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Motivated by ideas from two-step models and combining second-order TV regularization in the LLT model, we propose
a coupling model for MR image reconstruction. By applying the variables splitting technique, the split Bregman iterative
scheme, and the alternating minimization method twice, we can divide the proposed model into several subproblems only
related to second-order PDEs so as to avoid solving a fourth-order PDE. The solution of every subproblem is based on
generalized shrinkage formulas, the shrink operator or the diagonalization technique of the Fourier transform, and hence
can be obtained very easily. By means of the Barzilai–Borwein step size selection scheme, an ADMM type algorithm is
proposed to solve the equations underlying the proposed model. The results of numerical implementation demonstrate the
feasibility and effectiveness of the proposed model and algorithm.
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1. Introduction

Magnetic resonance (MR) imaging is a non-invasive
and non-ionizing imaging technique which enables
excellent visualization of both anatomical structures and
physiological functions. However, this imaging modality
is time-consuming because data samples in MR imaging
are acquired sequentially in k-space (Yang et al., 2010;
Miao et al., 2011) of the spatial Fourier transform of the
object. Therefore, many MR techniques (Yang et al.,
2010; Miao et al., 2011), including compressive sensing
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(CS) (Lustig et al., 2007), have been developed to reduce
the amount of data needed for accurate reconstruction.

There are many PDE-based models to solve the MR
image reconstruction problem, e.g., the TVL1-L2 model
introduced by Yang et al. (2010). Based on total variation
(TV) regularization and wavelets, Lustig et al. (2007)
proposed a constrained minimization model as follows:

min
u

‖u‖TV + α‖Φ�u‖1,
subject to

‖Au− f‖2 < σ, (1)
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where

‖u‖TV = ‖∇u‖1 =
∫
Ω

|∇u| dx,

|∇u| =
√
(∇xu)2 + (∇yu)2,

u represents the reconstructed image and Φ is the wavelet
transform, ‖ · ‖1 is the L1 norm and the superscript �

is the conjugate transpose of a matrix, A is the partial
Fourier operator, f denotes partially scanned k space data
and σ is an estimate of the noise level in the data. TV
regularization and wavelet transforms can be regarded as
forcing the MR image to be sparse.

Several fast algorithms (Chen et al., 2012; Yang
et al., 2010; Ye et al., 2011) have been developed to solve
the unconstrained version of the model (1) (called the
TVL1 model):

min
u

‖u‖TV + α‖Φ�u‖1 + β

2
‖Au− f‖22, (2)

where β is a regularization parameter. These algorithms
involved only the computation of shrinkage operators
and the fast Fourier transform. Especially, the
Barzilai–Borwein (BB) step size selection scheme was
adopted by Ye et al. (2011) for faster convergence, and
only an explicit system needs to be solved because the
efficiency of the proposed algorithm did not rely on the
fact that ATA could be diagonalized by fast transforms.

The second order model of PDE-based image
reconstruction like (1) has a TV-based regularization term,
which was introduced by Rudin et al. (1992) for image
denoising (called the ROF model). Unfortunately, TV
regularization suffers from the so-called staircase effect,
i.e., the convertion of smooth regions into piecewise
constant ones, which may generate block-like images.
In order to overcome the inherent shortcoming of TV
regularization, some higher order models have been
developed (Lysaker et al., 2003; Steidl, 2006; You
and Kaveh, 2000), such as the LLT model proposed
by Lysaker et al. (2003), the corresponding numerical
methods are also similar to those of the ROF model.
Inspired by the LLT model, Xie et al. (2014) proposed
a higher-order model for MR image reconstruction in the
following (called the TV2L1 model):

min
u

‖u‖TV 2 + α‖Φ�u‖1 + β

2
‖Au− f‖22, (3)

where

‖u‖TV 2 = ‖∇2u‖1 =

∫
Ω

|∇2u| dx,

∇2u =

[ ∇xxu ∇xyu
∇yxu ∇yyu

]
,

|∇2u| =
√
(∇xxu)2 + (∇xyu)2 + (∇yxu)2 + (∇yyu)2.

However, it is more difficult to solve higher-order models
than the ROF one since some high-order derivatives are
included in these models. In addition, they tend to
introduce some blurring in regions of image edges.

