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Satellite image classification is essential for many socio-economic and environmental applications of geographic informa-
tion systems, including urban and regional planning, conservation and management of natural resources, etc. In this paper,
we propose a deep learning architecture to perform the pixel-level understanding of high spatial resolution satellite images
and apply it to image classification tasks. Specifically, we augment the spatial pyramid pooling module with image-level
features encoding the global context, and integrate it into the U-Net structure. The proposed model solves the problem
consisting in the fact that U-Net tends to lose object boundaries after multiple pooling operations. In our experiments, two
public datasets are used to assess the performance of the proposed model. Comparison with the results from the published
algorithms demonstrates the effectiveness of our approach.
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1. Introduction

Satellite image classification is essential for many
socio-economic and environmental applications of
geographic information systems, including urban and
regional planning, conservation and management of
natural resources, etc. (Miao et al., 2014). Thanks to the
rapid progresses in remote sensing technology, and the
reduction of acquisition costs, a bulk of images of the
Earth are readily available nowadays. These images are
taken from satellites or airplanes and differ in imaging
modalities, spatial and spectral resolutions, or dynamic
ranges (Castelluccio et al., 2015). Satellite imagery,
covering a large geographic area with a high temporal
frequency, offers a unique opportunity for deriving land
use and land cover information through the process of
image interpretation and classification.

During the last decades, great efforts have been
made in developing approaches to infer land usage from
satellite images (Gong et al., 2015). However, it is
still one of the most challenging problems for automatic
labeling high spatial resolution satellite images at the
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pixel level due to the high intraclass and low interclass
variabilities presented in the images (Yang et al.,
2019). In fact, traditional pixel-based or object-oriented
algorithms, which mostly rely on hand-crafted features,
are not fit for the complexity of objects shown in
high spatial resolution scenes (Cleve et al., 2008).
Owing to the development of deep learning frameworks,
especially deep convolutional neural networks (CNNs),
the state-of-the-art performances of various computer
vision tasks are obtained based on some methods, such
as semantic segmentation (Chen et al., 2018) and object
detection (Ren et al., 2017). Meanwhile, semantic
segmentation of satellite images has benefited greatly
from deep learning approaches (Bei et al., 2017; Zhang
et al., 2018a; Scott et al., 2017; Zhao and Du, 2016; Gang
et al., 2018).

Deep CNNs have become dominant approaches in
remote sensing since they are able to automatically learn
powerful representations from the input images (Razavian
et al., 2014). A deep CNN comprises multiple connected
layers, mainly convolutional layers and pooling layers.
It can efficiently extract multi-level features from the
spectral and spatial information of satellite images. In
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images, local combinations of edges form motifs, motifs
assemble into parts, and parts form objects. The
pooling allows representations to vary very little when
elements in the previous layer vary in position and
appearance. Deep CNNs exploit the property that
many natural signals are compositional hierarchies. In
such hierarchies, higher-level features are obtained by
composing lower-level ones. Therefore, more semantic
information is shown in the representation as the feature
level ascends.

In terms of semantic segmentation of satellite
images, a variety of CNN-based approaches have been
presented. These approaches are usually grouped into
patch-based and pixel-based methods. Patch-based
networks train models on small image tiles and
predict one label for each small tile. Such networks
achieve pixel-level prediction for the entire image by
adopting a sliding window approach (Sharma et al.,
2017). With respect to pixel-based methods, they take
arbitrary-sized inputs and predict correspondingly-sized
labels. Generally, these end-to-end frameworks apply
architectures based on fully convolutional networks
(FCNs) (Maggiori et al., 2016). An FCN employs
the convolutional layer instead of the fully-connected
layer to achieve pixel-level prediction, and then uses
the surrounding label information more efficiently than
the patch-based network does (Long et al., 2015; Tao
et al., 2018). Afterwards, almost all advanced methods
in semantic segmentation are based on this model.

It is noteworthy that an encoder-decoder architecture
becomes increasingly popular in semantic segmentation
due to its high flexibility and superiority (Peng et al.,
2019). The mostly used encoder-decoder example is
SegNet, a widely used FCN, where unpooling operation
is included for better up-sampling (Badrinarayanan
et al., 2017). However, in this way, skip connections
between the encoder and decoder layers are ignored.
Hence, SegNet has a poor spatial accuracy. U-Net,
an extension of SegNet by adding skip connections,
has better spatial accuracy and achieves great success
in semantic segmentation on both medical images and
RS images (Ronneberger et al., 2015; Kim et al.,
2018). Such an architecture can capture sharper
object boundaries by gradually recovering the spatial
information. The encoder path in U-Net follows the
typical architecture of a convolutional network; therefore,
rich semantic information is encoded in the last feature
map. Meanwhile, the decoder path gradually recovers
sharp object boundaries.

