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A new method to construct a discrete-time variable-structure repetitive controller for a class of linear systems perturbed by
multiple-period exogenous signals is presented. The proposed control scheme combines the features of the discrete-time
multiple-period repetitive control (MP-RC) and variable-structure control (VSC) techniques. The MP-RC part is assigned
to simultaneously track and reject periodic signals consisting of multiple uncorrelated fundamental frequencies. The VSC
part is then integrated to provide a fast transient response and robustness against plant parameter variations. Stability
and robustness analyses are also elaborated to ensure that the resulting closed-loop system satisfies the desired control
objectives. Moreover, it is shown through an example that the repetitive control system constructed using the proposed
control method can effectively track a sinusoidal reference signal despite the presence of a multiple-period disturbance.
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1. Introduction

An underlying idea of the repetitive control (RC) approach
originates from the internal model principle proposed by
Francis and Wonham (1975) to enable a feedback control
system to accurately track periodic reference signals
and to reject periodic disturbance signals simultaneously.
By applying the internal model principle, one is able
to incorporate a model of reference and/or disturbance
signals into the control system. The RC method
has successfully been implemented to cope with such
periodic signals found in various applications, e.g.,
hard-disk-drive systems (Chen and Tomizuka, 2014),
piezo-actuated nano-positioning systems (Li et al., 2017),
robotic arm manipulators (Muramatsu and Katsura, 2018),
and power electronic systems (Lorenzini et al., 2018).

∗Corresponding author

This shows that the RC method is applicable for
different classes of single-input single-output (SISO) and
multi-input multi-output (MIMO) linear and nonlinear
systems (Flores et al., 2012; Kurniawan et al., 2014;
2016a; Tomei and Verrelli, 2015; Zhou et al., 2016; Sun
et al., 2018; Sakthivel et al., 2020).

There are two particular tasks performed by a
repetitive controller, that is, to learn from error and
control signals of the previous cycle and then to generate
a compensating signal for the next cycle. Having
such a learning capability, the repetitive controller is
thus more likely to outperform typical non-predictive
controllers, such as PI and PID ones, in terms of
tracking performance (Hillerstrom and Walgama, 1996).
The learning mechanism of the RC technique, however,
gives rise to a one-cycle delay until the repetitive
controller produces the compensating signal. Such a

mailto:edi.kurniawan@lipi.go.id
mailto:h.g.harno@gmail.com


208 E. Kurniawan et al.

delay induces a prolonged transient period which renders
the repetitive controller inappropriate for dealing with
non-periodic signals. When a sudden change occurs,
the repetitive controller also exhibits a slow response
(Chen et al., 2009). Moreover, unmodeled system
dynamics, nonlinearities, and unknown perturbations may
also degrade the performance of the repetitive controller.

Thus, to rectify shortcomings of the RC method, one
may complement it with other control techniques such as
H∞ control, observer-based linear-quadratic control, and
variable-structure control (VSC). Various combinations
of the RC method with any of these control techniques
are realized to handle tracking control problems under
different circumstances. The RC method based on theH∞
control approach can be applied to attenuate (periodic)
disturbance signals as much as possible while tracking
periodic reference signals (Hornik and Zhong, 2011;
Wang et al., 2018). An alternative approach to enhance
the performance of an RC system in rejecting disturbance
effects upon the system output is to complement the
repetitive controller with a disturbance observer designed
based on the linear-quadratic control method (Zhou et
al., 2019; 2020). When a fast transient response
and robustness against uncertainties are desirable, the
repetitive controller can also be combined with the VSC
technique (Mingxuan et al., 2005; Lu et al., 2012;
Mitrevska et al., 2018), which allows fast switching
between two different structures. Taking account of
a great extent of the aforementioned combinations, we
confine our subsequent discussion to the combination of
the RC and VSC methods, which constitutes the main
contribution of this paper.

In this respect, we would like to present a novel
discrete-time approach to constructing the repetitive
control law in combination with the VSC method. Our
interest in this approach is motivated by the fact that
digital controllers are pervasively used in nowadays’
control systems. Also, we are particularly concerned with
constructing a repetitive control system that is capable
of tracking multiple-period reference signals under the
influence of periodic disturbance signals with multiple
uncorrelated fundamental periods/frequencies. Such a
control problem is usually found in power electronic and
electro-mechanical (with multiple rotating machineries)
systems (Owens et al., 2004; Pérez-Arancibia et al.,
2010; Rashed et al., 2013). Hence, in this paper,
we intend to address this control problem in the
discrete-time domain by proposing a multiple-period
variable-structure repetitive control (MP-VSRC) method,
which is complementary to those of Owens et al. (2004),
Pérez-Arancibia et al. (2010), and Rashed et al. (2013).
Our approach is thus not only an enhancement of that
presented by Kurniawan et al. (2017), but also has not
been considered by Mingxuan et al. (2005), Lu et al.
(2012), and Mitrevska et al. (2018).