In order to avoid the staircase effect while alleviating
edge blurring, Lysaker et al. (2004) proposed a two-step
method for image denoising (called the LOT model). The
first step of the classic LOT model (Lysaker et al., 2004)
is to solve the following problem:

min
|n|=1

∫
Ω

|∇n| dx +
α

2

∫
Ω

(
n− ∇f

|∇f |
)2

dx, (4)

where the first term is the regularization term, |∇n| is the
total variation of the unit normal vector n for the level
curves of image u, and α is a regularization parameter.
The second step is to reconstruct the restored image u by
solving the following minimization problem:

min
u

∫
Ω

(|∇u| − n∗ · ∇u) dx+
β

2

∫
Ω

(u− f)2 dx, (5)

where n∗ is the solution of (4) and β is a regularization
parameter. The LOT model may restore edges and
discontinuities in a better way than the LLT one
while alleviating the staircase effect. However, if the
information about the noise is not known, the LOT model
cannot preserve edges or textures well. Furthermore, three
discrete nonlinear second-order PDEs derived from the
LOT model have to be computed so that algorithms for
solving model equations are slow.

For the sake of overcoming the drawbacks of the
above models, motivated by the ideas from two-step
models (Dong et al., 2009; Hao et al., 2012; Yang et al.,
2011) and by combining second-order TV regularization
in the LLT model (Lysaker et al., 2003), in this paper,
we propose a novel model coupling two variables for MR
image reconstruction. By using the variables splitting
technique, the split Bregman iterative scheme, and the
alternating minimization method (Chan et al., 2011), we
can divide the proposed model into five subproblems. In
order to avoid solving a fourth-order PDE, we use again
the variables splitting technique and the split Bregman
iterative scheme so that in this paper we only need to
solve second-order PDEs with less computation based on
generalized shrinkage formulas, the shrink operator and
the diagonalization technique of the Fourier transform.
The Barzilai–Borwein step size selection scheme (Wright
et al., 2009) is also adopted to accelerate convergence. On
this basis, we propose an ADMM-type algorithm to solve
the proposed model. Several numerical experiments are
carried out, and the experimental results indicate that the
proposed algorithm is efficient and can provide better MR
reconstructed images.

The organization of this paper is as follows. In the
next section, we first propose a second-order TV-based
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coupling model for MR image reconstruction. Then,
by applying the split Bregman iterative scheme twice
and based on generalized shrinkage formulas, the shrink
operator, and the diagonalization technique of the Fourier
transform, we propose an ADMM type algorithm to solve
the proposed model. Some numerical experiments are
implemented in Section 3 to verify the feasibility and
effectiveness of the proposed model and algorithm. In the
last section, we provide some concluding remarks.

Some symbols are introduced in this paper: u ∈
R

N is the objective image consisting of N pixels.
Φ� = (φ1, φ2, . . . , φn)

� ∈ C
N×N is usually a proper

orthogonal matrix (e.g., the Haar wavelet) sparsifying the
underlying image u, f ∈ C

M with M ≤ N is the
partially scanned data and R ∈ R

M×N is the binary
matrix representing the sampling pattern. Noting that the
Fourier transform F is in fact an N × N unitary matrix,
A = RF is the partial Fourier transform operator.

2. Coupling model and the ADMM
algorithm

Inspired by the advantages in the classical LOT model
(Lysaker et al., 2004), a deformation of the LOT model
has been developed (Dong et al., 2009; Hao et al., 2012;
Yang et al., 2011). In the first step, instead of smoothing
the unit normal vector n as in the LOT model (Lysaker
et al., 2004), the authors smoothed the angle θ, where
n = (cos θ, sin θ), thus only one variable was solved so
as to speed the computation. The two models proposed in
the two-step method (Yang et al., 2011) are as follows:

⎧⎪⎨
⎪⎩

min
θ

∫
Ω |∇θ| dx+ α

2

∫
Ω (θ − θ0)

2
dx,

min
u

∫
Ω(|∇u| − (cos θ, sin θ) · ∇u) dx

+β
2

∫
Ω
(u− f)2 dx,

(6)

where θ0 = atan(u0y/u0x), (u0x, u0y)
� = ∇f/|∇f |.

Motivated by the above ideas and by combining
second-order TV regularization in the LLT model
(Lysaker et al., 2003), in this paper, we propose a novel
model coupling two variables θ and u for MR image
reconstruction (2) expressed as follows:

min
θ,u

∫
Ω

|∇θ| dx + λ

∫
Ω

|Φ�u|1 dx+ λ1

∫
Ω

|∇2u| dx

+
α

2

∫
Ω

(θ − θ0)
2 dx+

β

2

∫
Ω

(Au− f)2 dx

+
γ

2

∫
Ω

(|∇u| − (cos θ, sin θ) · ∇u)2 dx. (7)

In order to avoid numerical difficulties caused by
nonsmooth terms in (7), we apply the split Bregman
iterative scheme to solve the above model. Firstly, we
introduce an auxiliary variable η to transform ∇θ with
η = (η1, η2)