For multi-class labeling tasks such as land use and
land cover classification, since the features of different
land cover types or ground objects are usually presented
at various scales, a local and global balance needs to
be traded off for multiple spatial domain information.
Besides, although the context information of the image

helps to remove the ambiguity of the local features, this
information is not incorporated in the original form of
the U-Net model (Mi and Hu, 2017). In addition, in the
encoding process, local information such as boundaries of
objects may be lost when employing consecutive pooling
layers, which allows reducing the parameters and extracts
long-range information. In order to learn the contextual
information at multiple scales, the spatial pyramid pooling
module is widely used by probing the incoming features
with filters or pooling operations at multiple rates
and multiple effective fields-of-view. Feature maps in
different subregions generated by the spatial pyramid
module significantly enhance the segmentation of various
classes. The multi-scale feature capturing capability of the
spatial pyramid module is especially useful in land cover
and land use classification tasks in the complex urban area
characterized by a high spatial heterogeneity.

In this paper, attempting to combine the advantages
of U-Net and spatial pyramid pooling, we follow the
work of Zhang et al. (2018b) and use spatial pyramid
pooling to enrich the encoder module in U-Net for
semantic segmentation of high spatial resolution satellite
images. Specifically, the spatial pyramid pooling
module is utilized in the bottom layer of U-Net to
extract multi-scale global context features. In addition,
the spatial pyramid pooling module with image-level
features encoding the global context is integrated into
the U-Net structure. Based on two public datasets
from the Evlab-SS benchmark (Mi and Hu, 2017), we
train and test our model and related works—not only
ASPP-Unet (Zhang et al., 2018b), but also FCN-8s (Long
et al., 2015), SegNet (Badrinarayanan et al., 2017)
and U-Net (Ronneberger et al., 2015). Experimental
results show that the model by Zhang et al. (2018b)
produces better classification results than U-Net and our
model further boosts performance. According to the
visualization of the results on the testing patches with
different methods, our model solves the problem that
U-Net will lose object boundaries after multiple pooling
operations.

2. Related work

Before the arrival of deep networks, the best performing
methods mostly relied on hand engineered features for
classifying pixels independently. Typically, a patch
is fed into a classifier, such as boosting (Shotton
et al., 2009; Zhuowen and Xiang, 2010), random
forests (Shotton et al., 2008), or support vector machines
(SVM) (Fulkerson et al., 2009), to predict the class
probabilities of the center pixel. Although substantial
improvements have been achieved by incorporation of
richer information from the context (Carreira et al.,
2012) and structured prediction techniques (Carreira and
Sminchisescu, 2011), the performance of these systems
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has always been compromised by the limited expressive
power of the features. In recent years, a lot of works
have proven that deep learning is an effective way
for semantic segmentation of satellite images. FCNs
marked an important milestone in the development of
semantic segmentation. The deconvolutional procedure
of the original FCN is simple, but leads to the loss of
details of object structures. Models based on FCNs
have demonstrated significant improvements on several
segmentation benchmarks (Cordts et al., 2016; Zhou
et al., 2017; Caesar et al., 2018). There are several model
variants of FCNs proposed to exploit global features
or contextual information for pixel-level classification
tasks, including those that employ multi-scale inputs (i.e.,
image pyramid) or those that adopt probabilistic graphical
models (Vemulapalli et al., 2016; Chandra and Kokkinos,
2016; Chandra et al., 2017).

Encoder-decoder networks have been successfully
applied to many computer vision tasks, especially
pixel-level image classification (Lin et al., 2017; Pohlen
et al., 2017; Chao et al., 2017; Fu et al., 2019). In the
encoder path, the spatial dimension of feature maps is
gradually reduced. Thus, longer range information can be
more easily captured in the deeper encoder output. Then,
in the decoder path, object details and spatial dimensions
are gradually recovered.

In the literature, the following networks have
demonstrated the effectiveness of the encoder-decoder
structure. The classification algorithm based on a
deep deconvolution network proposed by Noh et al.
(2015), learns the network on top of the convolutional
layers adopted from the VGG 16-layer net. The
deconvolution network by Noh et al. (2015) is composed
of deconvolution and unpooling layers, which identify
pixel-wise class labels and predict segmentation masks.
This algorithm based on instance-wise prediction is
advantageous to handle object scale variations by
eliminating the limitation of the fixed-size receptive field
in the FCN. Badrinarayanan et al. (2017) design SegNet, a
deep fully convolutional neural network architecture, for
pixel-wise image classification. The key component of
SegNet is the decoder network consisting of a hierarchy
of decoders one corresponding to each encoder. In detail,
the appropriate decoders are based on the max-pooling
indices received from the corresponding encoder to
perform non-linear upsampling of their input feature
maps. Ronneberger et al. (2015) present U-Net, a network
and a training strategy that relies on the strong use of data
augmentation to employ the available annotated samples
more efficiently. The architecture consists of a contracting
path to capture context and a symmetric expanding path
that enables precise localization. U-Net is an extension of
SegNet by adding skip connections between the encoder
and decoder layers such that it works with very few
training images and yields more precise classifications.