Moreover, the MP-VSRC method we propose
involves satisfying a reaching law in order to guarantee
close-loop stability and robustness. The reaching law
is imposed because a discrete-time variable-structure
controller cannot directly be obtained from its
continuous-time counterpart by a simple equivalence.
Consequently, without imposing such a reaching
law, constructing the discrete-time variable-structure
controller by applying a finite sampling frequency can
only yield one with a limited switching frequency and
compromised robustness and invariance properties. This
issue has been discussed by, for example, Gao et al.
(1995), Bartoszewicz and Lesniewski (2016), Ma et al.
(2019), and Zhang et al. (2019).

Synthesizing a discrete-time repetitive controller
with the RC method we propose, one is able to establish
a closed-loop system endowed with (a) robust stability
against parametric variations, (b) fast transient responses,
(c) accurate tracking multiple-period reference signals,
and (d) good rejection of multiple-period disturbance
signals. These features are demonstrated via an example
of controlling a servomotor, which is assigned to
track a sinusoidal signal, with a repetitive controller
designed using the proposed RC method. Simulation
results presented in this example show that the resulting
controller outperforms the variable-structure repetitive
one designed based on the minimum-variance control
approach proposed by Mingxuan et al. (2005) and
the ordinary multiple-period repetitive control system
proposed by Kurniawan et al. (2017) when they are
applied to the servomotor considered.

The rest of this paper is organized as follows.
Section 2 describes the control problem in question,
underlying assumptions, and fundamental notions of
discrete-time RC and VSC. Sections 3 and 4 present the
proposed control method, and stability and robustness
analyses, respectively. Simulation results and discussions
are presented in Section 5. Lastly, concluding remarks are
given in Section 6.

2. Problem formulation and preliminaries

2.1. Repetitive control problem. Let us consider a
discrete-time linear time-invariant (LTI) system described
as follows:

y(z) = z−dB(z)

A(z)
u(z) + w(z), (1)

where y(z), u(z), and w(z) are the Z-transforms of
discrete-time signals y(k), u(k), and w(k), respectively.
Here, y(k) ∈ R is the system output, u(k) ∈ R is the
control input, w(k) ∈ R is the exogenous disturbance on
the output y(k), d ∈ N is a known delay step, and B(z)
and A(z) are respectively the numerator and denumerator
of the system transfer function.
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The numerator B(z) and denumerator A(z) are
polynomials in z ∈ C written as follows:

B(z) = b0 + b1z
−1 + b2z

−2 + . . .+ bmz−m, (2)

A(z) = 1 + a1z
−1 + a2z

−2 + . . .+ anz
−n, (3)

where m,n ∈ N, m < n. The system (1) is required
to track a reference signal r(k) such that the difference
between r(k) and y(k) gives rise to a tracking error
defined as

e(k) := r(k) − y(k). (4)

To simultaneously address the problem of tracking
and rejection of the periodic reference and disturbance
signals, which have multiple uncorrelated fundamental
frequencies, several assumptions are presented as follows.

Assumption 1. The reference signal r(k) is a periodic
signal that may consists of multiple uncorrelated periods
Tr = {Tr1, Tr2, . . . , Trh}. Each element in Tr is known
and Tr1 �= Tr2 �= . . . �= Trh.

Assumption 2. The disturbance w(k) is also a periodic
signal composed of multiple uncorrelated periods Tw =
{Tw1, Tw2, . . . , Twj}. Each element in Tw is known and
Tw1 �= Tw2 �= . . . �= Twj .

Assumption 3. The system model (1) is known and
stable, and has a minimum phase. The polynomials B(z)
and A(z) in (2) and (3) are relatively prime. The system
output y(k) is measurable.

The control objectives are to cancel the effect of the
multiple-period disturbancew(k) and to track the periodic
reference r(k) such that the tracking error e(k) converges
to a small value, and the resulting closed-loop system
has a fast transient response and is robust against the
parametric variations.

