besides reducing the distribution discrepancy between
domains, it is necessary to keep the original information
from all the samples. In fact, we aim to preserve both
the discriminative information of source samples and the

local structure of target samples. The former can improve
the discriminative ability of the learned representation,
and the latter can improve the generalization on target
samples. In the sequel, we present the proposed approach
from these two perspectives.

3.2. Reducing the distribution discrepancy between
domains. Directly reducing the discrepancy between
the joint distributions of domains is difficult. Hence,
we match the marginal and conditional distributions and
adopt the MMD criterion (Gretton et al., 2012) to measure
the distance between distributions of the source and target
domains.

3.2.1. Matching marginal distributions. Based on
MMD, the distance between the marginal distributions
of the source and target domains in r-dimensional
embeddings is given by

dm =
∥
∥
∥
1

ns

ns∑

i=1

TTxi −
1

nt

ns+nt∑

j=ns+1

TTxj

∥
∥
∥

2

= tr
(

TTXM0X
TT

)

,

(3)

where X = [Xs,Xt] ∈ R
d×(ns+nt) is an input data

matrix, tr(·) denotes the matrix trace, and M0 is the MMD
matrix, which can be computed as follows:

(M0)ij =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

nsns
if xi,xj ∈ Xs,

1

ntnt
if xi,xj ∈ Xt,

−1

nsnt
otherwise.

(4)

3.2.2. Matching conditional distributions. Merely
reducing the discrepancy between marginal distributions
cannot guarantee that the source and target domains
agree. Indeed, minimizing the difference between
the conditional distributions is crucial for effective
distribution adaptation. As p(y)p(x|y) = p(x)p(y|x),
marginal distributions p(x) have been matched, and prior
distributions p(y) are generally equal, and thus we can
match class conditional distributions p(x|y) instead of
conditional distributions p(y|x) for ease of calculation.
However, this remains difficult because there is no labeled
data in the target domain. We assume that the conditional
distributions of the source and target domains are similar.
This assumption is reasonable, because otherwise the
source domain could not be used to improve classification
in the target domain. Therefore, we can train a base
classifier with the source samples and then use it to predict
pseudo-labels of the target samples. With the true source
labels and the target pseudo-labels, we can calculate the
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MMD distance between the class conditional distributions
as follows:

dc =
C∑

k=1
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)

XTT

)

,

(5)
where C is the number of classes, X(k)

s and X
(k)
t are the

sets of instances from class k belonging to the source and
target data, respectively, n(k)

s = |X(k)
s | and n(k)

t = |X(k)
t |,

and MMD matrix Mk is computed as follows:

(Mk)ij

=
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0 otherwise.

(6)

Initially, some of the target pseudo-labels may be
incorrect, but we can iteratively refine them. Specifically,
a new source classifier can be iteratively trained in
the learned subspace to predict the target data more
accurately, because in this space the distributions of
the source and target domains become closer after each
iteration.

Therefore, the total distance between the two
domains can be written as

dt = dm + dc

= tr(TTXM0X
TT) + tr(TTX

C∑

k=1

MkX
TT)

= tr(TTXMXTT),
(7)

where M is the total MMD matrix, which can be
calculated as

M = M0 +
C∑

k=1

Mk =
C∑

k=0

Mk. (8)

Minimizing (7) can effectively reduce the
discrepancy between the source and target domains.

3.3. Preserving intrinsic information. Besides
minimizing the distribution discrepancy between
domains, we also aim to preserve the intrinsic information
of the original data, i.e., the discriminative information
and structure information. RTF enforces the samples
belonging to the same class to be close and those
from different classes to be distant in the learned

low-dimensional subspace. To conveniently describe
the distance between pairs of features as being close or
distant, we define a scatter matrix as follows:

S =
1

2

n∑

i,j=1

Wij(xi − xj)(xi − xj)
T
, (9)

where W is an n × n weight matrix for a graph with n
nodes.

Let D be the diagonal matrix with Dii =
∑n

j=1 Wij

and Laplacian matrix L be L = D−W. Scatter matrix S
can be expressed in terms of L as

S =
n∑

i,j=1

Wijxixi
T −

n∑

i,j=1

Wijxixj
T

=
n∑

i=1

Dijxixi
T −XWXT

= XLXT.