� = (∇xθ,∇yθ)
�. Secondly, we use

an auxiliary variable z to transform Φ�u. Thirdly, we
introduce auxiliary variable v to transform ∇u with v =
∇u = (∇xu,∇yu)

�. Then we can turn (7) into the
following constrained optimization problem:

min
u,θ,η,z,v

∫
Ω

|η| dx+ λ

∫
Ω

|z|1 dx+ λ1

∫
Ω

|∇v| dx

+
α

2

∫
Ω

(θ − θ0)
2 dx+

β

2

∫
Ω

(Au − f)2 dx

+
γ

2

∫
Ω

(|v| − (cos θ, sin θ) · v)2 dx,
subject to

η = ∇θ, z = Φ�u, v = ∇u,

(8)

where

∇v =

[ ∇xv1 ∇yv1
∇xv2 ∇yv2

]
,

|∇v| =
√
(∇xv1)2 + (∇yv1)2 + (∇xv2)2 + (∇yv2)2.

The related augmented Lagrangian functional can be
written as

L(u, θ,η, z,v;a, b, c)

= ‖η‖+ ρ1
2
‖η1 −∇xθ − a1‖22 +

ρ1
2
‖η2 −∇yθ − a2‖22

+ λ
(
‖z‖1 + ρ2

2
‖z − Φ�u− b‖22

)
+ λ1‖∇v‖

+ λ1

(ρ3
2
‖v1 −∇xu− c1‖22 +

ρ3
2
‖v2 −∇yu− c2‖22

)

+
α

2
‖θ − θ0‖22 +

β

2
‖Au− f‖22

+
γ

2
‖|v| − (cos θ, sin θ) · v‖22, (9)

where a = (a1, a2)
� ∈ C

N×2N , b ∈ C
N and c =

(c1, c2)
� ∈ C

2N are the Lagrangian multipliers, while
ρ1, ρ2 and ρ3 are positive penalty parameters.

By applying the Bregman iteration to (8), we get
the following iteration scheme with minimizing L in (9)
with respect to (u, θ,η, z,v) and with the updates of the
multipliers a, b and c:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uk+1, θk+1,ηk+1, zk+1,vk+1) =
arg min

u,θ,η,z,v
L(u, θ,η, z,v;ak, bk, ck),

ak+1
1 = ak1 + κ1(∇xθ

k+1 − ηk+1
1 ),

ak+1
2 = ak2 + κ1(∇yθ

k+1 − ηk+1
2 ),

bk+1 = bk + κ2(Φ
�uk+1 − zk+1),

ck+1
1 = ck1 + κ3(∇xu

k+1 − vk+1
1 ),

ck+1
2 = ck2 + κ3(∇yu

k+1 − vk+1
2 ).

(10)

Based on the alternating minimization method (Chan
et al., 2011), we can divide the minimization problem in
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(10) into the following five subproblems:

uk+1 =argmin
u

λρ2‖zk − Φ�u− bk‖22 + β‖Au− f‖22
+ λ1ρ3‖vk −∇u− ck‖22, (11)

θk+1 =argmin
θ

ρ1‖ηk −∇θ − ak‖22 + α‖θ − θ0‖22
+ γ‖|vk| − (cos θ, sin θ) · vk‖22, (12)

(ηk+1
1 , ηk+1

2 ) = arg min
η1,η2

‖η‖

+
ρ1
2
‖η −∇θk+1 − ak‖22, (13)

zk+1 = argmin
z

‖z‖1 + ρ2
2
‖z − Φ�uk+1 − bk‖22, (14)

vk+1 =argmin
v

2λ1‖∇v‖+ λ1ρ3‖v −∇uk+1 − ck‖22
+ γ‖|v| − (cos θk+1, sin θk+1) · v‖22. (15)

It is obvious that updating the multipliers such as ak1 ,
ak2 ,bk, ck1 and ck2 is easy. How to efficiently solve each
of the subproblems (11) to (15) will be discussed in the
forthcoming subsections.

2.1. u-Subproblem. In this subsection, we discuss
how to solve the u-subproblem (11). The problem (11)
cannot be solved directly using the fast Fourier transform,
as pointed out by Ye et al. (2011), if A�A cannot
be diagonalized. Otherwise, the efficiency of the fast
algorithm would be lost. To overcome this shortcoming,
as done by Xie et al. (2014), quadratic approximation of
the function H(u) = 1

2‖Au− f‖22 at point uk,

Qδ(u, u
k) = H(uk) +

〈∇H(uk), u − uk
〉

+
δ

2
‖u− uk‖22,

can be used to replace H(u) in (11); it is actually a
linearization of H(u) at point uk plus a proximity term
penalized by parameter δ > 0. On account of ∇H(u) =
A�(Au − f), adopting the Barzilai–Borwein step size
selection scheme (Wright et al., 2009) to update the
step size δ as done by Xie et al. (2014) or Ye et al.
(2011) for accelerating convergence, we can transform the
minimization subproblem (11) into the following form:

uk+1 = argmin
u

λρ2‖zk − Φ�u− b‖22 + 2βQδ(u, u
k)

+ λ1ρ3‖vk −∇u− ck‖22,
i.e.,

uk+1 = argmin
u

λρ2‖zk − Φ�u− b‖22
+ βδk‖u− uk + δ−1

k A�(Auk − f)‖22
+ λ1ρ3‖vk −∇u − ck‖22.

