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The paper focuses on active fault diagnosis (AFD) of large scale systems. The multiple model framework is considered
and two architectures are treated: the decentralized and the distributed one. An essential part of the AFD algorithm is
state estimation, which must be supplemented with a mechanism to achieve feasible implementation in the multiple model
framework. In the paper, the generalized pseudo Bayes and interacting multiple model estimation algorithms are considered.
They are reformulated for a given model of a large scale system. Performance of both AFD architectures is analyzed for
different combinations of multiple model estimation algorithms using a numerical example.
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1. Introduction

Exceptional complexity and degree of integration of large
scale systems (LSSs) result in their increased liability
to faults. Since faults may potentially lead to failures
with catastrophic consequences, it is vital to detect them
reliably and as fast as possible by fault diagnosis (FD).

Two fundamental approaches to FD can be
recognized that differ in their interaction with the
monitored system. In the passive approach, the
decisions generated by an FD system are based
on passive observations of monitored system
measurable quantities. This approach has been
extensively studied by Isermann (2011) and Blanke
et al. (2016) and has become widespread in the
engineering practice (Gustafsson, 2009; Katipamula and
Brambley, 2011). The active approach is characterized
by the fact that, besides processing measurable quantities,
the FD system generates an input signal to excite the
monitored system. The purpose of the excitation is to
obtain more information, which helps to detect faults that
may be challenging to detect and isolate using passive
FD.

In the last decade, the active FD (AFD) approach
has become more popular (Ashari et al., 2012; Niemann
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and Poulsen, 2014; Punčochář et al., 2015; Raimondo
et al., 2016). Since AFD for stochastic systems is a
challenging problem, a partial simplification is achieved
by considering only faults that fit into the multiple-model
framework, where a monitored system can switch among
several known modes of behavior (fault-free and faulty)
at unknown time instants (Blackmore et al., 2008; Škach
et al., 2016). The discussed class of faults is still
large enough for the multiple-model framework to be
deemed applicable in fault diagnosis problems of practical
interest; see, e.g.,the works of Eide and Maybeck (1996),
Zhang and Li (1998) or Hofbaur and Williams (2004) for
particular examples.

Constraints on communication bandwidth and
computational power are two main motivations for
developing special methods for analysis and design
of LSSs. A new AFD framework for stochastic LSSs
was proposed by Punčochář and Straka (2019) and
centralized, decentralized, and distributed architectures
were discussed with the assumption that the continuous
part of the state is available to the AFD system. Therefore,
only the discrete part of the state had to be estimated.
Since this assumption is rather unrealistic, the design of
an AFD system for an LSS with noisy measurements
was addressed by Straka and Punčochář (2019). This
extension required a multiple model state estimation
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algorithm capable of estimating both the discrete and
the continuous part of the state. Since the optimal
multiple model state estimation algorithm suffers from
an exponential increase in computational and memory
requirements, tractable approximate state estimators have
been proposed in the literature (see, e.g., Watanabe and
Tzafestas, 1993; Blom and Bar-Shalom, 1988).

The AFD system that was proposed by Straka and
Punčochář (2019) utilized the generalized pseudo Bayes
(GPB) algorithm of the second order (Watanabe and
Tzafestas, 1993) (GPB2). Although several other multiple
model estimation algorithms can be found in the literature,
the most notable are the GPB algorithm of the first
order (GPB1) and the interacting multiple model (IMM)
algorithm (Blom and Bar-Shalom, 1988). They both
present an attractive alternative to GPB2 because they are
computationally cheaper. The goal of this paper is to
design and analyze the performance of AFD systems with
the decentralized and distributed architectures that utilize
the GPB1 and IMM algorithms.

The paper is structured as follows. Section 2 provides
specification of the LSS and the AFD problem. The
solution to the latter in the decentralized and distributed
architectures is summarized in Section 3. The GPB1 and
IMM algorithms for the system specification considered
are introduced in Section 4. The performance analysis is
presented in Section 5, and Section 6 concludes the paper.

2. Problem formulation

This section formulates the AFD problem for an LSS. The
block diagram of the AFD system is depicted in Fig. 1.
The AFD nodes process observations made on the LSS,
and generate decisions about faults and excitation that is
fed back into the LSS.

2.1. LSS specification. Consider an LSS Σ described
at a time instant k ∈ T � {0, 1, 2, . . .} by the following
discrete-time stochastic state-space model:

Σ : xk+1 = f(xk,μk,uk) + F(μk)wk, (1a)

yk = h(xk,μk) +H(μk)vk, (1b)

where xk ∈ R
Dx is the continuous part of the state,

μk ∈ M is the discrete part of the state, uk ∈ U ⊆ R
Du

is the input, wk ∈ R
Dx is the state noise, yk ∈ R

Dy is
the observation, and vk is the measurement noise. The
functions f : RDx ×M× U �→ R

Dx , h : RDx ×M �→

LSS AFD nodes

observations
decisions

excitation

Fig. 1. Block diagram of the AFD system.