Spatial pyramid pooling, an extension of the
Bag-of-Words (BoW) model (Sivic and Zisserman, 2003),
is one of the most successful methods in computer
vision (Grauman and Darrell, 2005; Lazebnik et al., 2006;
He et al., 2015). Such a method partitions the image
into divisions in which local features are aggregated from
finer to coarser levels. The advantages of spatial pyramid
pooling are orthogonal to the specific CNN designs. Liu
et al. (2015) propose ParseNet, an end-to-end simple
and effective convolutional neural network, for pixel-level
image classification. Exploiting the FCN architecture,
ParsetNet can directly use global average pooling from
feature maps, resulting in the feature of the whole image
as context. Now that ParseNet can capture the context
of the image, it can improve local patch prediction
results. Zhao et al. (2017) propose the pyramid scene
parsing network (PSPNet) to incorporate suitable global
features. In addition to traditional dilated FCNs for
pixel prediction, the pixel-level feature is extended to
the specially designed global pyramid pooling one in
PSPNet. The local and global clues together make the
final prediction more reliable.

In order to capture the contextual information
at multiple scales, Chen et al. (2017a) propose the
atrous spatial pyramid pooling (ASPP) technique, which
employs multiple parallel atrous convolution filters with
different rates. It is inspired by the success of spatial
pyramid pooling (He et al., 2015), which showed that
it is effective to resample features at different scales
for accurately and efficiently classifying regions of an
arbitrary scale. The ASPP is capable of collecting
multi-level global information. Its structure is illustrated
in Fig. 1. Given the specific layer of the convolutional
feature map, multiple pyramid scales are applied to
generate multi-scale features. The features extracted
for each sampling rate are further processed in separate
branches and fused as the global feature. Further,
Chen et al. (2017b) propose to incorporate image-level
features encoding global context, which significantly
improves performance on a semantic image segmentation
benchmark. After that, Chen et al. (2018) propose to
combine the advantages from the spatial pyramid pooling
module and the encode-decoder structure. In particular,
the proposed model extends the previous network by
adding a simple yet effective decoder module to recover
the object boundaries and attains a new state-of-art
performance on two public datasets.

Zhang et al. (2018b) develop ASPP-Unet that takes
advantage of strengths from both the encoder-decoder
structure and spatial pyramid pooling for urban land cover
classification from high spatial resolution satellite images.
In particular, multi-parallel 3 × 3 atrous convolutions
are implemented in a parallel way to the input feature
maps of the bridge part in U-Net, and then fused together
by sum operation. After that, standard convolution
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Fig. 1. ASPP exploits multi-scale features by employing multiple parallel filters with different rates.

and ReLU are performed. According to Zhang et al.
(2018b), ASPP-Unet outperforms the state-of-the-art
models, e.g., U-Net, CNN and SVM models over two
satellite images, and yields robust and efficient urban land
cover classification results. The ASPP-UNet architecture
possesses the advantages of capturing fine-grained details,
thereby generating better segmentation results than UNet.
Therefore, it is promising to exploit the potential of
the encoder-decoder structure and the pyramid pooling
module to efficiently represent local and global context
features for the high spatial resolution satellite images.

3. Methods

There are several algorithms based on FCNs that are
applied to object segmentation (Volpi and Tuia, 2017;
Marmanis et al., 2016; Marcos et al., 2018). Because
the performance of deep learning algorithms depends
on their structures, it should be optimized to improve
the performance by adjusting and fine-tuning. U-Net, a
specific type of FCN, has received a lot of interest for
the segmentation of biomedical images using a reduced
dataset, but has proven to be also very efficient for
the pixel-wise classification of satellite images. To
compensate for the shortcomings of U-Net in extracting
multi-scale features, we integrate the augmented ASPP
into U-Net to obtain a higher segmentation accuracy in
high resolution satellite images. In our ASPP module, the
output of each pyramid level is combined and upsampled
to the same resolution as the input via transposed
convolution. After that, the per-pixel prediction is
presented. In this section, the details of our network

architecture and the network training stage are described.

3.1. Multiscale feature extraction using ASPP.
Atrous convolution can be used to decrease blurring
in semantic segmentation maps, and can at least in
part extract long range information without the need
for pooling (Chen et al., 2017a). Atrous convolution
generalizes standard convolution operation and expands
the window size without increasing the number of
weights or the amount of computations by inserting
zero-values into convolution kernels. It thus offers
an efficient mechanism to control the field-of-view and
finds the best trade-off between accurate localization
(small field-of-view) and context assimilation (large
field-of-view). In the case of two-dimensional signals, for
each location i on output feature map y and convolution
filter w, atrous convolution is applied over the input
feature map x as follows:

y[i] =
∑

k

x[i+ r × k]w[k], (1)

where the atrous rate r determines the stride with
which we sample the input signal. Note that standard
convolution is a special case in which rate r = 1. The
filter’s field-of-view is adaptively modified by changing
the rate value.