(16)

On the basis of the necessary optimality condition,
in view of Δ = −(∇�

x ∇x +∇�
y ∇y) and ΦΦ� = I , we

can deduce the solution of the u-subproblem (16), given
by the solution of the equation

Lk
1u

k+1 = RHSk
1 , (17)

where
Lk
1 = λρ2I + βδkI − λ1ρ3Δ,

RHSk
1 = λ1ρ3∇�

x (v
k
1 − ck1) + λ1ρ3∇�

y (v
k
2 − ck2)

+λρ2Φ(z
k− bk)+βδku

k−βA�(Auk−f).

Since the Laplace operator is block circular under
the periodic boundary condition and can be diagonalized
by Fourier transform F with the property F� = F−1,
Eqn. (17) can be converted to

F�L̂k
1Fuk+1 = RHSk

1 , (18)

where L̂k
1 = λρ2I + βδkI − λ1ρ3FΔF�. Since L̂k

1 is
diagonal, the above equation can be solved easily.

By making use of the Barzilai–Borwein (BB) step
size selection scheme proposed by Wright et al. (2009),
the iterative step size δk+1 can be computed by solving

argmin
δ

‖∇H(uk+1)−∇H(uk)− δ(uk+1 − uk)‖22,

which also implies

δk+1 =

〈∇H(uk+1)−∇H(uk), uk+1 − uk
〉

‖uk+1 − uk‖22
=

‖A(uk+1 − uk)‖22
‖uk+1 − uk‖22

.

(19)

2.2. θ-Subproblem. To speed up the efficiency of
solving the θ-subproblem (12), we replace the variable θ0
in (12) with θk so that the θ-subproblem is transformed
into the following one:

θk+1 =argmin
θ

ρ1‖ηk1 −∇xθ − ak1‖22
+ ρ1‖ηk2 −∇yθ − ak2‖22 + α‖θ − θk‖22
+ γ‖|vk| − (cos θ, sin θ) · vk‖22. (20)

Based on the optimality condition about θ, the above
problem (20) can be solved by the following system:

(αI − ρ1Δ)θ

= γ
(
(− sin θ, cos θ) · vk

) (|vk| − (cos θ, sin θ) · vk
)

+ αθk + ρ1∇�
x (η

k
1 − ak1) + ρ1∇�

y (η
k
2 − ak2). (21)

Solving Eqn. (21) directly is difficult, because there
exist θ, sin θ, cos θ in (21) at the same time. To overcome
this drawback, we replace sin θ, cos θ in (21) with sin θk,
cos θk, respectively, so that Eqn. (21) can be converted to
the following simplified form:

F�L̂k
2Fθk+1 = RHSk

2 , (22)
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where L̂k
2 = αI − ρ1FΔF�,

RHS = γ
(
(− sin θk, cos θk) · vk

)
,

RHSk
2 =RHS

(|vk| − (cos θk, sin θk) · vk
)
+ αθk

+ ρ1∇�
x (η

k
1 − ak1) + ρ1∇�

y (η
k
2 − ak2).

The use of the diagonalization technique of the
Fourier transform makes the solution of Eqn. (22) very
simple.

2.3. η, z Shrink-subproblem. By means of a
generalized shrinkage formula, as done by Wang et al.
(2007), the solution to the η-subproblem (13) can be
deduced as follows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηk+1
1 = max

(
tk+1 − 1

ρ1
, 0
)
· ∇xθ

k+1 + ak1
tk+1

,

ηk+1
2 = max

(
tk+1 − 1

ρ1
, 0
)
· ∇yθ

k+1 + ak2
tk+1

,

(23)

where

tk+1 =
√
(∇xθk+1 + ak1)

2 + (∇yθk+1 + ak2)
2.