(10)

In the following, matrices S(·), W(·), D(·), and L(·)
are defined as above. As the source domain is labeled and
the target domain is not, we adopt different strategies to
preserve the intrinsic information for the two domains, as
detailed below.

3.3.1. Preserving discriminative information of
source samples. Let Sb and Sw be the between-
and within-class scatter matrices of source samples,
respectively. According to (9), their corresponding weight
matrices are calculated as

W b
ij =

⎧

⎪⎪⎨

⎪⎪⎩

1

ns
− 1

nm
if xs

i and xs
j belong to category m,

1

ns
otherwise,

(11)

Ww
ij =

⎧

⎪⎨

⎪⎩

1

nm
if xs

i and xs
j belong to category m,

0 otherwise,
(12)

where nm denotes the number of source samples in
category m.

To enforce the projected samples in the same
category to be close and those in different categories to
be distant, the within- and between-class scattering of the
projected samples should be minimized and maximized,
respectively:

min
T

tr(TTSwT) = tr(TTXsLwXs
TT), (13)

max
T

tr(TTSbT) = tr(TTXsLbXs
TT), (14)

where Lw and Lb are the corresponding Laplacian
matrices of the within- and between-class scatter matrices,
respectively.
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3.3.2. Preserving the local structure of target samples.
As target samples are unlabeled, we cannot calculate their
within-class scatter and between-class scatter like above.
However, it is reasonable to assume that two close samples
in the original space may belong to the same category.
Therefore, we enforce two samples that are close in the
original space to remain close in the learned subspace.

Let St be the scatter matrix on the target domain. Its
corresponding weight matrix is defined as

Wij
t =

⎧

⎨

⎩

exp (− ||xi
t−xj

t ||2
σ ) if xi

t and xj
t are neighbor

0 otherwise.
(15)

where k is the number of the neighbors when constructing
the weight matrix and σ is the parameter of the heat kernel
function. Therefore, the objective function can be written
as

min
T

tr(TTStT) = tr(TTXtLtXt
TT), (16)

where Lt is the Laplacian matrix of scatter matrix St. The
objective function with the choice of Wij incurs a heavy
penalty if neighboring points xi

t and xj
t are mapped to

distant regions. Therefore, minimizing it can ensure that,
if xi

t and xj
t are close, they remain close in the new space.

3.4. Optimization. By incorporating (7), (13), (14),
and (16) into one function, we can write the total objective
function of RTF as

T∗

= argmin
T

tr
(

TT
(

XMXT + λXsLwX
T
s

λtr
(

TTXsLbXT
s T

)

+
βXtLtX

T
t

)

T
)

λtr
(

TTXsLbXT
s T

) , (17)

where λ and β are positive tradeoff parameters. The
objective function can be reduced to

T∗ = argmin
T

(

tr
(

TT(XMXT + λXsLwX
T
s

+ βXtLtX
T
t )T(λTTXsLbX

T
s T)

−1)
)

. (18)

This function corresponds to a generalized
eigenvalue decomposition problem. Let {ϕk}dk=1 be
the generalized eigenvectors associated with generalized
eigenvalues {λk}dk=1 of the following generalized
eigenvalue problem:

Bϕ = λCϕ. (19)

The generalized eigenvectors are C-orthogonal (i.e.,
for k �= k′, ϕk

TCϕk′ = 0). Sorting the generalized

Algorithm 1. Finding robust transfer features.
Require: Labeled source samples Xs, unlabeled target

samples Xt, dimension of subspace r, tradeoff
parameters λ and β, number k of nearest neighbors
and number N of iterations.

1: Train base classifier f with {Xs,Ys} to predict target
pseudo-labels Ŷt.

2: repeat
3: Calculate M according to (8).
4: Construct weight matrices Wb, Ww, and Wt and

then calculate the corresponding graph Laplacian
matrices, Lb, Lw, and Lt.

5: Calculate constraint matrices B and C according to
(21) and (22), respectively.

6: Solve generalized eigenvalue problem in (19) and
obtain optimal solution T∗ via (20).

7: Let [Zs,Zt] = TT[Xs,Xt] and train base
classifier f with {Zs,Ys} to predict target
pseudo-labels Ŷt.

8: i = i+ 1.
9: until Convergence or i > N .