R
Dy , F : M �→ R

Dx×Dx , and H : M �→ R
Dy×Dy are

known. Each element of the discrete set M represents an
index into a set ofM possible models that can describe the
behavior of the LSS Σ in fault-free and faulty conditions
during one sampling period. The evolution of μk is
assumed to be described by a Markov chain with known
transition probabilities,

Pr(μk+1|μk). (2)

The Markov chain model can be useful even if the
transition probabilities are not known precisely. In such
a case, they still enable the user to specify whether
a fault model is irreversible (the probability of leaving
the fault model is zero), intermittent (the probability
of returning to the fault-free model is nonzero), or
progressive (the probability of switching to another fault
model is nonzero). The initial conditions x0 and μ0 are
described by some known probability density function
(PDF) p(x0,μ0). The state noise wk and measurement
noise vk are described by sequences of known PDFs pwk

and pvk
, respectively. Both noises are white, mutually

independent, and independent of the initial conditions x0

and μ0. Thus, for any k ∈ T , we have1

p(x0,μ0,w
k
0 ,v

k
0) = p(x0,μ0)

k∏

i=0

pwi(wi)pvi(vi).

(3)

The variables xk and μk constitute the state of the
LSS Σ,

sk � [xT
k,μ

T
k]

T ∈ S � R
Dx ×M. (4)

Both the continuous part of the state xk and the discrete
part of the state μk are unknown and can be observed
indirectly through yk .

2.2. LSS decomposition. Although a centralized
active fault detector could be designed for LSS Σ, this
is not a computationally tractable approach. Therefore, a
decomposition of the LSS and decentralized or distributed
architectures of an active fault detector were considered
by Punčochář and Straka (2019). The decomposition
assumes that the LSS Σ consists of N subsystems that
are weakly coupled through the state but have separate
inputs and observations. Moreover, each subsystem has
its own set of possible models that describe its behavior in
fault-free and faulty conditions. Such a decomposition is

1A variable with the right subscript and superscript xj
i �

[xT
i ,x

T
i+1, . . . ,x

T
j ]

T with j > i stands for the whole sequence of vari-
ables from the time instant i to j stacked into a column vector.
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illustrated in Fig. 2 and the model (1) can be written as2

Σ :

⎡

⎣
1xk+1

...
Nxk+1

⎤

⎦

︸ ︷︷ ︸
xk+1

=

⎡

⎣
1f(xk,

1µk,
1uk)

...
Nf(xk,

Nµk,
Nuk)

⎤

⎦

︸ ︷︷ ︸
f(xk,µk,uk)

+

⎡

⎣
1F(1µk)

. . .
NF(Nµk)

⎤

⎦

︸ ︷︷ ︸
F(µk)

⎡

⎣
1wk

...
Nwk

⎤

⎦

︸ ︷︷ ︸
wk

, (5a)

⎡

⎣
1yk

...
Nyk

⎤

⎦

︸ ︷︷ ︸
yk

=

⎡

⎣
1h(1xk,

1µk)

...
Nh(Nxk,

Nµk)

⎤

⎦

︸ ︷︷ ︸
h(xk,µk)

+

⎡

⎣
1H(1µk)

. . .
NH(Nµk)

⎤

⎦

︸ ︷︷ ︸
H(µk)

⎡

⎣
1vk

...
Nvk

⎤

⎦

︸ ︷︷ ︸
vk

, (5b)

where μk � [1μk, . . . ,
Nμk]

T, nμk ∈ nM �
{1, 2, . . . , nM}, n ∈ N � {1, 2, . . . , N}, M � 1M ×
. . . × NM, M =

∏N
n=1

nM , uk � [1uT
k, . . . ,

NuT
k]

T,
nuk ∈ nU ∈ R

nDu , Du �
∑N

n=1
nDu, U � 1U×. . .×NU ,

nxk ∈ R
nDx , Dx �

∑N
n=1

nDx, nwk ∈ R
nDx is

described by pnwk
, nyk ∈ R

nDy , Dy �
∑N

n=1
nDy , and

nvk ∈ R
nDy is described by pnvk

. The LSS Σ given
by (5) is assumed to satisfy the following independence
conditions:

1. The initial states nx0 and the initial model indices
nμ0 are independent and mutually independent,3 i.e.,

p(x0,μ0) =

N∏

n=1

pnx0(
nx0) Pr(

nμ0).

2. The model indices nμk+1 are conditionally
independent, i.e.,

Pr(μk+1|μk) =

N∏

n=1

P (nμk+1| nμk).

These independence conditions mean that the occurrence
of a fault in a subsystem does not influence the probability
of the occurrence of faults in other subsystems and

2A variable or a function with the left superscript pertains to the cor-
responding subsystem (e.g., nΣ), whereas a variable or a function with-
out the left superscript relates to the whole LSS (e.g., Σ).

3With a slight abuse of terminology, the function p(sk) =
p(xk,µk) will be called a PDF although µk is a discrete random vari-
able. More formal notation would require using the cumulative distribu-
tion function instead of the PDF or the Dirac delta function.

Subsystem 1Σ Subsystem 2Σ Subsystem 3Σ

LSS Σ

model1 (1µk = 1)

model2 (1µk = 2)

model3 (1µk = 3)

model1 (2µk = 1)

model2 (2µk = 2)

model3 (2µk = 3)

model4 (2µk = 4)

model1 (3µk = 1)

model2 (3µk = 2)

Fig. 2. Decomposition of an LSS into interconnected subsys-
tems.

also that the occurrences of the faults in the different
subsystems, are independent.