2.2. Discrete-time RC. Suppose an open-loop system
(1) is subject to a periodic reference r(k) and a
disturbance w(k). Both signals have a single fundamental
period: Tr and Tw, respectively. The RC method can be
used to construct a repetitive controller to form a stable
closed-loop system that is enabled to track the periodic
reference signal and to reject the periodic disturbance one.
Thus, the resulting control law is of the form

u(k) = u(k −N0) + Z−1
[
L(z)z−N0e(z)

]
, (5)

where Z−1[·] is the inverse Z-transform operator, N0 =
Tr/T is the length of an RC integer delay or the number
of samples per period Tr, T is the sampling period, and
L(z) is a learning function.

Both periodic reference tracking and disturbance
rejection can be simultaneously achieved as long as the

reference period Tr is equal to the disturbance period Tw,
or these two periods satisfy

Tw =
Tr

a
, a = 1, 2, . . . , N0/2. (6)

This implies that the disturbance frequency fw has to be
the harmonics of the reference frequency fr.

To ensure asymptotic convergence of the tracking
error e(k), two stability conditions required to be satisfied
are as follows (Grino and Costa-Castello, 2005; Longman,
2010):

1. The polynomial A(z) has stable zeros.

2. The learning function L(z) is such that the H∞ norm
∥∥
∥
∥1− L(z)z−dB(z)

A(z)

∥∥
∥
∥
∞

< 1. (7)

If the system (1) is stable and has a minimum phase, the
learning function L(z) can then be chosen as the inverse
of the system (1). Such a learning function will lead
to error convergence after one learning cycle. Thus, in
general, the discrete-time RC method involves computing
the length N0 of the RC integer delay based on the
known reference/disturbance period, and determining the
learning function L(z) based on the known system model.

2.3. Discrete-time VSC. The VSC method is known
as a nonlinear control method that employs a sliding
function to provide robustness against model uncertainties
and a fast transient response. For an output-based system,
where the system output is the only signal available for
feedback control, the discrete-time VSC method generally
proceeds as follows:

1. Determine the sliding function s(k) such that the
sliding mode in the switching plane s(k) = 0 is
stable.

2. Determine the reaching law [s(k)− s(k − d)] that
directly dictates the dynamics of the sliding function
s(k).

3. Synthesize a variable-structure control law based on
the reaching law in conjunction with the known
system model.

Thus, for the system model (1), a linear sliding
function s(k) is defined as

s(k) := Z−1 [C(z)e(z)] , (8)

where C(z) is a designed polynomial with stable zeros.
The discrete-time reaching law (Gao et al., 1995;
Mingxuan et al., 2005) is then given as

s(k)− s(k − d) = −qT s(k − d)− εT sf(k − d), (9)
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Fig. 1. Block diagram of the proposed MP-VSRC system.

where q > 0, ε > 0, and T > 0 is the sampling period.
The term sf (k−d) in (9) is a delayed smoothing function
defined as a saturation function. That is,

sf(k − d) := sat

(
s(k − d)

δ

)

=

⎧
⎪⎪⎨

⎪⎪⎩

1, s(k − d) > δ,
s(k − d)

δ
, −δ ≤ s(k − d) ≤ δ,

−1, s(k − d) < −δ.

(10)

Here, δ > 0 is an arbitrarily small constant.
It thus follows that one can synthesize a

variable-structure controller for the system (1) based
on the sliding function (8) and the reaching law (9)
(Kurniawan et al., 2016b). That is,

u(k) = u(k − d) + Z−1

[
A(z)

B(z)
(1− z−d)r(z)

]

+ Z−1
[
F (z)G−1(z)

{
1− z−d

}
e(z)

]

+ Z−1
[
G−1(z) {qT s(z) + εT sf(z)}

]
. (11)

Note that G(z) := E(z)B(z) and F (z) and E(z) are
polynomials satisfying C(z) = z−dF (z) + A(z)E(z).
The synthesized controller (11) is required to ensure that
the sliding function s(k) converges to a sliding surface
by satisfying the reaching condition (Gao et al., 1995) as
follows:

|s(k)| < |s(k − d)|. (12)

3. Multiple-period variable-structure
repetitive control

In this section, we present a new control strategy referred
to as the multiple-period variable-structure repetitive
control (MP-VSRC) method to deal with the control
problem stated in Section 2. A block diagram is shown

in Fig. 1 to illustrate the MP-VSRC system proposed.
The MP-VSRC method is a complementary combination
of the discrete-time VSC and RC methods with multiple
internal models. However, a meaningful combination is
not obtained by simply adding a repetitive controller to a
variable-structure one as it does not guarantee the stability
of the resulting closed-loop system and the asymptotic
convergence of the tracking error. Hence, the desirable
controller based on the proposed MP-VSRC method is
derived as follows.