10: return Feature transformation matrix T and final
classifier f .

eigenvalues in descending order as λ1 ≥ λ2 ≥ · ·
· ≥ λd and normalizing the generalized eigenvectors as
ϕk

TCϕk = 1 for k = 1, . . . , d, the solution T∗ is
analytically given as follows:

T∗ = [ϕ1,ϕ2, . . . ,ϕr] . (20)

Indeed, T∗ is the matrix constructed with the
generalized eigenvectors up to the r-th leading
generalized eigenvalue. Therefore, a solution of
(18) is given by (19) and (20) with

B = XMXT + λXsLwX
T
s + βXtLtX

T
t , (21)

C = λXsLbX
T
s . (22)

Once T is obtained, the new representations
of any original sample can be calculated as
z = TTx. The pseudocode of the linear RTF
is summarized in Algorithm 1 and the code is
available at https://github.com/hitphd/
robust-transfer-feature/.

The RTF algorithm can be extended to a nonlinear
version using the kernel trick. Suppose that the original
feature space, R

d, is mapped onto reproducing kernel
Hilbert space H through nonlinear mapping function ϕ :
R

d → H. Let Φ(X) = [ϕ(x1), . . . , ϕ(xns+nt)] denote
the data matrix in the Hilbert space. According to the
representer theorem, T = Φ(X)A, where A is the
coefficient matrix, and hence the object of RTF can be

https://github.com/hitphd/robust-transfer-feature/
https://github.com/hitphd/robust-transfer-feature/
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written as follows:

A∗ = argmin
A

(

tr(AT(KMKT+λKsLwK
T
s

+ βKtLtK
T
t )A(ATKsLbK

T
s A)

−1
)
)

, (23)

where K, Ks, and Kt are the kernel matrices for all
samples, the source samples, and the target samples,
respectively. Equivalently, we have

B = KMKT + λKsLwK
T
s + βKtLtK

T
t , (24)

C = KsLbK
T
s , (25)

and can obtain optimal solution A∗ of (23) via (19) and
(20). After obtaining A = [ϕ1,ϕ2, . . . ,ϕr], we can
obtain the new representation with Z = ATK.

4. Experiments and results

In this section, we first describe the employed datasets
and implementation of the proposed method. Then, we
report the comparison of our method with existing UDA
methods. Finally, we empirically analyze the performance
of the proposed method by evaluating variations of its
parameters.

4.1. Data preparation. The Office–Caltech dataset
contains 10 shared categories from the Office (Saenko
et al., 2010) and Caltech-256 (Griffin et al., 2007) datasets
and is a well-known VDA benchmark. Office covers three
distinct domains: Amazon contains images downloaded
from amazon.com, Webcam contains low-resolution
images captured by a web camera, and DSLR contains
high-resolution images captured by a digital single-lens
reflex camera. Caltech-256 (Griffin et al., 2007) is a
widely used object recognition dataset containing 256
categories and 30,607 images. Like in previous works
(Long et al., 2013; Gheisari and Baghshah, 2015), we
constructed the Office–Caltech dataset using images from
the 10 shared categories of Office and Caltech and built
3× 4 = 12 cross-domain problems by randomly selecting
two different domains from Caltech-256 (C), Amazon
(A), webcam images (W), and DSLR (D) as the source
and target domains. For this dataset, we considered two
types of features: SURF features (Bay et al., 2006),
quantized into an 800-bin histogram with codebooks
computed on a subset of Amazon, and 4096-dimensional
DeCAF features (Donahue et al., 2014), which are
activations of the sixth fully connected layer of a
convolutional neural network trained on ImageNet.

The COIL20 dataset (Nene et al., 1996) comprises 20
different objects with 72 images per object. The images
of each object were captured with 5-degree increments as
each object was rotated on a turntable. Each image has
32×32 pixels with 256 gray levels. Like in previous works

(Long et al., 2013; Gheisari and Baghshah, 2015), we split
the COIL20 dataset into two subsets: COIL1, containing
images captured at angles of [0◦, 85◦] ∪ [180◦, 265◦],
and COIL2, containing images captured at angles of
[90◦, 175◦]∪[270◦, 355◦]. Thus, we constructed two UDA
problems, namely, COIL1–COIL2 and COIL2–COIL1,
by selecting one subset as one domain. The images in
both domains were captured from different directions,
such that they had relatively different distributions. In
our experiment, the original 1024-dimensional vectors of
pixel values were taken as inputs.