Thus, each subsystem nΣ is described by the
following discrete-time stochastic model:

nΣ : nxk+1 = nf (xk,
nμk,

nuk) +
nF(nμk)

nwk, (6a)

Pr(nμk+1| nμk), (6b)
nyk = nh (nxk,

nμk) +
nH(nμk)

nvk, (6c)

where the local state4 nsk is defined as

nsk � [nxT
k,

nμk]
T ∈ nS � R

(nDx) × nM, (7)

variable nxk is a continuous part of the local state, and nμk

is a discrete part of the local state that represents an index
into the set of possible models describing subsystem nΣ.
The set of models nM includes one model representing
the behavior of the subsystem in a fault-free condition,
nμk = 1, and nM−1models that represent the behavior of
subsystem in a faulty condition, nμk ∈ {2, . . . , nM}. The
faulty conditions are expressed by models with changed
parameters (e.g., sensor gain). Note that the subsystems
are coupled through xk that appears in the dynamics (6a)
of all subsystems.

2.3. AFD problem specification. AFD strives to
design a function that transforms the complete available
information to a decision about the faults (subsystem
models) and to an input, whose role is to excite the system
to improve the detection quality. The active fault detector
can be described at a time instant k ∈ T as

Δ :

[
dk

uk

]
= ρk

(
Ik0
)
=

[
σk

(
Ik0
)

γk

(
Ik0
)
]
, (8)

where Ik0 � [(yk
0)

T, (uk−1
0 )T]T ∈ Ik denotes complete

available information observed up to the time step k ∈ T
4For convenience, the term local state is used to denote the part of

the state sk pertaining to a subsystem, even though it is not a state of the
subsystem due to coupling.
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with Ik � R
(k+1)Dy × Uk, Uk � U × . . . × U . The

vector dk � [1dk,
2dk, . . . ,

Ndk]
T ∈ M consists of the

decisions ndk ∈ nM about the model indices nμk, σk :
Ik �→ M represents the fault detector at the time step k,
and γk : Ik �→ U is a function describing the input signal
generator.

The optimal active fault detector is determined
such that the following additive discounted criterion is
minimized:5

J = lim
F→∞

E

{
F∑

k=0

ηkLd(μk,dk)

}
, (9)

where η ∈ (0, 1) is a chosen discount factor and Ld :
M × M �→ R

+ is a detection cost function that allows
different costs to be assigned for selecting the vector of
decisions dk when the vector of model indices μk is
actually effective. This paper assumes that the costs are
not related across the subsystems, and thus the following
additive detection cost function is used:

Ld(μk,dk) =

N∑

n=1

nLd (nμk,
ndk) , (10)

where nLd : nM × nM �→ R
+ is a function that

assigns costs to selecting decision ndk while the true
model index is nμk. The cost function can represent true
economic costs of the missed detection, false alarm and
incorrect fault isolation. If these costs are not available
in a particular problem, they can be regarded as tuning
parameters that shape the behavior of the active fault
detector (Punčochář and Šimandl, 2014).

3. AFD using decentralized and distributed
architectures

This section describes the AFD problem reformulation
for the centralized architecture, and then approximate
solutions based on the decentralized and distributed
architectures are presented.

3.1. Perfect state information model. Since the active
fault detector has access only to inputs and outputs of
the LSS but not to its state, the formulated problem
belongs to the class of imperfect state information
problems (Bertsekas, 2012). These are usually solved by
being reformulated as perfect state information problems.
The reformulation assumes that the active fault detector
can be split into a given state estimator and an unknown
mapping that transforms the state estimate to the input and
decision. Then, the aim is to design only this mapping.

The optimal state estimate represented by the
conditional PDF p(sk|Ik0) (Bar-Shalom et al., 2001) is

5The operator E{·} denotes the expectation over all involved random
variables.

usually approximated using a finite number of statistics
that can be collected into an information state ξk ∈
G. The time evolution of the information state is
then described by the following perfect state information
model:

ξk+1 = φ (ξk,uk,yk+1) , (11)

where φ : G × U × R
Dy �→ G is a function that

represents the composition of the state estimator and the
LSS model Σ. The future output yk+1 is regarded in
this model as a random disturbance described by the
conditional pdf p(yk+1|ξk,uk).