First, an error dynamic corresponding to the system
(1) is obtained by substituting (1) into (4) such that

e(k) = r(k) −Z−1

[
z−dB(z)

A(z)
u(z)

]
− w(k). (13)

Suppose that the reference r(k) and the disturbance w(k)
make up (h+ j) periods altogether, where h and j denote
the number of the fundamental periods of each signal,
respectively. Let

v(k) := r(k) − w(k), (14)

and Ni ∈ N be the number of samples per period Ti

defined as

Ni :=
Ti

T
, i = 1, 2, . . . , h+ j. (15)

We also define IM (z) as

IM (z) :=

h+j∏

i=1

(
1− z−Ni

)
, (16)

such that for the repetitive signals r(k), w(k), and v(k),
the following properties hold:

P1 : Z−1 [IM (z)r(z)] = 0, (17)

P2 : Z−1 [IM (z)w(z)] = 0, (18)

P3 : Z−1 [IM (z)v(z)] = 0. (19)
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Now, let IM (z) in (16) be rewritten as

IM (z) = 1−
NT∑

p=Nl

cpz
−p (20)

where Nl = min {N1, N2, . . . , Nh+j}, NT =
∑h+j

i=1 Ni,
and cp ∈ {−1, 0, 1}, and E(z) be defined as

E(z) :=

NT∑

p=Nl

cpz
−p. (21)

Then, P3 in (19) can be expressed as

v(k)−Z−1 [E(z)v(z)] = 0. (22)

Furthermore, write

v̂(k) = Z−1 [E(z)v(z)] , (23)

and regard it as delayed v(k). Multiplying both the sides
of the sliding function s(k) in (8) by IM (z), we obtain

IM (z)s(z) = IM (z)C(z)e(z). (24)

Substituting (13) into (24) leads to

IM (z)s(z)

= IM (z)C(z)

{
r(z)− z−dB(z)

A(z)
u(z)− w(z)

}
. (25)

Let

M(z) = C(z)
B(z)

A(z)
. (26)

Applying (20) and (26) to (25), we have

s(z)−E(z)s(z)

= −M(z)
{
z−du(z)− E(z)z−du(z)

}
. (27)

Substituting the reaching law (9) into (27), we obtain the
delayed control law

u(k − d) = Z−1
[
E(z)z−du(z)

]
+ Z−1

[
E(z)

M(z)
s(z)

]

−Z−1
[
M−1(z)

{
(1− qT )z−ds(z)

− εT z−dsf(z)
}]

. (28)

The control law u(k) is therefore obtained by shifting
forward d steps the delayed control law u(k − d) given
in (28). That is,

u(k) = Z−1 [E(z)u(z)] + Z−1

[
zdE(z)

M(z)
s(z)

]

−Z−1
[
M−1(z)

{
(1− qT )s(z)

− εT sf(z)
}]

. (29)

Remark 1. From (29), we notice the terms E(z), zd,
M−1(z) involved in the construction of the control law
u(k). The term E(z) basically indicates multiple delays
with different lengths arranged in parallel. The non-causal
term zd is applicable due to d < Nl, where Nl is given in
(20).

Remark 2. Since (a) the LTI system (1) is minimum
phase, (b) the polynomials A(z) and B(z) are co-prime,
and (c) C(z) is a stable polynomial, the transfer function
M−1(z) is both stable and realizable. We then refer to
the transfer function M−1(z) as the MP-VSRC learning
function.

Considering Remarks 1 and 2, we claim that the
control law u(k) in (29) is a bounded control signal
that enables the resulting closed-loop system to track
and reject the multiple-period signals, and that ensures
asymptotic convergence of the sliding function s(k). This
claim will be proved through a stability analysis presented
in Section 4.