ASPP with different atrous rates effectively reduces
context information loss among multiple sub-regions.
However, as the sampling rate becomes larger, the number
of valid filter weights becomes smaller. In the extreme
case where the rate value is close to the feature map size,
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Fig. 2. Augmented ASPP with image-level features.

the 3 × 3 filter, instead of capturing the whole image
context, degenerates to a simple 1× 1 filter since only the
center filter weight is effective. To overcome this problem
and incorporate global context information to our model,
similar to the methods used by Liu et al. (2015) and Zhao
et al. (2017), DeepLabv3 (Chen et al., 2017b) adopts
image-level features. Specifically, global average pooling
is applied on the specific feature map of the model. After
that, the resulting image-level features are fed to a 1 × 1
convolution with 256 filters, and then bilinearly upsample
the feature to the desired spatial dimension. In the end,
the augmented ASPP consists of one 1×1 convolution and
three 3×3 atrous convolutions with different rates, besides
the image-level features shown in Fig. 2. The resulting
features from all the branches are then concatenated as
the global feature.

3.2. Proposed deep learning architecture. Because
semantic segmentation of satellite images can be treated
as a problem of pixel-level classification, it is natural to
introduce advanced semantic segmentation architectures
to solve such tasks. Instead of developing a model
from scratch, we decided to improve an existing model
of the CNN for image segmentation. Namely, we turn
to U-Net, originally developed for biomedical image
segmentation (Ronneberger et al., 2015). Basically, U-net
builds upon the FCN. A contracting path extracts features
of different levels through a sequence of convolutions,
rectified linear unit (ReLU) activations and max poolings,
allowing to capture the context of each pixel. A
symmetric expanding path then upsamples the result to

increase the resolution of the detected features. In the
U-Net architecture, skip-connections are added between
the contracting path and the expanding path, allowing
precise localization as well as context. The expanding
path therefore consists of a sequence of up-convolutions
and concatenations with the corresponding feature map
from the contracting path, followed by ReLU activations.
The number of features is doubled at each level of
downsampling. In this letter, we show that the
performance of U-Net can be further improved by
substituting the specific layer of the convolutional feature
map with augmented ASPP.

To perform multiclass object segmentation, we,
inspired by the work of Zhang et al. (2018b), develop
an encoder-decoder architecture for high spatial satellite
images. Our proposed method is illustrated in Fig. 3.
The network comprises three parts: the encoder, the
bridge and the decoder. The first part encodes the input
image into compact representations. The last part recovers
the representations to a pixel-wise categorization, that
is, semantic segmentation. The middle part serves as a
bridge connecting the encoder and decoder paths. The
encoder and decoder parts are built with plain neural
units which contain two 3 × 3 convolution blocks. Each
convolution block includes a convolutional layer and an
ReLU activation layer. The structures of the encoder
and decoder parts are symmetrical with skip connections
between them, which proves to be effective to produce
fine-grained segmentation results.

An input image goes through the encoder part first
to generate down-sampled feature maps. Encoder path
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Fig. 3. Augmented ASPP-Unet.
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Table 1. Network structure with augmented ASPP.
Unit level Conv2D layer Filter Output Shape Number of parameters

Input 512× 512× 3 0

Encoder

Level1
conv2d 1 3× 3/64 512× 512× 64 1792
conv2d 2 3× 3/64 512× 512× 64 36928

Level2
conv2d 3 3× 3/128 256× 256× 128 73856
conv2d 4 3× 3/128 256× 256× 128 147584

Level3
conv2d 5 3× 3/256 128× 128× 256 295168
conv2d 6 3× 3/256 128× 128× 256 590080

Level4
conv2d 7 3× 3/512 64× 64× 512 1180160
conv2d 8 3× 3/512 64× 64× 512 2359808

Bridge Level5
Augmented ASPP

conv2d r1 1× 1/256 32× 32× 256 131072
conv2d r2 1× 1/256 32× 32× 256 131072
conv2d r3 1× 1/256 32× 32× 256 131072
conv2d r4 1× 1/256 32× 32× 256 131072
conv2d r5 1× 1/256 1× 1× 256 131072

conv2d 9 3× 3/1024 32× 32× 1024 9438208

Decoder

Level6
conv2d 10 3× 3/512 64× 64× 512 4719104
conv2d 11 3× 3/512 64× 64× 512 2359808

Level7
conv2d 12 3× 3/256 128× 128× 256 1179904
conv2d 13 3× 3/256 128× 128× 256 590080

Level8
conv2d 14 3× 3/128 256× 256× 128 295040
conv2d 15 3× 3/128 256× 256× 128 147584