Digit recognition is a widely used benchmark
in unsupervised DA, which comprises two different
domains, USPS (U) and MNIST (M). The USPS dataset
consists of 7291 training images and 2007 test images of
size 16 × 16. The MINST dataset contains a training
set with 60,000 images and a test set with 10,000 images
of size 28 × 28. The datasets have 10 common classes
of digits, from 0 to 9. Following the settings of Long
et al. (2013), the USPS–MINST cross-domain problem
was constructed by randomly sampling 1,800 labeled
images in USPS to form the source domain and randomly
sampling 2,000 unlabeled images in MINST to form
the target domain. Similarly, the source and target
domains were switched to construct the MNIST–USPS
cross-domain problem. All images in both the USPS and
MINST datasets were rescaled to the size of 16 × 16. In
addition, each image was represented by a feature vector
encoding the grayscale pixel values, such that the source
and target data are in the same feature space.

Table 1 lists the details of the evaluated benchmarks,
and Fig. 2 shows some sample images.

4.2. Implementation details. Following the common
protocol (Gong et al., 2013; Long et al., 2013) in UDA, all
the labeled source samples and unlabeled target samples
were used to learn the feature transformation function,
and then an NN (nearest neighbors) classifier was trained
on the labeled source instances to classify the unlabeled
target instances. Because there are no labeled samples in
the target domain that can be used as a validation dataset,
it is impossible to tune the optimal parameters by cross
validation. Hence, we select the optimal parameters from
the scope shown in Table 2 by grid search, and then
report the best results of RTF. Because there is no random
initialization or some other factors that may introduce
randomness, RTF will obtain the same result each time if
the parameters are determined. Therefore, for each set of
parameters, we only run RTF once and record the result.
After all the results are obtained, we report the best one.
For the other comparison methods, we directly cited their
results from the published articles, as their experiments
settings were identical to ours.

The classification accuracy in the target domain
is used as the evaluation measure, which indicates the

amazon.com
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Table 1. Benchmark dataset details.
Dataset Type #Examples #Class #Features Domain

USPS Digit 1800 10 256 U
MNIST Digit 2000 10 256 M
Office Object 1410 10 800/4096 A, W, D

Caltech Object 1123 10 800/4096 C
COIL20 Object 1440 20 1024 COIL1, COIL2

(a) USPS (b) MNIST (c) COIL

(d) Amazon (e) Caltech (f) DSLR (g) Webcam

Fig. 2. Sample images from the datasets.

percentage of the correctly predicted samples in the target
domain,

Accuracy =
|{x : x ∈ Dt ∧ f(g(x)) = y(x)}|

|{x : x ∈ Dt}|
, (26)

where y(x) is the true label of x and f(g(x)) is the label
predicted by the proposed algorithm.

4.3. Comparison with state-of-the-art methods. To
verify the effectiveness of the proposed method, we
conducted experiments on different cross-domain visual
classification tasks and compared the results to those
of some state-of-the-art methods, including traditional
techniques such as TCA (Pan et al., 2011), TJM (Long
et al., 2014), VDA (Tahmoresnezhad and Hashemi, 2016),
JDA (Long et al., 2013), JGSA (Zhang et al., 2017),
DICD (Li et al., 2018) , D-GFK (Wei et al., 2018), SPDA
(Ting et al., 2019) and SP-UDA (Hongfu et al., 2019).
Tables 3–5 show the results for the evaluated methods.

As shown in Tables 3–5, RTF outperformed all other
comparison methods in most tasks (15 out of 28 tasks).
Although the proposed method is not the best performer in
all the cross-domain problems, it outperforms the baseline
methods on most of these problems and shows the highest
average accuracy for Office–Caltech and COIL20. When

it did not achieve the best performance, the proposed
method was still slightly below the best performer. As
these results were obtained from a wide range of image
datasets, they demonstrate that RTF effectively reduces
the distribution divergence between domains and learns
a better classifier for the target domain on different
cross-domain classification tasks.