4. Stability and robustness

4.1. Stability analysis. To prove the claim made about
the control law u(k) in (29), it is necessary to show that
the reaching condition (12) is satisfied. Thus, (12) is first
written in an equivalent form as follows:

[s(k)− s(k − d)] sgn(s(k − d)) < 0, (30)

[s(k) + s(k − d)] sgn(s(k − d)) > 0. (31)

Now, we derive a quasi-sliding dynamic in terms
of the control law u(k) in (29) by substituting the error
dynamic (13) into the sliding function (8). That is,

s(k) = Z−1 [C(z)r(z)] −Z−1

[
C(z)

B(z)

A(z)
z−du(z)

]

−Z−1 [C(z)w(z)] . (32)

Applying the delayed control law u(k − d) in (28) to the
quasi-sliding dynamic (32), we obtain

s(k) = (1 − qT )s(k − d)− εT sf(k − d)

+ Z−1 [C(z) {1− E(z)} {r(z)− w(z)}] . (33)

Further modification of the quasi-sliding dynamic (33) by
using (23) results in

s(k) = (1− qT )s(k − d)− εT sf(k − d)

+ Z−1 [C(z) {v(z)− v̂(z)}] . (34)

The expression of the quasi-sliding dynamic in (34) can
be interpreted as composed of a repetitive error εr(k) and
a sliding error εs(k). That is,

εr(k) = Z−1 [C(z) {v(z)− v̂(z)}] , (35)

εs(k) = (1− qT )s(k − d)− εT sf(k − d). (36)
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Remark 3. The repetitive error εr(k) in (35) is a periodic
signal because v(k) defined in (14) is periodic due to the
periodicity of the reference r(k) and the disturbancew(k).
Similarly, v̂(k) is also periodic as it is a delayed v(k) by
one cycle, which is equivalent to the sum of the periods of
both r(k) andw(k). This implies that (v(k)−v̂(k)) is zero
for k ≥ NT +1, and so is εr(k). Otherwise, (v(k)− v̂(k))
has a bounded non-zero value during the learning cycle for
k < NT +1 and so does εr(k) since the polynomial C(z)
is stable.

Theorem 1. Suppose that |εr(k)| < γ and γ > 0, and
the parameters q > 0, T > 0, ε > 0, and δ > 0 are
chosen such that

(1 − qT ) > 0, δ(1− qT ) > εT, εT > γ. (37)

Then, for any sliding function s(k − d) > δ, the quasi-
sliding dynamic (34) satisfies

s(k)− s(k − d) < 0, (38)

s(k) + s(k − d) > 0. (39)

Proof. Subtract s(k − d) from both sides of (34). Then

s(k)− s(k − d) = εr(k)− qT s(k − d)

− εT sf(k − d). (40)

Moreover, since 0 < δ < s(k − d), we have sf (k − d) =
sat (s(k − d)/δ) = 1 and (38) holds. That is,

s(k)− s(k − d) = −qT s(k − d)− εT + εr(k)

< −qT s(k − d)− εT + γ

< −εT + γ

< 0. (41)

Now, add s(k − d) to both the sides of (34). Then

s(k) + s(k − d) = εr(k) + (2− qT )s(k − d)

− εT sf(k − d). (42)

Since 0 < δ < s(k− d) and δ(1− qT ) > εT , which
is equivalent to −εT > δ(qT − 1), (39) holds. That is,

s(k) + s(k − d) = (2− qT )s(k − d)− εT + εr(k)

> (2− qT )δ − εT + εr(k)

= δ + (1− qT )δ − εT + εr(k)

> δ + (1− qT )δ + (qT − 1)δ + εr(k)

= δ + εr(k)

> εT + εr(k)

> γ + εr(k)

> 0. (43)

This completes the proof. �

Theorem 2. Suppose that |εr(k)| < γ and γ > 0, and the
parameters q > 0, T > 0, ε > 0, and δ > 0 are chosen
such that (37) is satisfied. Then, for any sliding function
s(k − d) < −δ, the quasi-sliding dynamic (34) satisfies

s(k)− s(k − d) > 0, (44)

s(k) + s(k − d) < 0. (45)

Proof. From s(k − d) < −δ < 0, it follows that sf (k −
d) = −1, and based on (40), (44) holds. That is,

s(k)− s(k − d) = −qT s(k − d) + εT + εr(k)

> qTδ + εT + εr(k)

> qTδ + γ + εr(k)

> qTδ

> 0. (46)

Now, based on (42), (45) also holds. That is,

s(k) + s(k − d) = (2− qT )s(k − d) + εT + εr(k)

< −(2− qT )δ + εT + εr(k)

= −δ − (1− qT )δ + εT + εr(k)

< −δ − (1− qT )δ + (1− qT )δ + εr(k)

< −δ + γ

< 0. (47)

This completes the proof. �

By the proofs of Theorems 1 and 2, we have shown
that the reaching conditions (30) and (31) hold. This
implies that the control law u(k) in (29) indeed guarantees
the convergence of the sliding function s(k) and the
tracking error e(k) to zero.