Level9
conv2d 16 3× 3/64 512× 512× 64 73792
conv2d 17 3× 3/64 512× 512× 64 36928

Output conv2d 18 3× 3/9 512× 512× 9 5193

has four plain neural units. In each unit, the pooling
operation is used to downsample the feature map size,
max-pooling with a 2 × 2 window is applied to the last
convolution block to reduce the feature map by half.
Max-pooling is used to achieve translation invariance over
small spatial shifts in the input image. Correspondingly,
the decoder path consists of four plain neural units, too.
Before each unit, there is an up-sampling of feature
maps from lower level and a concatenation with the
feature maps from the corresponding encoder path. To
produce class probabilities for each pixel independently,
the high-dimensional feature representation at the output
of the final decoder is fed to a 1 × 1 convolution and a
multi-class soft-max classifier

loss = −sy
(i)

+ log
∑

j

es
(j)

(2)

s = f(x(i);w(i)) (3)

Given an image dataset, y is the label, x is the input image
and w are weights. This soft-max classifies each pixel
independently. The output of the soft-max classifier is a
K channel image of probabilities where K is the number
of classes. The predicted segmentation corresponds to
the class with maximum probability at each pixel. The
bridge part of the standard U-Net model follows the

same structure of the plain neural unit, that is, two
sequential convolution and ReLU operations. As shown
in Fig. 3, we use the augmented ASPP to replace the
first convolution block of the bridge part. As in the
work of Zhang et al. (2018b), one 1 × 1 convolution
and three 3 × 3 convolutions with rates equal to (6, 12,
18), and the image-level features are implemented in
a parallel way to the input feature maps of the bridge
part. The resulting features from all the branches are
then concatenated and pass through another convolution
block and ReLU operations before the decoder path.
Through these procedures, our network retains a large
number of feature maps in the encoder path and extend
it by the decoder path to refine the segmentation results.
In addition, multi-scale deep features are captured by
employing augmented ASPP. Altogether, we employ 18
convolutional layers and augmented ASPP layers. It is
worth noting that, in our work, the indispensable cropping
in U-Net is not required in our network. The parameters
and the output size of our network in each step are
presented in Table 1.

3.3. Training the network. To train the network,
input images and their corresponding segmentation maps
are used. The models are implemented by Keras
with TensorFlow as the backend, which is powered by
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a workstation with Intel Xeon CPU E5-2630V4 (2.2
G\25MB\10 cores\85W), 32GB RAM and a single
NVIDIA GTX 1080 Ti GPU. As the architectures are
FCN-based models, theoretically, our networks can take
an arbitrary-size image as input. However, it will need a
certain amount of GPU memory to store the feature maps.
In our work, the original images and corresponding labels
are adjusted to the specified size same as the training
images, 512×512, as described in Table 1. We then utilize
fixed-sized training images to train the model. During the
training process, the energy function is computed by a
pixel-wise soft-max over the final feature map combined
with the cross entropy loss function between prediction
results and the ground truth. The Adam optimizer is
employed with the learning rate α = 1 × 10−4, the
exponential decay rates for the moment estimates β1 =
0.9 and β2 = 0.999. Meanwhile, the constant value
ε = 10−8 is applied. To avoid overfitting, a dropout
strategy is utilized with a probability of 0.5. Due to the
limited GPU memory, the batch sizes of the training and
validation sets are fixed to 2. With 500 steps per epoch,
100 epochs are iterated over the entire training set in total
to train the model.

Data augmentation is widely used in training,
including training U-Net. For example, the U-Net
by Ronneberger et al. (2015) works well after training
based on a limit number of samples, provided that
data augmentation is used. Accordingly, in order to
maintain a reasonable amount of images, and above all
to avoid overfitting by ensuring a sufficient invariance
and robustness of the network, we followed Ronneberger
et al. (2015) and applied real time data augmentation
techniques to our training set. The satellite images are
shifted, flipped and rotated, which allow us to train our
model on a considerably larger set of images. The above
task is done using the Keras framework which allowed us
to augment the data in real time when feeding the network
with batches. As a result, there are no memory processes
engaged and the network parameters can be better learned
from more training sets. In addition, the overfitting
effect can be reduced and the generalization ability of the
networks can be improved to a large extent. Hence, it is
of significance to implement data augmentation so as to
improve the segment accuracy. After training, test images
could be fed into the trained model to generate prediction
results.

4. Experiments

In this section, experiments are carried out to demonstrate
the accuracy and efficiency of our networks. We
present a description of the EVLab-SS benchmark (Mi
and Hu, 2017), which is designed for evaluating the
semantic segmentation results on satellite imagery and
contains the images captured from different platforms

with different types of spatial resolutions. Evaluation
metrics are also provided in detail for a quantitative
analysis of our method. Based on the selected
benchmark, we compare our networks with three
state-of-the-art methods, including FCN-8s (Long et al.,
2015), SegNet (Badrinarayanan et al., 2017) and
U-Net (Ronneberger et al., 2015). Finally, we give a
comprehensive analysis of the experimental results.