Based on the shrink operator, defined by

shrink(a, b) =
a

|a| max(a− 1

b
, 0),

we can deduce easily the solution of the z-subproblem
(14) as follows:

zk+1 = shrink(Φ�uk+1 + bk,
1

ρ2
). (24)

2.4. v-Subproblem. In this subsection, we discuss
the solution of the v-subproblem (15). As done by
(Xie et al., 2014), for the second time, we apply the
split Bregman iterative scheme to solve the problem (15).
By introducing the variable p subject to p = ∇v and
applying the augmented Lagrangian method, we can turn
the minimization problem (15) into the following one:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(vk+1, pk+1) = argmin
v,p

2λ1‖p‖
+λ1ρ3‖v −∇uk+1 − ck‖22
+γ‖|v| − (cos θk+1, sin θk+1) · v‖22
+λ1ρ4‖p−∇v − dk‖22,

dk+1
11 = dk11 + κ4(∇xv

k+1
1 − pk+1

11 ),

dk+1
12 = dk12 + κ4(∇yv

k+1
1 − pk+1

12 ),

dk+1
21 = dk21 + κ4(∇xv

k+1
2 − pk+1

21 ),

dk+1
22 = dk22 + κ4(∇yv

k+1
2 − pk+1

22 ),

(25)

where the variable d is the Lagrangian multiplier,

d =

[
d11 d12
d21 d22

]
, p =

[
p11 p12
p21 p22

]
,

|p| =
√
p211 + p212 + p221 + p222.

Based on the alternating minimization scheme (Chan
et al., 2011) and using a simplified computation for vk+1,
the minimization problem in (25) can be turned into the
following subproblems:

vk+1
1 =argmin

v1
λ1ρ3‖v1 −∇xu

k+1 − ck1‖22
+ γgk+1‖v1‖22 + λ1ρ4‖pk11 −∇xv1 − dk11‖22
+ λ1ρ4‖pk12 −∇yv1 − dk12‖22, (26)

vk+1
2 =argmin

v2
λ1ρ3‖v2 −∇yu

k+1 − ck2‖22
+ γgk+1‖v2‖22 + λ1ρ4‖pk21 −∇xv2 − dk21‖22
+ λ1ρ4‖pk22 −∇yv2 − dk22‖22, (27)

pk+1
11 = argmin

p11

‖p‖

+
ρ4
2
‖p11 −∇xv

k+1
1 − dk11‖22, (28)

pk+1
12 = argmin

p12

‖p‖

+
ρ4
2
‖p12 −∇yv

k+1
1 − dk12‖22, (29)

pk+1
21 = argmin

p21

‖p‖

+
ρ4
2
‖p21 −∇xv

k+1
1 − dk21‖22, (30)

pk+1
22 = argmin

p12

‖p‖

+
ρ4
2
‖p22 −∇yv

k+1
1 − dk22‖22, (31)

where

gk+1 =
(
1− (cos θk+1, sin θk+1) · ∇uk+1

|∇uk+1|
)2

.

The v1 subproblem (26) can be solved using its
necessary optimality condition, given in the following
system:

Lk
3v

k+1
1 = RHSk

3 , (32)

where

Lk
3 = λ1ρ3I + γgk+1I − λ1ρ4Δ,

RHSk
3 = λ1ρ3(∇xu

k+1 + ck1) + λ1ρ4∇�
x (p

k
11 − dk11)

+ λ1ρ4∇�
y (p

k
12 − dk12).
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Similarly, the v2 subproblem (27) can be solved
using the system

Lk
3v

k+1
2 = RHSk

4 , (33)

where

RHSk
4 = λ1ρ3(∇yu

k+1 + ck2) + λ1ρ4∇�
x (p

k
21 − dk21)

+ λ1ρ4∇�
y (p

k
22 − dk22).

The systems (32) and (33) have a circulatory
structure and hence can also be solved by the fast Fourier
transform.

The solution of the subproblems (28)–(31) can
easily be obtained and explicitly computed by using a
generalized shrinkage formula, as done by Wang et al.
(2007). By simply computing, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk+1
11 = max

(
sk+1 − 1

ρ4
, 0
)
· ∇xv

k+1
1 + dk11
sk+1

,

pk+1
12 = max

(
sk+1 − 1

ρ4
, 0
)
· ∇yv

k+1
1 + dk12
sk+1

,

pk+1
21 = max

(
sk+1 − 1

ρ4
, 0
)
· ∇xv

k+1
2 + dk21
sk+1

,

pk+1
22 = max

(
sk+1 − 1

ρ4
, 0
)
· ∇yv

k+1
2 + dk22
sk+1

,

(34)

where

sk+1 =
(
(∇xv

k+1
1 + dk11)

2 + (∇yv
k+1
1 + dk12)

2 (35)

+ (∇xv
k+1
2 + dk21)

2 + (∇yv
k+1
2 + dk22)

2
) 1

2

.