4.2. Robustness analysis. Multiply both the sides of
(1) by A(z) to get

A(z)y(z) = z−dB(z)u(z) +A(z)w(z). (48)

Suppose that the LTI system in (48) is perturbed by
parametric uncertainties such that

{A(z) + ΔA(z)} y(z)
= z−d {B(z) + ΔB(z)}u(z)
+ {A(z) + ΔA(z)}w(z), (49)

which can be recast as

y(z) = z−dB(z)

A(z)
u(z) + w(z) + z−dΔB(z)

A(z)
u(z)

− ΔA(z)

A(z)
y(z) +

ΔA(z)

A(z)
w(z). (50)

Also, define

wT (k) := w(k) + wΔ(k), (51)
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where

wΔ(k) = Z−1

[
z−dΔB(z)

B(z)
u(z)

]

−Z−1

[
ΔA(z)

A(z)
y(z)

]

+ Z−1

[
ΔA(z)

A(z)
w(z)

]
. (52)

Thus, wT (k) can be considered a total perturbation
upon the system (1) that consists of the periodic
disturbance w(k) and the perturbation wΔ(k) caused by
the parametric uncertainties. Also, applying the control
law u(k) in (29) to the uncertain system (49), one can
rewrite the sliding dynamic s(k) (34) as

s(k) = (1− qT )s(k − d)− εT sf(k − d)

+ Z−1 [C(z) {v(z)− v̂(z)}]
+ Z−1 [C(z) {1− E(z)}wΔ(z)] . (53)

Now, the sliding dynamic s(k) consists of three error
terms: the sliding error εs(k), the repetitive error εr(k),
and the parametric error εΔ(k). That is,

s(k) = εs(k) + εr(k) + εΔ(k). (54)

In this case, εr(k) and εs(k) are given in (35) and (36),
respectively, whereas εΔ(k) is expressed as

εΔ(k) = Z−1 [C(z) {1− E(z)}wΔ(z)] . (55)

Despite the presence of εΔ(k) in (54), the properties
(38), (39), (44), and (45) representing the reaching
conditions (30) and (31) remain valid. In this regard, the
assumption |εr(k)| < γ in Theorems 1 and 2 is replaced
by |εr(k) + εΔ(k)| < β, where β > γ > 0. Also, the
parameters q > 0, T > 0, ε > 0, and δ > 0 are chosen
such that

(1 − qT ) > 0, δ(1− qT ) > εT, εT > β. (56)

Hence, to prove the satisfaction of the properties (38),
(39), (44), and (45), one can analogously follow the same
steps as those presented in Section 4.1, where the same
reaching conditions are satisfied for the cases without the
parametric error εΔ(k) term.

The controller design procedure according to the
MP-VSRC method is then summarized in Algorithm 1.
Note that, for a given plant, the positive constants q, ε,
and δ are chosen not only to satisfy (37) or (56), but also
to facilitate a fast transient response without giving rise to
chattering. Hence, one needs to iteratively determine the
values of those parameters in order to obtain a stabilizing
MP-VSRC controller with satisfactory performance.

Algorithm 1. MP-VSRC algorithm.

Step 1. Obtain the polynomialsA(z), B(z), and the delay
d from the system model (1).

Step 2. Obtain the periods Tr and Tw, then calculate the
number Ni of samples per period as given in (15).

Step 3. Determine the stable polynomial C(z), and
choose the positive constants q, ε, δ to satisfy (37).

Step 4. Compute the polynomial E(z) in (21).

Step 5. Compute the learning function M−1(z) in (26).

Step 6. Construct the control law u(k) as in (29).