3.2. AFD for the perfect state information model.
Given the information state ξk, it suffices to consider the
active fault detector as a time invariant system that is
described at a time step k ∈ T as

Δ :

[
dk

uk

]
=

[
σ̄(ξk)
γ̄(ξk)

]
, (12)

where σ̄ : G �→ M and γ̄ : G �→ U are unknown
functions. The detection cost function for the perfect
state information model equivalent to Ld in (9) can be
shown (Punčochář and Šimandl, 2014) to satisfy

L̄d(ξk,dk) =

N∑

n=1

∑

nµk

nLd(nμk,
ndk) Pr(

nμk|Ik0). (13)

Having the reformulated problem specification, the
active fault detector is determined by finding a function
V : G �→ R that solves the Bellman functional
equation (Bertsekas, 2012; Vrabie et al., 2013),

V (ξk) = min
d′∈M

L̄d(ξk,d
′)

+ η min
u′∈U

E
{
V (ξk+1)|ξk,uk = u′} . (14)

The Bellman function V can be computed off-line
using the a priori known PDF p(xk+1|xk,μk,uk),
transition probabilities Pr(μk+1|μk), measurement PDF
p(yk|xk,μk), cost function Ld, and discount factor η.
Then, the decisions and inputs can be determined on-line
by solving much simpler optimization problems. Clearly,
the Bellman function V does not need to be known to
write the detector as

dk = σ̄∗(ξk) = argmin
d′∈M

L̄d(ξk,d
′). (15)

Note that the detector is determined by the choice
of the detection cost function (10). On the other hand,
the input signal generator uses the Bellman function V to
calculate the input uk as

uk = γ̄∗(ξk)

= argmin
u′∈U

E
{
V
(
ξk+1

)
|ξk,uk = u′} . (16)
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Thus, the optimal input generator works in a feedback
manner to improve the detection quality.

3.3. Approximate solution. The costs of computing
the Bellman function V are extreme for LSSs as the
dimension of the information state ξk can be high due
to the dimension of the continuous part of the state xk

itself, the form of the sufficient statistics,6 and the overall
number of the models M . To reduce computational
costs of both the off-line and on-line parts of the design,
the AFD systems proposed by Punčochář and Straka
(2019) as well as Straka and Punčochář (2019) considered
decentralized and distributed architectures depicted in
Figs. 3 and 4, respectively.

In the decentralized AFD architecture, each
subsystem nΣ is monitored by an AFD node nΔ, which
can access only the subsystem observations nyk , knows
only the models describing the subsystem behavior, and
generates input nuk and decision ndk. To achieve such
isolation of AFD nodes, approximate subsystem models
are introduced by neglecting the coupling among the
subsystems (Punčochář and Straka, 2019). For such a
decoupled LSS, the AFD problem is solved for each
subsystem separately. This means that each subsystem
has its own information state of a smaller dimension
than the LSS information state, and the Bellman function
computation is tractable.

In the distributed AFD architecture, AFD nodes can
communicate some information, which is used together
with the full LSS model for computing the decisions.
As a result, these decisions are more accurate than
those computed within the decentralized architecture.
Calculation of the Bellman function for the full LSS
model in the distributed architecture would require the
same effort as for the centralized architecture (Punčochář
and Straka, 2019). Hence, for the sake of tractability,
the Bellman function calculation is done in the same
manner as in the decentralized architecture. This results
in a lower quality of the excitation input in comparison
with the centralized architecture. Thus, in both AFD
architectures, the Bellman function is computed using
approximate models that neglect the coupling among the
subsystems.

4. Estimation algorithm for the perfect
state information model

The perfect state information model (11) includes a state
estimation algorithm that calculates the information state
ξk+1 based on ξk, uk, and yk+1. The number of
statistics collected in the information state ξk increases

6Depending on the state estimation algorithm, the sufficient statistics
may be represented by, e.g., the conditional mean and the covariance
matrix of xk in the case of the Kalman filter or weighted particles in the
case of the particle filter.

exponentially as time step k progresses forward if
the optimal multiple model estimation algorithm is
used. Hence, a computationally tractable approximate
estimation algorithm is needed to prevent such an
increase.

A GPB algorithm keeps track of the h-step history of
the model sequences. Whenever the time step k ≥ h, the
GPB algorithm merges the model sequences μk

k−h after
the filtering step of the state estimation algorithm to obtain
sufficient statistics for the model sequences μk

k−h+1. The
GPB1 algorithm keeps a single estimate of the continuous
part xk and probabilities of the models. The GPB2
algorithm keeps an estimate of the continuous part for
each model together with their probabilities (Bar-Shalom
and Li, 1993). Blom and Bar-Shalom (1988) proposed the
IMM algorithm as an alternative to GPB2 with a similar
accuracy but lower computational costs.

Straka and Punčochář (2019) employed the GPB2
algorithm. This paper focuses on utilization of the GPB1
and IMM algorithms. These are described in the literature
usually for the following form of the dynamics (1a):

xk+1 = f(xk,μk+1,uk) + F(μk+1)wk,

i.e., the dynamics depend on μk+1 related to time k + 1
whereas the model considered in this paper depends on
μk. Hence, both the GPB1 and IMM algorithms must be
first reformulated, which will be done for simplicity for
the whole LSS model. Then, their application in AFD
with decentralized and distributed architectures will be
discussed.

4.1. GPB1 algorithm. It is assumed that the filtering
PDF p(xk,μk|Ik0) can be factorized as

p(xk,μk|Ik0) = p(xk|Ik0) Pr(μk|Ik0), (17)

1Σ 2Σ 3Σ
LSS Σ

1Δ 2Δ 3Δ

Fig. 3. Decentralized AFD system architecture.

1Σ 2Σ 3Σ
LSS Σ

1Δ 2Δ 3Δ

Fig. 4. Distributed AFD system architecture.
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and thus it is given by the single PDF p(xk|Ik0) and M
probabilities Pr(μk|Ik0).