Note that all the reported UDA methods outperform
a standard machine learning method (i.e., the NN
classifier), confirming the importance of reducing the
distribution discrepancy when the training and test
data are drawn from different domains. TCA,
TJM, and JDA perform worse than the other UDA
methods because they learn new representations without
considering the discriminative ability. RTF performs
better than the discriminative UDA methods (i.e., VDA,
JGSA, DICD, and D-GFK) because it preserves not
only the discriminative information of source samples
but also the local structure of target samples, thus
improving the generalization ability for classification.
Moreover, RTF outperforms the structure preserved UDA
methods (i.e., SPDA and SP-UDA) since they ignore
the discriminative information that may degrade the
classification performance. For better visualization, the
results on Office–Caltech dataset with SURF features
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Table 2. Searching scope of the parameters in RTF.
Parameter Values Meaning

r 10, 20, . . . , 100 Dimension of the objective subspace
β 0.01,0.05,0.1,0.5,1,5,10,50,100 Tradeoff parameter for target domain
λ 0.01,0.05,0.1,0.5,1,5,10,50,100 Tradeoff parameter for source domain
k 10,15,20,25,30,35,40,45,50 Neighbors used when constructing the similarity matrix
σ 0.0001,0.001,0.01,0.1,1 Parameter of heat kernel
T 10 Iteration times

Table 3. Accuracy (%) on cross-domain problems in the Office–Caltech-10 dataset with SURF features.
Task/method NN TCA TJM JDA VDA JGSA DICD D-GFK SPDA SP-UDA RTF

C→A 23.70 38.20 46.76 44.78 46.14 51.46 47.29 54.38 52.82 52.1 54.94
C→W 25.76 38.64 38.98 41.69 46.10 45.42 46.44 46.44 40.68 47.1 46.78
C→D 25.48 41.40 44.59 45.22 51.59 45.86 49.68 49.68 51.59 45.9 52.23
A→C 26.00 37.76 39.45 39.36 42.21 41.50 42.39 45.68 43.37 41.3 44.52
A→W 29.83 37.63 42.03 37.97 51.19 45.76 45.08 41.69 43.39 38.3 42.37
A→D 25.48 33.12 45.22 39.49 48.41 47.13 38.85 46.50 46.5 38.2 44.58
W→C 19.86 29.30 30.19 31.17 27.60 33.21 33.57 35.08 31.97 33.3 36.51
W→A 22.96 30.06 29.96 32.78 26.10 39.87 34.13 38.62 37.27 41.8 40.19
W→D 59.24 87.26 89.17 89.17 89.18 90.45 89.81 90.45 89.81 89.8 88.54
D→C 26.27 31.70 31.43 31.52 31.26 29.92 34.64 32.06 33.84 33.7 34.91
D→A 28.50 32.15 32.78 33.09 37.68 38.00 34.45 38.10 38.2 33.6 38.94
D→W 63.39 86.10 85.42 89.49 90.85 91.86 91.19 84.41 82.37 93.2 88.47
Average 31.37 43.61 46.33 46.31 49.03 50.04 48.96 50.26 49.32 49.0 51.08

are also shown in Fig. 3, where the upper and bottom
symbols represent the methods for achieving the best
and worst performance, respectively, in each task. From
Fig. 3, it can be seen that RTF achieved significantly
better performance than the state-of-the-art methods. In
terms of the best and worst results, RTF exhibited five
best performance and none of the worst. Although
SP-UDA and VDA achieved best three and two results,
respectively, their average accuracies were 2.08% and
2.05% lower than that of RTF. Tables 3 and 4 show
that results obtained from DeCAF6 features are much
better than those obtained from SURF features, because
deep features are more discriminative. Overall, RTF
outperforms existing methods and effectively performs
cross-domain image classification.

4.4. Significance test. To further prove the advantage
of RTF over other methods, we conduct a significance
test (t-test) on the Office-31 dataset. For contrast with
the Office+Caltech256 dataset used in Section 4.3, here
we denote the Office dataset with 31 classes as Office-31
following Li et al. (2018). Office-31 contains the images
of 31 common categories from Amazon (A), DSLR
(R) and Webcam (W). Similarly as in the work of Li
et al. (2018), three cross-domain tasks, A→D, D→W
and W→D, are constructed, and as in Section 4.3,
800-bin SURF features of all the images are used in the

experiments. Following the classic protocol by Sha et al.
(2012), for the source domain, we randomly down-sample
20 labeled samples per class for Amazon and 8 samples
for DSLR or Webcam. Further, for the target domain, all
unlabeled samples are used for testing data. Because there
are more categories and fewer labeled source samples,
Office-31 is a more complex dataset. All the experiments
are repeated 10 times, and averages and standard errors
of classification accuracy are shown in Table 6 while the
p-value of the significance test for results is shown in
Fig. 4.