5. Numerical example

In this section, we present an example of synthesizing a
variable-structure repetitive controller using the control
method presented in Section 3 for a linear system given
as follows:

y(k) = Z−1 [H(z)]u(k) + w(k), (57)

where

H(z) = z−1 0.0763 + 0.0717z−1

1− 1.753z−1 + 0.9015z−2
. (58)

The transfer function H(z) in (58) is stable and
minimum phase, and it is a discrete-time model of
a Quanser servomotor whose continuous-time dynamic
is sampled with the sampling period T = 0.005 s
(Kurniawan et al., 2014). In this case, H(z) was
determined by first stabilizing the servomotor with a
proportional gain K = 100 in order to be able to apply
the MP-VSRC method. However, in general, one may opt
to employ other types of controllers to pre-stabilize a plant
whenever appropriate.

5.1. Controller design. From (58), we obtain the
time-delay step d, and the polynomials A(z) and B(z)
as follows: d = 1, A(z) = 1 − 1.753z−1 + 0.9015z−2,
and B(z) = 0.0763 + 0.0717z−1. In this example, we
assume that the servomotor (57), (58) is required to track
a sinusoidal reference signal r(k) with a single period of
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Fig. 2. Exogenous disturbance w(k) with multiple periods.
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Fig. 3. Tracking performance of the control law u(k) in (63):
the reference r(k) and the tracking output y(k) (a), the
tracking error e(k) and the sliding function s(k) (b).

1 s and an amplitude 0.5, and to eliminate the effect of the
multiple-period disturbance signal w(k) given by

w(k) = 0.1 sin (2πk/0.8) + 0.2 sin (2πk)

+ 0.05 sin (6πk) , (59)

as illustrated in Fig. 2. Thus, the fundamental periods of
both r(k) and w(k) are T1 = 0.8 s and T2 = 1 s, which
result in N1 = 160 and N2 = 200, respectively.

In order for the tracking error e(k) to be significantly
attenuated, C(z) is required to be stable and set to be

C(z) = 1− 0.8z−1 + 0.16z−2. (60)

Moreover, the parameters q, ε, and δ are chosen to be 198,
16, and 0.1, respectively. Then, the polynomial E(z) and
the transfer function M−1(z) are respectively determined
as

E(z) = z−160 + z−200 − z−360, (61)

M−1(z) =
13.106(1− 1.753z−1 + 0.9015z−2)

1 + 0.139z−1 − 0.592z−2 + 0.150z−3
.

(62)

The desirable controller is therefore

u(k) = Z−1 [E(z)u(z)] + Z−1

[
zE(z)

M(z)
s(z)

]

−Z−1
[
M−1(z)

{
0.01s(z)

− 0.08sf(z)
}]

. (63)
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Fig. 4. Tracking performance with the control law u(k) in (64):
the reference r(k) and the tracking output y(k) (a), the
tracking error e(k) and the sliding function s(k) (b).

5.2. Simulation results. The performance of the
resulting closed-loop system in tracking r(k) and
rejecting w(k) is shown in Fig. 3. It is noticeable in
Fig. 3(a) that there is a discrepancy between the tracking
output y(k) and the reference r(k) during the transient
period. This is reasonable because the transient period
is a learning cycle for the RC part, while the VSC part
alone handles both the tracking and rejection tasks. Here,
the learning function M−1(z) perfectly compensates the
system dynamics, which allows one-cycle convergence.
This is clearly shown in Fig. 3(b), where the tracking error
e(k) and the sliding function s(k) converge to zero after
one cycle. In this case, one cycle is defined as the total
period T1 + T2, which is equal to 1.8 s.

The merit of the MP-VSRC method is shown further
through comparison in terms of the transient response
and robustness against parametric uncertainties. First, the
transient performance of the controller u(k) in (63) was
compared with that of the repetitive controller synthesized
using the minimum-variance VSRC method (Mingxuan
et al., 2005), which yields

u(k) = u(k −N0)−Z−1

[
F (z)

G(z)
(1− z−N0)e(z)

]

− Z−1
[
G−1(z) {−0.01s(z) + 0.08 sf (z)}

]

− Z−1
[
G−1(z)z−N0+ds(z)

]
, (64)

where F (z) and G(z) in (64) are polynomials given by
F (z) = 0.953 − 0.7415z−1 and G(z) = 0.076 +
0.072z−1.