4.1. Datasets and evaluation metrics. Our datasets
are from the EvLab-SS benchmark, which aims to
find a good deep learning architecture for the high
resolution pixel-wise classification task in the remote
sensing area. The EvLab-SS dataset is publicly available
at https://pan.baidu.com/s/1wQ2aLdjCscL
NEJsJ1rtgiA. The average resolution of the dataset
is approximately 4500 × 4500 pixels and each image is
fully annotated. There are 11 ground object categories
in the dataset, comprising background, farmland, garden,
woodland, grassland, building, road, structures, digging
pile, desert, and waters. Currently, the dataset includes 60
frames of images with three channels captured by different
platforms and sensors. In our experiment, we select two
images from different satellites, GeoEye (re-sample GSD
0.5 m) and World-View 2 (re-sample GSD 0.2 m), with
a resolution of 5001 × 5001 pixels from the EvLab-SS
dataset. The background and garden classes are absent
in the two images, so there are 9 classes in total in the
images. We produce our datasets by applying the sliding
window with a stride of 128 pixels to the images, thereby
resulting in 1406 patches with a resolution of 480 × 360
pixels for each image. Thus, we have two datasets, both
are divided into training, validation and testing sets in
ratios of 8 : 1 : 1, to train and evaluate the proposed model
for experiments.

In order to verify the validity of our proposed
method, four evaluation metrics are applied based on the
comparisons between the prediction semantic maps and
the ground truth maps, namely, precision P , recall R,
F1-score F1, and overall accuracy OA. R signifies the
ratio of correctly predicted pixels with regard to the total
number of pixels in that ground truth class. Here,

R =
TP

TP + FN
, (4)

where TP is the number of true positive pixels and FN
is the number of false negative pixels. P means the
proportion of correctly predicted pixels with regard to the
total number of pixels classified as this class in the final
prediction.

P =
TP

TP + FP
(5)

where FP is the number of false positive pixels. F1 is

https://pan.baidu.com/s/1wQ2aLdjCscLNEJsJ1rtgiA
https://pan.baidu.com/s/1wQ2aLdjCscLNEJsJ1rtgiA
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defined by

F1 = 2
P ×R

P +R
(6)

in which P and R are weighted equally. The last
measure, OA, represents the ratio of correctly classified
test samples globally. It can be seen that F1 andOA reveal
the overall performance, where their larger values show
better performance.

4.2. Comparisons.

4.2.1. FCN-8s. Long et al. (2015) show that an
FCN trained end-to-end, pixels-to-pixels on semantic
segmentation exceeds the state-of-the-art net without
further machinery. In fact, the above work take the
initiative in training FCNs end-to-end for pixelwise
prediction from supervised pre-training. The FCN-8s is
a new FCN for segmentation that combines layers of
the feature hierarchy and refines the spatial precision of
the output. Fully convolutionalized classifiers can be
fine-tuned to segmentation. Nevertheless, the output of
such classifiers is dissatisfyingly coarse. The 32 pixel
stride at the final prediction layer limits the scale of detail
in the upsampled output. This issue is addressed by
adding skips that combine the final prediction layer with
lower layers with finer strides. As they see fewer pixels,
the finer scale predictions should need fewer layers.
Hence, it makes sense to form them from shallower net
outputs. Combining fine layers and coarse layers lets
the model make local predictions on the premise that the
global structure is respected.

To be consistent with FCN-8s, we first divide the
output stride in half by predicting from a 16 pixel stride
layer. We add a 1 × 1 convolution layer on top of pool4
to produce additional class predictions. We fuse this
output with the predictions computed on the final layer at
stride 32 by adding a 2× upsampling layer and summing
both predictions. We initialize the 2× upsampling to
bilinear interpolation. Finally, the stride 16 predictions
are upsampled back to the image. This net is called
FCN-16s. FCN-16s is learned end-to-end, initialized
with the parameters of the last, coarser net, which is
called FCN-32s. The new parameters acting on pool4
are zero-initialized so that the net starts with unmodified
predictions. The learning rate is decreased by a factor of
100. We continue in this fashion by fusing predictions
from pool3 with a 2× upsampling of predictions fused
from pool4 and the final layer, building the net FCN-8s.
Training is done by stochastic gradient descent (SGD)
with momentum. We use a minibatch size of 2 images
and a learning rate of 10−4. We use a momentum of
0.9, a weight decay of 2−4, and the doubled learning rate
for biases. We zero-initialize the class scoring layer, as
random initialization yielded neither better performance

nor faster convergence. Dropout is included where used
in the original classifier nets.