The above shrinkage only requires a few operations
so that the computation of per component in pk+1 is
relatively fast.

2.5. ADMM algorithm. Combining the analysis in the
above subsections, the ADMM type algorithm for the MR
image reconstruction coupling model (7) is summarized
in Algorithm 1.

3. Numerical implementation

In this section, some numerical implementations of
the proposed model and algorithm will be given.
All algorithms were implemented in MATLAB, v.
R2017a. The experiments were performed on a personal
computer with an i7 2.4 GHz processor, 16 GB
memory and a Windows operating system. The first
numerical comparison is between the proposed algorithm
ADMM-TV2L1C and two existing algorithms by using
the same images, including a four-year-old female pons
MR image and a nine-year-old male’s right vestibulo
MR image. The numerical results illustrate that the
proposed algorithm can reconstruct MR images more

Algorithm 1. ADMM-TV2L1C.
Require: f, ρ1, ρ2, ρ3, ρ4, γ, λ, λ1, α, β, T.

1: Initialize: u0 := F−1f, δ0 := 1, a01 := a02 := b0 :=
c01 := c02 := 0; d011 := d012 := d021 := d022 :=
0; p011 := p012 := p021 := p022 := 0, κ1 := κ2 :=
κ3 := κ4 := 1;

2: for k := 0 → T − 1 do
3: Compute uk+1 by

uk+1 := F−1(L̂k
1)

−1FRHSk
1 ,

where L̂k
1 := λρ2I + βδkI − λ1ρ3FΔF�,

RHSk
1 := λ1ρ3∇�

x (v
k
1 −ck1)+λ1ρ3∇�

y (v
k
2 −ck2)

+λρ2Φ(z
k − bk) + βδku

k

−βA�(Auk − f).
4: if MSE ≤ tol holds, then
5: Stop, and Go to 15:
6: end if
7: Compute θk+1 by

θk+1 := F−1(L̂k
2)

−1FRHSk
2 ,

where L̂k
2 := αI − ρ1FΔF�,

RHS := γ
(
(− sin θk, cos θk) · vk

)
,

RHSk
2 := RHS

(|vk| − (cos θk, sin θk) · vk
)

+αθk + ρ1∇�
x (η

k
1 − ak1)

+ρ1∇�
y (η

k
2 − ak2).

8: Compute ηk+1
1 , ηk+1

2 , zk+1 by

ηk+1
1 := max

(
tk+1 − 1

ρ1
, 0
)
· ∇xθ

k+1 + ak1
tk+1

,

ηk+1
2 := max

(
tk+1 − 1

ρ1
, 0
)
· ∇yθ

k+1 + ak2
tk+1

,

zk+1 := shrink(Φ�uk+1 + bk,
gk+1

ρ2
),

where

gk+1 :=
(
1− (cos θk+1, sin θk+1) · ∇uk+1

|∇uk+1|
)2

,

tk+1 :=
√
(∇xθk+1 + ak1)

2 + (∇yθk+1 + ak2)
2.

9: Compute vk+1
1 , vk+1

2 by
vk+1
1 := F−1(L̂k

3)
−1FRHSk

3 ,
vk+1
2 := F−1(L̂k

3)
−1FRHSk

4 ,
where L̂k

3 := λ1ρ3I + γgk+1I − λ1ρ4FΔF�,
RHSk

3 := λ1ρ3(∇xu
k+1 + ck1) + λ1ρ4∇�

x (p
k
11

−dk11) + λ1ρ4∇�
y (p

k
12 − dk12),

RHSk
4 := λ1ρ3(∇yu

k+1 + ck2) + λ1ρ4∇�
x (p

k
21

−dk21) + λ1ρ4∇�
y (p

k
22 − dk22).

10: Update pk+1
11 , pk+1

12 , pk+1
21 , pk+1

22 via (34) and (35).
11: Update ak+1

1 , ak+1
2 , bk+1, ck+1

1 , ck+1
2 via (10).

12: Update dk+1
11 , dk+1

12 , dk+1
21 , dk+1

22 via (25).
13: Update δk+1 by

δk+1 :=
‖A(uk+1−uk)‖2

2

‖uk+1−uk‖2
2

.

14: end for
15: return uk+1.
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effectively than the other two algorithms. Another
comparison is between different sampling rates by using
a nine-year-old male’s right vestibulo MR image: the test
results demonstrated that the proposed algorithm can yield
higher quality image with a low staircase effect.