Prediction step. The conditional independence is
enforced and the predictive PDF is approximated as

p(xk+1,μk+1|Ik0 ,uk)

≈ p(xk+1|Ik0 ,uk) Pr(μk+1|Ik0), (18)

where the probabilities Pr(μk+1|Ik0) are obtained as

Pr(μk+1|Ik0) =
∑

µk∈M
Pr(μk+1

k |Ik0), (19)

and the PDF p(xk+1|Ik0 ,uk) can be expressed as

p(xk+1|Ik0 ,uk)

=
∑

µk∈M
Pr(μk|Ik0)

×
∫

p(xk|Ik0)p(xk+1|xk,μk,uk)dxk. (20)

The mixture PDF p(xk+1|Ik0 ,uk) is approximated by a
simpler PDF p̂(xk+1|Ik0 ,uk) by the moment matching
technique where only a small number of moments is
retained (Bar-Shalom and Li, 1993). The probabilities
Pr(μk+1

k |Ik0) appearing in (19) are given as

Pr(μk+1
k |Ik0) = Pr(μk+1|μk) Pr(μk|Ik0). (21)

The predictive PDF p(sk+1|Ik0 ,uk) is then given by the
PDF p̂(xk+1|Ik0 ,uk) and M probabilities Pr(μk+1|Ik0).
Note that the transition PDF p(xk+1|xk,μk,uk) is
specified by (1a) and the PDF pwk

.

Filtering step. The filtering PDF p(sk+1|Ik+1
0 ) is

computed by the Bayesian relations in the form
given by the PDF p(xk+1|Ik+1

0 ) and M probabilities
Pr(μk+1|Ik+1

0 ). The probabilities are computed as

Pr(μk+1|Ik+1
0 )

=
p(yk+1|Ik0 ,uk,μk+1) Pr(μk+1|Ik0)∑

µk+1
p(yk+1|Ik0 ,uk,μk+1) Pr(μk+1|Ik0)

, (22)

with

p(yk+1|Ik0 ,uk,μk+1) =

∫
p(yk+1|xk+1,μk+1)

× p̂(xk+1|Ik0 ,uk) dxk+1. (23)

An approximation to the PDF p(xk+1|Ik+1
0 ) is calculated

by replacing the mixture
∑

µk+1

p(xk+1|Ik+1
0 ,μk+1) Pr(μk+1|Ik+1

0 )

with a simpler PDF using the moment matching
technique, where p(xk+1|Ik+1

0 ,μk+1) is given by

p(xk+1|Ik+1
0 ,μk+1)

=
p(yk+1|xk+1,μk+1)p̂(xk+1|Ik0 ,uk)

p(yk+1|Ik0 ,uk,μk+1)
. (24)

Note that the measurement PDF p(yk+1|xk+1,μk+1) is
specified by (1b) and the PDF pvk

.

4.2. IMM algorithm. It is assumed that the
filtering PDF is given by M PDFs p(xk|Ik0 ,μk) and M
probabilities Pr(μk|Ik0).

Prediction step. The predictive PDF can be written as

p(xk+1,μk+1|Ik0 ,uk)

= Pr(μk+1|Ik0)p(xk+1|Ik0 ,uk,μk+1), (25)

where the probabilitiesPr(μk+1|Ik0) are given by (19) and
the PDF p(xk+1|Ik0 ,uk,μk+1) can be expressed as

p(xk+1|Ik0 ,uk,μk+1)

=
∑

µk∈M
p(xk+1|Ik0 ,uk,μk) Pr(μk|μk+1, I

k
0). (26)

The probabilities Pr(μk|μk+1, I
k
0) are called mixing

probabilities and they are given as

Pr(μk|μk+1, I
k
0) =

Pr(μk+1
k |Ik0)

Pr(μk+1|Ik0)
, (27)

where Pr(μk+1
k |Ik0) is given by (21). The predictive

PDF p(xk+1,μk+1|Ik0 ,uk) is represented by M PDFs
p(xk+1|Ik0 ,uk,μk) and M2 probabilities Pr(μk+1

k |Ik0).

Mixing. The mixture PDF p(xk+1|Ik0 ,uk,μk+1) given
by (26) is approximated for each μk+1 using a simpler
PDF p̂(xk+1|Ik0 ,uk,μk+1) by the moment matching
technique. After the mixing, the unknown state sk+1

is described by M PDFs p̂(xk+1|Ik0 ,uk,μk+1) and M
probabilities Pr(μk+1|Ik0).