Here, following the protocol by Li et al. (2018), a
significance level of 0.05 is used, and if the p-value is
less than 0.05, the differences of results between RTF and
other baselines are statistically significant. To illustrate
the statistical significance more clearly, we show − log(p)
with respect to each task and the base significance level of
0.05 (− log(0.05)) as the horizontal line. The larger value
of − log(p) means greater significance of RTF compared
with other baselines. Table 6 and Fig. 4 show that not
only the average accuracy of RTF is higher than that
of the other approaches but also all the − log(p) of the
performance comparison between RTF and other methods
for all the tasks are larger than − log(0.05), which means
that the RTF is significantly superior to other baselines on
the Office-31 dataset.
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Table 4. Accuracy (%) on cross-domain problems in the Office–Caltech-10 dataset with DeCAF features.
Tasks/method NN TCA JDA JGSA DICD RTF

C→A 85.70 90.29 90.19 91.44 91.02 93.42
C→W 66.10 83.72 85.42 86.78 92.20 87.11
C→D 74.52 88.53 85.99 93.63 93.63 94.90
A→C 70.35 82.01 81.92 84.86 86.02 87.80
A→W 57.29 75.59 80.68 81.02 81.36 85.42
A→D 64.97 85.35 81.53 88.54 83.44 88.54
W→C 60.37 68.47 81.21 84.95 83.97 82.72
W→A 62.53 74.53 90.71 90.71 89.67 88.20
W→D 98.73 99.36 100.0 100.0 100.0 100
D→C 52.09 76.94 80.32 86.20 86.11 82.81
D→A 62.73 82.67 91.96 91.96 92.17 89.77
D→W 89.15 97.97 99.32 99.66 98.98 100
Average 70.38 83.79 87.44 89.98 89.88 90.06

Table 5. Accuracy (%) on cross-domain problems in the USPS–MNIST and COIL20 datasets.
Task/method NN TCA TJM JDA VDA JGSA DICD RTF

USPS→MNIST 44.70 51.05 52.25 59.65 62.95 68.15 65.20 66.05
MNIST→USPS 65.94 56.28 63.28 67.28 74.72 80.44 77.83 78.33
Average 55.32 53.67 57.77 63.47 68.84 74.30 71.52 72.19
COIL1→COIL2 83.61 88.47 91.53 89.31 99.31 91.67 95.69 99.31
COIL2→COIL1 82.78 85.83 91.81 88.47 97.92 91.80 93.33 98.89
Average 83.20 87.15 91.67 88.89 98.62 91.74 94.51 99.10

4.5. Effectiveness of preserving intrinsic infor-
mation. To verify the effectiveness of preserving
intrinsic information for improving the classification
performance, we constructed three simplified versions
of the RTF algorithm: (i) RTF-1 only minimizing
the MMD between domains without preserving any
intrinsic information, (ii) RTF-2 preserving the local
structure in the target domain besides minimizing
the MMD, (iii) RTF-3 preserving the discriminative
information in the source domain besides minimizing the
MMD. All the other settings in the proposed method
remained unchanged in these three variants. Since the
experimental results exhibit the same phenomenon in
different data sets, we only report the ones obtained
on the Office–Caltech dataset with the SURF features
in Fig. 5. Because RTF-1 does not preserve any kind
of intrinsic information, it performs worst; RTF-2 and
RTF-3 outperform RTF-1, because they can preserve one
kind of intrinsic information, which indicates preserving
either discriminative information or structure information
can both improve the performance; RTF obtains the best
performance, which shows that simultaneously preserving
two kinds of intrinsic information (i.e., discriminative
information and structure information) can further
improve the performance. Therefore, the comparison
between these four methods confirms that preserving
intrinsic information for improving the classification
performance is effective.

4.6. Performance analysis. We also analyzed the
performance of the proposed method regarding the
influence of different graphs, parameter sensitivity and
computational complexity.