The quality evaluation of image reconstruction can
be divided into subjective and objective. Subjective
evaluation refers to the subjective qualitative evaluation of
image quality, where the observer evaluates the details of
the reconstructed image according to his own knowledge
and understanding. Objective evaluation is an objective
and qualitative evaluation of image quality based on
scoring criteria, such as signal-to-noise ratio (SNR). In
this paper, we use some real images as original ones
to evaluate the quality of image reconstruction. In
the following experiments, we define SNR based on
traditional image reconstructive evaluation criteria as

SNR1 = 10 log10(
‖utrue‖22

‖u− utrue‖22
).

and mean squared error (MSE) as

MSE =
1

M ×N
‖uk+1 − uk‖22,

where u and utrue present the restored image and clean
image, respectively, and M ×N is the size of an image.

We select a centrally positioned region-of-interest
(ROI) including 75% of the image, and define SNR based
on MR image reconstructive evaluation criteria as

SNR2 =
√
2
S

N
,

where S is the mean pixel value of the ROI area in utrue

and N is the standard deviation of noise of the ROI area
(Och et al., 1992; Price et al., 1990).

Partially scanned data are obtained by non-uniformly
randomly selecting some of the k-space samples from the
entire k-space data of the tested MR images. For all the
numerical experiments, we choose ρ1 = 10−3, ρ2 = 5 ×
10−3, ρ3 = 5 × 10−3, ρ4 = 10−3, γ = 10−3, λ = 10−3

and λ1 = 2 × 10−3. The parameters α, β connected with
the sparsity of the underlying image and the noise level are
fixed as α = 10−3, and β = 0.9, the termination criterion
is fixed as MSE = 5× 10−4.

3.1. Comparisons with other reconstruction algo-
rithms. The main goal of this subsection is to compare
the reconstruction effectiveness of three algorithms: the
split Bregman algorithm for solving the TVL1 model (2)
(called SBA-TVL1), the alternating direction method of
multipliers for solving the TV2L1 model (3) proposed
by Xie et al. (2014) (called ADMM-TV2L1), and the
algorithm ADMM-TV2L1C proposed in this paper. In the
first experiment, we choose a four-year-old female pons

MR image as the original image, which is accompanied
by cavernous malformation and left abducens nerve palsy.
The MR image is resized to 256×256. In order to test
the performance of the proposed algorithm, the image is
corrupted with Gaussian white noise at level σ = 10,
and then the test data are obtained from the simulation
of incomplete Fourier data with various sampling rates.

We show the reconstructed MR images in Fig. 1,
which are obtained by the ADMM-TV2L1C, SBA-TVL1,
ADMM-TV2L1 algorithms with 36% k-space data for the
four-year-old child’s pons MR image. For better visual
comparison, in the second row of Fig. 1, we zoom in on
the central area to observe the texture features of these
reconstructed images. We list SNR1 and SNR2 for the
experimental results of the child’s pons MR image under
different k-space sampling rates from 28% to 46% in
Tables 1 and 2, which show that our algorithm has better
efficiency than the other two reconstruction algorithms.

The second experiment uses a nine-year-old male’s
right vestibulo MR image of size 198×198, with cochlear
nerve hypoplasia and stenosis of the internal auditory
canal. The SNR levels SNR1 and SNR2 are applied
to compare the three algorithms with different sampling
rates. The test data are obtained from simulation of
different k-space sampling rates from 28% to 46% with
a nine-year-old male’s right vestibulo MR image. The
SNR1 and SNR2 of the reconstructed MR images are
given in Tables 3 and 4, respectively. These SNR data
demonstrate that the SNR of the reconstructed images is
improved as the sampling rate increases.

The reconstructed images with 36% k-space data and
their zoomed-in images on central areas are shown in
Fig. 2, where we can see that the images by reconstructed
ADMM-TV2L1C have better quality under the same
sampling rate, and ADMM-TV2L1C is more capable of
recovering the textures and alleviating the staircase effect
than SBA-TVL1 and ADMM-TV2L1.

The third experiment also uses the four-year-old
child pons MR image of size 198×198 to test the speed
of three algorithms under a 28% to 46% k-space sampling
rate. We use the mean squared error (MSE) of 5 × 10−4

as the stopping criterion for the iteration. The CPU times
for three algorithms are shown in Table 5. The results
demonstrate that the proposed algorithm is efficient and
faster than SBA-TVL1 and ADMM-TV2L1.

3.2. Comparisons under different sampling rates.
In this subsection, in order to illustrate the proposed
algorithm’s performance, we make a comparison under
different sampling rates from 26% to 44%. The test data
are obtained from the simulation of human spinal joints
MR images. The reconstructed images with different
sampling rates are demonstrated in Fig. 3.

The first row images in Fig. 3 demonstrate four
reconstructed human spinal joints MR images under
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Table 1. SNR1 via different algorithms and sample rates for the
child pons image.