Filtering step. Finally, the filtering PDF p(sk+1|Ik+1
0 )

is computed by the Bayesian relations in the form given
by M PDFs p(xk+1|Ik+1

0 ,μk+1) and M probabilities
Pr(μk+1|Ik+1

0 ). The probabilities are computed
using (22) but the PDF p(yk+1|Ik0 ,uk,μk+1) is computed
as

p(yk+1|Ik0 ,uk,μk+1)

=

∫
p(yk+1|xk+1,μk+1)

× p̂(xk+1|Ik0 ,uk,μk+1) dxk+1. (28)
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The PDF p(xk+1|Ik+1
0 ,μk+1) is given as

p(xk+1|Ik+1
0 ,μk+1)

=
p(yk+1|xk+1,μk+1)p̂(xk+1|Ik0 ,uk,μk+1)

p(yk+1|Ik0 ,uk,μk+1)
. (29)

4.3. Comparison of estimation algorithms. The time
and measurement updates of the GPB1, IMM, and GPB2
estimation algorithms are illustrated in Figs. 5, 6, and 7,
respectively. The first column shows the number of
PDFs and probabilities that are computed at individual
steps of the estimation algorithms. In the prediction
step, all estimation algorithms compute M PDFs and M2

probabilities. In the filtering step, both the GPB1 and
IMM algorithms compute M PDFs and M probabilities,
while the GPB2 algorithm computes M2 PDFs and M2

probabilities. Since the mixing and merging have similar
computational costs, the GPB2 algorithm is more costly
compared to the IMM. The GPB1 algorithm is deemed
to be the least costly. The computational costs of the
algorithms also depend on the implementations of the
individual steps and will be illustrated in the numerical
example.

The estimation algorithms also differ in the
dimension of the information state ξk. While the filtering
PDF is approximated in the IMM and GPB2 algorithms by
M PDFs and M probabilities, the GPB1 algorithm uses
only a single PDF and M probabilities to approximate
the filtering PDF. Thus, for GPB1 the information state
has a lower dimension as it contains sufficient statistics
corresponding to a single PDF, while the information
states for the IMM and GPB2 contain M instances of such
statistics.

Finally, even if the optimal state estimator is used,
AFD can be achieved only for a certain class of systems.
The approximations taken by the GPB1, IMM or GPB2
algorithms may render this class even smaller, as can be
illustrated for the GPB1 algorithm. Due to the enforced
independence (18) in the prediction step of GPB1, the
likelihood p(yk+1|Ik0 ,uk,μk+1) given in (23) differs for
individual μk+1 only if the measurement equations (1b)
depend on μk. If the measurement equations are the same
for all μk, i.e., p(yk|xk,μk) = p(yk|xk), then it follows
from (23) that p(yk+1|Ik0 ,uk,μk+1) = p(yk+1|Ik0 ,uk)
and (22) reduces to

Pr(μk+1|Ik+1
0 ) = Pr(μk+1|Ik0). (30)

In such a case, not only is the input inconsequential,
but also measurements are not taken into account and
decisions are made only based on the model (2) and
Pr(μ0). Note that this particular issue does not occur for
the IMM and GPB2 estimation algorithms.

4.4. GPB1 and IMM algorithms in AFD with decen-
tralized and distributed architectures. An estimation
algorithm is used in AFD twice. First, it is employed as
part of the perfect state information model for the off-line
design of the Bellman function (14). Second, it is used
for on-line computation of the statistics included in the
information state ξk, which is subsequently employed to
generate the decision (15) and the input (16).

Although the GPB1 and IMM algorithms were
introduced in the previous section using the whole
LSS model, an estimation algorithm actually operates
on the subsystems of the LSS when decentralized and
distributed architectures are considered. As explained
in Section 3.3, approximate models of subsystems,
which neglect the coupling among the subsystems,
are employed during off-line design regardless of the
architecture. Thus, an estimation algorithm produces
information state nξk representing the local estimate
p(nsk|Ik0) using approximate models of (6) for each
subsystem individually.

The use of an estimation algorithm varies during
on-line estimation depending on the architecture in
use. In the decentralized one, the estimation algorithm
computes nξk similarly to off-line design. In the
distributed architecture, it is, however, supplemented with
a fusion step that is used to cope with the coupling

1 : M p(xk|Ik0) : Pr(µk|Ik0)

M : M2 p(xk+1|Ik0 ,uk,µk) : Pr(µk+1,µk|Ik0)

1 : M p̂(xk+1|Ik0 ,uk) : Pr(µk+1|Ik0)

M : M p(xk+1|Ik+1
0 ,µk+1) : Pr(µk+1|Ik+1

0 )

1 : M p̂(xk+1|Ik+1
0 ) : Pr(µk+1|Ik+1

0 )

prediction

merging

filtering

merging

Fig. 5. Time and measurement updates of the GPB1 algorithm.

M : M p(xk|Ik0 ,µk) : Pr(µk|Ik0)

M : M2 p(xk+1|Ik0 ,uk,µk) : Pr(µk+1,µk|Ik0)

M : M p̂(xk+1|Ik0 ,uk,µk+1) : Pr(µk+1|Ik0)

M : M p(xk+1|Ik+1
0 ,µk+1) : Pr(µk+1|Ik+1

0 )

prediction

mixing

filtering

Fig. 6. Time and measurement updates of the IMM algorithm.
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and leads to estimates of xk. If the coupling in
the model dynamics (6a) is to be respected when the
prediction PDF p(sk+1|Ik0 ,uk) is calculated, AFD nodes
must communicate their filtering estimates. The AFD
node nΔ sends its filtering estimate, i.e., the PDF
p(nsk|Ik−1

0 , nyk,
nuk−1), in the form of the information

vector nξk to all other AFD nodes. The information vector
is a function of past data Ik−1

0 related to the whole LSS
Σ and present data nyk , and nuk−1 related only to the
subsystem nΣ. Once the AFD node receives estimates of
all other AFD nodes, it can fuse them to obtain p(sk|Ik0).