To evaluate the influence of different graphs, we
conducted experiments on three different problems,
namely, C→A with the SURF features, USPS→MNIST,
and COIL1→COIL2, and determined the classification
accuracy as shown in Fig. 6. Constructing good graphs for
feature transformation method is necessary for improved
classification performance. In the experiments, a k-NN
graph based on the Euclidean distance was adopted.
Figure 6 shows that the value of k clearly affects the
performance. Very small values impede label propagation
to the samples from the same class with the labeled data,
whereas very large values may cause label propagation to
the samples from different classes. Thus, a proper value
of k based on the actual task should be selected to obtain
the best results.

To analyze parameter sensitivity, we conducted
experiments on the same problems as those for the graph
analysis, obtaining the results shown in Fig. 7. We
evaluated dimensionality r of the subspace and tradeoff
parameters β and λ.

As shown in Fig. 7(a), accuracy degrades for
very low or high subspace dimensions, because
low-dimensional subspaces are non-discriminative
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Table 6. Averages and standard errors of classification accuracy on the Office-31 dataset.
Task/method NN TCA TJM JDA VDA JGSA DICD RTF

A→D 34.72±2.68 45.35±3.01 43.15±1.86 46.34±2.59 46.85±2.03 44.35±1.98 47.21±2.32 47.86±2.01
D→W 35.84±3.01 47.28±2.08 49.28±2.38 51.23±1.93 52.32±2.31 54.13±2.35 53.61±2.69 55.62±2.43
W→D 36.21±2.92 48.27±2.12 49.33±2.63 51.33±2.05 52.86±1.98 54.67±1.87 54.88±2.13 56.01±2.54
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and high-dimensional subspaces increase distribution
discrepancy. RTF can retrieve relatively stable results on
the three problems when 30 ≤ r ≤ 80. Figures 7(b) and
7(c) show that RTF has the same trend with respect to
parameters β and λ, as it does not achieve satisfactory
performance when these parameters are either very low
or very high. This is because intrinsic information may
not be preserved sufficiently for very low values, whereas
the effect of other terms is neglected for very high values.
Therefore, it is necessary to select suitable tradeoff
parameters to obtain the best results.

Computational complexity. The proposed RTF approach
mainly includes three steps:

• Step 1: constructing the graphs and similarity
matrices. Concretely, RTF constructs the source
domain graph and target domain graph respectively,
therefore its computational complexity is O(ns

2) +
O(nt

2).

• Step 2: generalized eigenvalue decomposition of
Eqn. (19). In this paper, we solve it using the
eigs() function provided by MATLAB, because
both the B and C in Eqn. (19) are d × d and the
computational complexity of Step 2 is O(d3), where
d is the dimension of original data.

• Step 3: training the classifier and predict the
target labels. In the experiments the NN classifier
is adopted, and according to its theory the
computational complexity is O(ns × nt). In this
paper, all experiments are done with MATLAB and
the Windows 10 operating system, Intel Corl i7-7700
CPU and the basic frequency of 3.6 GHz. We run
RTF approach 20 times and record the mean running
times on each task. The fastest task is D→W with
SURF features (ns = 157, nt = 295, d = 256)
and its running time is 1.37 s, and the slowest one
is A→C with DeCAF features (ns = 958, nt =
1123, d = 4096) and its running time is 68.52 s.

5. Conclusion

To address UDA problems, we propose a feature reduction
approach to learn robust transfer features by reducing the
distribution discrepancy between domains and preserving
intrinsic information of original samples. The proposed
RTF is designed to simultaneously realize the following
goals. First, reduce the MMD between distributions of
source and target domains, enabling source samples to be
used for training a target classifier. Second, preserving
discriminative information of source samples to improve
the discriminative ability of the learned features and
the final classification performance. Third, preserving
the local structure of target samples to improve the
generalization of the learned features. These goals are

incorporated into one optimization problem, and the
global optimal solution can be obtained via generalized
eigenvalue decomposition. We evaluated the RTF
algorithm for object recognition and digit recognition
on different cross-domain datasets. Experimental
results verify both that RTF outperforms state-of-the-art
methods on most cross-domain recognition tasks and the
effectiveness of preserving locality when finding new
representations.
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