The controller u(k) in (64) has a single delay N0

and requires three input signals. The delay period T0 of
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Fig. 5. Tracking errors e(k): Case 1 (a), Case 2 (b).

this controller is 4 s, which serves as the basis period of
T1 and T2 and yields N0 = 800. It is obvious that the
delay period T0 is larger than that of the controller in (63).
This consequently affects the learning period, the transient
response, and the tracking performance of the closed-loop
system with the controller u(k) in (64) as shown in Fig. 4.
The peak values of its transient response are larger than
those shown in Fig. 3(a). Moreover, longer convergence
time is also depicted in Fig. 4(b) as compared to that
presented in Fig. 3(b). In this case, Fig. 4(b) clearly shows
that both the tracking error e(k) and the sliding function
s(k) converge after 4 s.

Another comparison was also carried out with
respect to the performance and robustness of the ordinary
multiple-period RC (MP-RC) method (Kurniawan et al.,
2017), which yields

u(k) = Z−1 [E(z)u(z)] + Z−1

[
z
A(z)

B(z)
E(z)e(z)

]
,

(65)
where E(z) is equal to that in (61).

Here, we consider two cases where the system (57),
(58) is subject to parametric uncertainties due to variations
in the coefficients of the polynomials A(z) and B(z).
That is,

• Case 1 (2.5% variation): b0 = 0.0744, b1 =
0.0699, a0 = −1.7092, a1 = 0.879.

• Case 2 (5% variation): b0 = 0.0725, b1 =
0.068, a0 = −1.6653, a1 = 0.8564.

When the system parameters deviate from their
nominal values, there will be a considerable mismatch
between the nominal system dynamics and the learning

functions (M−1(z) and zdA(z)/B(z) for the MP-VSRC
and the MP-RC method, respectively). Such a mismatch
renders perfect compensation no longer possible and may
also lead to slow convergence and instability. This
phenomenon is depicted in Fig. 5(a), where the tracking
error e(k) affected by the parametric uncertainties
converges slower than that of the nominal case shown
in Fig. 3(b). Also, as shown in Fig. 5(a), the
closed-loop systems yielded by both the MP-VSRC and
MP-RC methods remain stable despite the parametric
variations considered in Case 1. When more parametric
uncertainties are present as in Case 2, the MP-VSRC
method is still able to maintain the closed-loop stability,
but the corresponding tracking error e(k) becomes slower
to converge. This is in contrast to the MP-RC method,
which can no longer preserve the closed-loop stability in
Case 2. Therefore, as compared with the MP-RC method,
the MP-VSRC one is relatively more robust against the
parametric uncertainties, as shown in Fig. 5(b).

6. Conclusion

This paper has proposed a new method to synthesize the
discrete-time multiple-period variable-structure repetitive
controller for a stable and minimum-phase linear system
perturbed by multiple-period exogenous signals. The
control objective is to simultaneously track the reference
signal and to reject the disturbance signal composed of
multiple fundamental periods. The proposed control
method is aimed at achieving a fast transient response and
robustness against parametric uncertainties. Simulation
results show that the MP-VSRC method is capable
of attaining the control objective and the robustness
requirement with relatively small transient errors and fast
convergence of tracking errors.
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Appendix

Proof of the properties (17)–(19)

We begin with proving P1 in (17) as follows. Every
period composing the signals r(k), w(k), and v(k) is an
element of {Ti} for i = 1, 2, . . . , h+ j. Now, suppose the
periodic reference signal r(k) has a period T1. Then

IM (z)r(z) = r(z)

h+j∏

i=1

(
1− z−Ni

)

=
(
r(z)− r(z)z−N1

) (
1− z−N2

)
. . .

(
1− z−Nh+j

)
. (A1)
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Taking the inverse Z-transform of (A1), we obtain

Z−1 [IM (z)r(z)]

= [r(k) − r(k − TN1)]

∗ Z−1
[(
1− z−N2

)
. . .

(
1− z−Nh+j

)]

= [r(k) − r(k − T1)]

∗ Z−1
[(
1− z−N2

)
. . .

(
1− z−Nh+j

)]

= 0 ∗ Z−1
[(
1− z−N2

)
. . .

(
1− z−Nh+j

)]
= 0. (A2)

This completes the proof for P1. Note that ∗ denotes the
convolution operator. It then follows that P2 and P3 in
(18) and (19) can be proved in the same fashion as above.

Received: 22 August 2019
Revised: 22 January 2020
Accepted: 2 March 2020


	Introduction
	Problem formulation and preliminaries
	Repetitive control problem
	Discrete-time RC
	Discrete-time VSC

	Multiple-period variable-structure repetitive control
	Stability and robustness
	Stability analysis
	Robustness analysis

	Numerical example
	Controller design
	Simulation results

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