The fusion must respect the fact that the estimates of
nxk for n ∈ N given by the PDF p(nxk|Ik−1

0 , nyk,
nuk−1)

are clearly dependent, but the degree of dependence is
unknown. If the sufficient statistics are represented by
means and covariance matrices, the unknown dependency
issue can be solved with the covariance intersection
technique (Julier and Uhlmann, 1997). If the statistics
are represented by weighted particles, the techniques
proposed by, e.g., Tslil et al. (2018) or Ajgl and Šimandl
(2011) can be used.

Usage of the IMM algorithm during one time step
of the on-line part of the AFD algorithm is illustrated for
two AFD nodes in Fig. 8 for the decentralized architecture
and in Fig. 9 for the distributed architecture. One time step
of the perfect state information model is indicated in the
figures by the dashed arrow on the left side. Note that
usage of the GPB1 and GPB2 algorithms is analogical.

5. Numerical illustration

To conserve space, the GPB1, IMM, and GPB2 estimation
algorithms are compared by means of a simple numerical
example only. The comparison will contain several active
fault detectors involving different combinations of the
multiple-model estimation algorithms used in the off-line
and on-line stages of the AFD algorithm to analyze
their impacts on the stages. The cases with the GPB1
algorithm in the off-line stage are of special interest as
such combinations have low computational and memory
costs resulting from the low dimension of the information

M : M p(xk|Ik0 ,µk) : Pr(µk|Ik0)

M : M2 p(xk+1|Ik0 ,uk,µk) : Pr(µ
k+1
k |Ik0)

M2 : M2 p(xk+1|Ik+1
0 ,µk+1

k ) : Pr(µk+1
k |Ik+1

0 )

M : M p̂(xk+1|Ik+1
0 ,µk+1) : Pr(µk+1|Ik+1

0 )

prediction

filtering

merging

Fig. 7. Time and measurement updates of the GPB2 algorithm.
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Fig. 8. Scheme of the decentralized AFD algorithm.
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1
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Fig. 9. Scheme of the distributed AFD algorithm.

state. Both decentralized and distributed architectures are
evaluated.

5.1. System specification. Let us consider a system Σ
that consists of two weakly coupled multiple-model linear
subsystems

1Σ : 1xk+1 = 1A(1μk)xk + 1B(1μk)
1uk +

1G(1μk)
1wk,

1yk = 1C(1μk)
1xk + 1H(1μk)

1vk,
2Σ : 2xk+1 = 2A(2μk)xk + 2B(2μk)

2uk +
2G(2μk)

2wk,
2yk = 2C(2μk)

2xk + 2H(2μk)
2vk,

where both subsystems have two models with

1A(1) = [0.76 0.01], 1B(1) = 0.12, 1G(1) =
√
0.003,

1C(1) = 0.9, 1H(1) = 0.01,

1A(2) = [0.86 0.03], 1B(2) = 0.14, 1G(2) =
√
0.003,

1C(2) = 1, 1H(2) = 0.01,
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2A(1) = [0.02 0.87], 2B(1) = 0.13, 2G(1) =
√
0.002,

2C(1) = 0.9, 2H(1) = 0.01,

2A(2) = [0.01 0.775], 2B(2) = 0.15, 2G(2) =
√
0.002,

2C(2) = 1, 2H(2) = 0.01.

The transition probabilities between models for each
subsystem are given in Table 1, where Model 1 represents
the fault-free behavior of the subsystem and Model 2
represents the faulty behavior. The faults of both
subsystems are represented as changes in the static gain,
time constant, and sensor gain. The state noises 1wk and
2wk have both standard Gaussian PDF p1wk

= p2wk
=

N{0, 1}. The measurement noises 1vk and 2vk have both
also standard Gaussian PDF p1vk = p2vk = N{0, 1}.
The initial condition x0 has Gaussian PDF N{0, 0.01 · I}
and initial μ0 has probability Pr(μ0 = [1 1]T) = 1,
which means that each subsystem is fault-free in the
beginning. The admissible inputs of subsystems are 1U =
2U = {−1, 0, 1}. The detection cost function nLd is the
zero-one function nLd(nμk,

ndk) = 1 − δnµk,ndk
, where

δi,j is the Kronecker delta. The discount factor is η = 0.9.

5.2. AFD algorithm specification. Since the
individual models are Gaussian and linear, estimation
algorithms employ the Kalman filter to compute the
estimate of the continuous part of the state nxk during the
prediction and filtering steps. Therefore, the information
state ξk includes the conditional mean and covariance
matrix as relevant statistics.