4.2.2. SegNet. SegNet (Badrinarayanan et al., 2017),
primarily inspired by the unsupervised feature learning
architecture, is designed to be an efficient architecture
for pixel-wise semantic segmentation. The key learning
module of SegNet is an encoder-decoder network,
followed by a final pixelwise classification layer. SegNet
is trained jointly for a supervised learning task. Hence,
the decoders are an integral part of the network of SegNet
in test time. Meanwhile, the encoder network consists of
13 convolutional layers which correspond to the first 13
convolutional layers in the VGG16 network (Simonyan
and Zisserman, 2014) designed for object classification.
The fully connected layers can be discarded in order
to retain higher resolution feature maps at the deepest
encoder output and reduce the number of parameters
in the SegNet encoder network significantly compared
with other recent architectures. Each encoder layer has
a corresponding decoder layer and hence the decoder
network has 13 layers. The final decoder output is fed to
a multi-class soft-max classifier. Thus, class probabilities
for each pixel are produced independently.

In order to train and validate the SegNet model,
we use the same version of SegNet by Badrinarayanan
et al. (2017), which has 4 encoders and 4 decoders.
All the encoders in SegNet perform max-pooling and
subsampling, while the corresponding decoders upsample
its input using the received max-pooling indices. Batch
normalization is used after each convolutional layer in
both the encoder and decoder networks. No biases are
used after convolutions meanwhile no ReLU nonlinearity
is present in the decoder network. Further, a constant
kernel size of 7×7 over all the encoder and decoder layers
is chosen to provide a wide context for smooth labelling.
This allows us to train SegNet in reasonable time. We use
the same SGD solver with a fixed learning rate of 10−4

and a momentum of 0.9. The optimization is performed
for more than 100 epochs through the dataset until no
further performance increase is observed. A dropout of
0.5 is added to the end of deeper convolutional layers in all
models to prevent overfitting. For our two datasets which
have 9 classes, we use a mini-batch size of 2.

4.3. Results.

4.3.1. GeoEye results. Based on the whole ground
truth dataset, the evaluation results of the test images
from GeoEye data are presented in Table 2. It can be
seen that the augmented ASPP-UNet achieves the best
performance compared with other models with 88.56%
in OA. ASPP-UNet yields a slightly lower performance
with OA 86.84%. SegNet produces the lowest accuracy
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with an OA 81.25%. Concerning the performance of each
class, in most cases, precision P , recall R and F1-score
F1 of our method are mostly higher than that of FCN-8s,
SegNet, U-Net and ASPP-Unet.

We then compare the results of our model with
the peers by using a two-sided Wilcoxon rank sum test
(Gibbons and Chakraborti, 2011). Details are given in
Table 3. It can be seen that our model is significantly
different from SegNet and ASPP-UNet.

To visualize the evaluation results on the test patches
with different methods, we demonstrate four examples
in Fig. 4. It can be seen that our method leads to an
improvement for almost all types of land cover. For
example, in the first and third row in Fig. 4, our method
is able to predict the building class correctly while the
other four approaches show poor performance. Especially
SegNet and U-Net produce significant salt-and-pepper
noise. For the water objects in the third row, SegNet
mistakes water as grassland or woodland, U-Net and
ASPP-Unet correctly predict just a part of water. With
respect to road and desert, our method shows a good
performance in a complex situation as shown in the
second row in Fig. 4. The FCN and the ASPP-Unet do not
fully predict roads while SegNet and U-Net mix desert and
structures. Our network distinguishes road in structures
while other methods confuse them. For grassland in the
last row, the result by the FCN, the ASPP-Unet and our
method all perform well. However, parts of grassland
are mistaken as structures in the prediction of SegNet and
U-Net.

4.3.2. World-View 2 data. Similarly to the GeoEye
data, we predict the test patches in the World-View 2
dataset to evaluate the proposed model. We compare
the results with those for FCN, SegNet, U-Net and
ASPP-Unet. Table 4 demonstrates the accuracies of
all the methods using the whole ground truth. Our
network achieves the best performance among the five
methods with 86.22% in OA. Specifically, the OAs of
the four methods being compared are similar. Except
woodland, grassland and structures, the precision of the
other land cover types always yields an OA value higher
than 80.00%. According to Table 4, with respect to F1 of
each class, our method is the best.

Also, we compare the results of our method with
the other methods by using a two-sided Wilcoxon rank
sum test. Details are given in Table 5. It shows that
our model is significantly better from among all of the
involved methods.