Sample rate 28% 30% 32% 34% 36%
SBA-TVL1 19.14 19.61 19.71 19.84 19.97

ADMM-TV2L1 22.01 24.06 24.26 25.26 25.42
ADMM-TV2L1C 24.34 25.27 26.97 28.28 28.72

Sample rate 38% 40% 42% 44% 46%
SBA-TVL1 20.50 20.35 21.09 21.43 21.66

ADMM-TV2L1 26.95 27.30 28.08 28.52 29.42
ADMM-TV2L1C 29.79 30.08 30.92 31.22 31.96

Table 2. SNR2 via different algorithms and sample rates for the
child pons image.

Sampling rate 28% 30% 32% 34% 36%
SBA-TVL1 7.09 7.15 7.54 7.63 7.52

ADMM-TV2L1 10.60 11.36 11.58 11.88 12.06
ADMM-TV2L1C 11.71 12.16 12.50 12.72 12.93

Sampling rate 38% 40% 42% 44% 46%
SBA-TVL1 8.10 7.90 8.24 8.15 8.44

ADMM-TV2L1 12.81 13.02 13.38 13.66 13.93
ADMM-TV2L1C 13.38 13.59 13.93 14.01 14.47

Table 3. SNR1 via different algorithms and sample rates for
child right vestibulo image.

Sampling rate 28% 30% 32% 34% 36%
SBA-TVL1 24.61 24.85 25.05 25.54 25.41

ADMM-TV2L1 27.55 28.06 28.53 28.84 29.10
ADMM-TV2L1C 31.70 32.19 32.76 33.52 33.78

Sampling rate 38% 40% 42% 44% 46%
SBA-TVL1 25.97 26.00 26.37 26.68 26.78

ADMM-TV2L1 29.49 29.52 29.71 30.02 30.37
ADMM-TV2L1C 34.30 34.56 35.23 35.36 35.71

Table 4. SNR2 via different algorithms and sample rates for the
child right vestibulo image.

Sampling rate 28% 30% 32% 34% 36%
SBA-TVL1 7.64 7.96 7.82 8.11 8.03

ADMM-TV2L1 10.01 10.51 10.72 11.04 11.05
ADMM-TV2L1C 10.97 11.73 11.91 12.07 12.27

Sampling rate 38% 40% 42% 44% 46%
SBA-TVL1 8.36 8.49 8.69 8.89 9.07

ADMM-TV2L1 11.92 12.15 12.42 12.77 13.09
ADMM-TV2L1C 12.51 12.85 12.94 13.30 13.50

Table 5. CPU times via different algorithms and sample rates
for the child pons MR image.

Sampling rate 28% 30% 32% 34% 36%
SBA-TVL1 2.45 2.40 2.27 2.27 2.30

ADMM-TV2L1 3.38 3.43 3.55 3.32 3.34
ADMM-TV2L1C 0.41 0.14 0.15 0.12 0.11

Sampling rate 38% 40% 42% 44% 46%
SBA-TVL1 2.12 2.23 2.17 2.16 2.02

ADMM-TV2L1 3.11 1.86 1.38 1.30 1.18
ADMM-TV2L1C 0.10 0.09 0.09 0.09 0.09

different sampling rates from 26% to 44%, and the second
row images correspond with zoomed-in details in the
central area of the above four reconstructed images. The
experimental results show that the proposed algorithm
is stable and has a low staircase effect under different
sampling rates.

4. Conclusion

Based on the deformations of the LOT model and
second-order TV regularization, in this paper, we
proposed an MR image reconstruction coupling model. In
order to implement the proposed model, we applied the
split Bregman iterative scheme twice, and by means of
generalized shrinkage formulas, the shrink operator, and
the diagonalization technique of the Fourier transform,
we proposed an ADMM type algorithm. By making
numerical experiments, we verified the feasibility and
effectiveness of the proposed model and algorithm in two
aspects.

First, in Section 2.1, we compared our proposed
algorithm with the SBA-TVL1 and ADMM-TV2L1

algorithms under different k-space sampling rates, from
28% to 46%. The numerical results indicated that
the proposed algorithm can reconstruct MR images
effectively. We listed the reconstructed MR images with a
36% sampling rate in Figs. 1 and 2, which demonstrated
that the proposed algorithm can preserve diverse textures
better than the other two algorithms. Then, in Section 2.2,
we compared the proposed algorithm’s performance under
different sampling rates, from 26% to 44%, and listed the
reconstructed images in Fig. 3, which showed that the
proposed algorithm had stable performance with a low
staircase effect under different sampling rates. However,
we did not provide the convergence analysis of the
proposed algorithm. It is going to be a topic for future
research.
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