When off-line design was carried out in the
decentralized architecture using the IMM or GPB2, the
information state was five-dimensional for both AFD
nodes, i.e., nξk ∈ R

5, n = 1, 2. It consisted of the scalar
mean E[nxk|Ik0 ] and variance var[nxk|Ik0 ] for both models
and the probability of the first model. The approximate
Bellman function was designed using the value iteration
algorithm, performed over the grids given as [−1.5 : 0.1 :
1.5] × [−1.5 : 0.1 : 1.5] × [1.9 · 10−4 : 5 · 10−6 :
2 · 10−4] × [1.9 · 10−4 : 5 · 10−6 : 2 · 10−4] × [0 :
0.02 : 1] with 441 099 discrete states. When the design
was carried out using GPB1, the information state was
three-dimensional and consisted of a scalar mean and
variance and the probability of the first model. The value

Table 1. Transition probabilities of the modes.
1Σ 2Σ

1μk
2μk

1μk+1 1 2 2μk+1 1 2

1 0.99 0.02 1 0.99 0.01

2 0.01 0.98 2 0.01 0.99

iteration algorithm was performed over the grids given
as [−1.5 : 0.1 : 1.5] × [1.9 · 10−4 : 5 · 10−6 : 2 ·
10−4] × [0 : 0.02 : 1], with 4 743 discrete states. To
use the Bellman function computed by GPB1 with the
IMM and GPB2 during on-line estimation, the dimension
of the information state has to be reduced from five to
three by merging the Gaussian mixture terms. On the
other hand, to use the Bellman function computed by the
IMM or GPB2 with GPB1 during on-line estimation, the
dimension of the information state has to be enlarged by
duplication of the sufficient statistics.

5.3. Comparison. The performance of AFD
algorithms was evaluated using 105 Monte Carlo
(MC) simulations each run over the finite time horizon
F = 400. The estimate Ĵ of the criterion obtained by
the MC simulations, time requirements of a single run of
the algorithm (i.e., on-line decision generation)7 denoted
as Ton-line, computational costs of all iterations of the
value iteration algorithm used in the off-line design of the
Bellman function denoted as Toff-line, and the number of
iterations are given in Tables 2 and 3 for decentralized
and distributed architectures, respectively. Note that
the same values of Toff-line apply to the distributed
architecture because both architectures use the same
Bellman functions.

For the decentralized architecture, it follows that
the lowest criterion value, i.e., the most precise fault
detection, is achieved by the detector with the GPB2
estimation algorithm used in both off-line and on-line
stages. In fact, all combinations of the IMM and GPB2
perform similarly. For the distributed architecture, the
best detection quality is achieved by the combination
of the IMM algorithm in the off-line stage and the
GPB2 algorithm in the on-line stage. Here, again all
combinations of the IMM and GPB2 perform similarly.

The active fault detector involving combinations of the
GPB1 algorithm in the off-line stage and the IMM or
GPB2 algorithms in the on-line stage achieves a slightly
lower detection quality than the detector with the best
combination (by 15% and 13%, respectively), but the
computational costs of the off-line stage involving the
GPB1 algorithm are by two orders of magnitude lower
than for the IMM or GPB2 algorithms. This also holds for
memory requirements.

The computational costs of the on-line stage are
in accordance with the expectations, i.e., the GPB1
algorithm is the cheapest one and the GPB2 algorithm
is more demanding than the IMM one. The differences
in computational costs between the IMM and GPB2 are
rather small due to the fact that the subsystems are scalar.
The difference would be more pronounced for higher

7All the numerical simulations were performed using the R2017b
version of the Matlab R© software running on a PC equipped with an
Intel R© CoreTM i7–4790 CPU (3.60 [GHz]).
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Table 2. Performance of the decentralized AFD architecture for
different multiple model estimation algorithms.

Ĵ

on-line

off-line
GPB1 IMM GPB2 Ton-line

GPB1 1.525 1.592 1.572 0.122 s

IMM 0.939 0.822 0.817 0.141 s

GPB2 0.934 0.817 0.814 0.144 s

Toff-line 70 s 6 916 s 6 552 s

#iterations 36 30 28

Table 3. Performance of the distributed AFD architecture for
different multiple model estimation algorithms.

Ĵ

on-line

off-line
GPB1 IMM GPB2 Ton-line

GPB1 1.391 1.375 1.380 0.399 s

IMM 0.915 0.804 0.806 0.441 s

GPB2 0.909 0.801 0.802 0.499 s

dimensions of the continuous part of the local states.
The results confirm that distributed architecture achieves
a better detection quality than the decentralized one.

6. Conclusion

The paper dealt with active fault diagnosis of large-scale
stochastic systems within the multiple model framework.
State estimation is one of the key components of
active fault diagnosis algorithms and for the framework
considered its feasible implementation requires a
technique to reduce the number of state estimate PDF
components. In the literature, the GPB1, IMM, and GPB2
algorithms are often used for this purpose. Formerly,
decentralized and distributed AFD algorithms were
proposed that used the GPB2 algorithm.

This paper focused on using the GPB1 and IMM
algorithms. They were reformulated to suit the system
specification considered. Then, their performance was
analyzed with a simple numerical example, where
different multiple model estimation algorithms were used
for off-line design and on-line estimation. The detection
quality and computational costs were compared for both
decentralized and distributed architectures. From the
numerical example it follows that for the distributed
architecture a good compromise between the detection
quality and computational and memory requirements is
GPB1 used for off-line design and the IMM or GPB2 used

for on-line estimation. However, it should be noted that
the GPB1 algorithm is suitable for the active fault detector
only for systems with faults affecting the measurement
equation.
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