Four examples of evaluation results on the test
patches in the World-View 2 dataset are shown in Fig. 5.
With respect to the woodland and road classes, our method
is able to predict the road irrespective of whether the
woodland is on the road or on the edge of the road
according to Fig. 5. However, in the first row, ASPP-Unet
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4. GeoEye data classification results with different methods on the test patches. The original images are shown in column (a),
while ground truth images are shown in column (b). Results by FCN, SegNet, U-Net, ASPP-Unet, and our method are displayed
in columns (c)–(g), respectively

(a) (b) (c) (d) (e) (f) (g)

Fig. 5. World-View 2 data classification results with different methods on the test patches. The original images are shown in column(a),
while ground truth images are shown in column(b). Results by FCN, SegNet, U-Net, ASPP-Unet, and our method are displayed
in columns (c)–(g), respectively.

falsely label road as structures. In the third row, U-Net
does not predict the road at all. Besides, the FCN
and the U-Net cannot distinguish the boundaries between
woodland and road clearly in the second and last rows.
From the perspective of farmland, our method shows
an improvement compared with the other methods. For
instance, in the third column in Fig. 5, our method
correctly predicts farmland. However, SegNet mistakes
farmland as woodland. The other methods recognize part
of farmland with a rough boundary. In terms of water,
we observe that the predictions by all the methods are

accurate, although woodland around water has similarities
in color.

4.4. Discussion. The effectiveness of the proposed
method is comprehensively examined based on the high
resolution satellite image datasets. Further, the superiority
of the proposed method is verified through the quantitative
and qualitative analysis against several deep learning
based methods. Compared with the U-Net model,
ASPP-Unet incorporates multiple atrous convolutions in
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Table 3. Wilcoxon test results for the experiment based on the
GeoEye dataset. The result p is to test the null hypoth-
esis at the 5% significance level while h is a logical
value indicating the test decision: h = 1 indicates a
rejection of the null hypothesis and h = 0 indicates a
failure to reject the null hypothesis.
FCN-8s SegNet U-Net ASPP-Unet

p 0.0020 0.0503 0.0102 0.4363
h 1 0 1 0

the bottom layer, and thus increases the receptive fields
compared to the 3 × 3 convolution in U-Net and enables
capturing multi-scale features. Further, we improve the
ASPP-Unet model by adding global average pooling
in ASPP. This indicates that object contextual features
at different spatial scales can be represented with an
increasingly enlarged field-of-view. It should be noted
that, due to the usage of ASPP with image-level features,
the proposed approach is robust to the types of land
which not only are different in scales and sizes, but also
range from a narrow shape road to a large area building.
This means that our method can capture multi-scale
object information, which is critical for segmenting
objects with sharp changes in sizes and scales on high
resolution satellite images. It intuitively can be seen
from Figs. 4 and 5 that our method can better delineate
the boundary of an object. The results demonstrate the
superiority of the utilization of augmented ASPP, which
can more accurately classify each pixel with varying
spatial resolutions.

Although the proposed network shows improvements
in the accuracy and object boundaries, there are still
several potential limitations. First, the input images
of our network contain only three bands. Although
most cases in the computer vision field deal with color
images just containing the three channels (red, green, and
blue), high resolution satellite images generally contain
four bands, i.e., red, green, blue and infrared bands.
In fact, we only use the three bands, red, green and
blue, in our experiments. Furthermore, because the
proposed architecture contains millions of parameters, a
large number of training samples are needed. Due to
different sizes and locations of the object changes, it
is quite labor-intensive to obtain enough ground truth
maps with high accuracy. Thus, recently developed
deep learning techniques, such as transfer learning,
reinforcement learning and weakly supervised learning,
should be exploited for improving our network to solve
the issues of a limited number of training samples.

5. Conclusion

In this paper, we propose a classification algorithm
for high spatial resolution satellite images based on

Ta
bl

e
4.

E
va

lu
at

io
n

of
re

su
lt

s
in

th
e

W
or

ld
-V

ie
w

2
da

ta
se

tu
si

ng
th

e
te

st
in

g
se

t.
FC

N
-8

s
Se

gN
et

U
-N

et
A

SP
P-

U
ne

t
O

ur
m

et
ho

d

P
R

F1
P

R
F1

P
R

F1
P

R
F1

P
R

F1
Fa

rm
la

nd
87

.3
8

66
.0

8
75

.4
2

81
.4

4
75

.1
5

78
.1

8
84

.4
7

81
.6

7
83

.0
5

82
.9

7
77

.9
1

80
.3

7
88

.3
3

73
.0

3
84

.0
3

W
oo

dl
an

d
76

.2
3

86
.8

4
81

.2
2

79
.6

6
84

.5
5

82
.0

4
85

.2
4

78
.8

0
81

.9
1

86
.1

0
77

.5
7

81
.6

4
86

.5
7

80
.2

6
83

.3
1

G
ra

ss
la

nd
82

.0
8

86
.4

5
84

.2
1

79
.7

4
87

.4
7

83
.4

4
81

.5
0

87
.6

7
84

.4
8

82
.6

1
86

.3
5

84
.4

4
86

.1
8

87
.7

3
86

.9
5

B
ui

ld
in

g
89

.4
6

74
.5

1
81

.3
8

83
.3

3
86

.4
2

84
.8

5
81

.0
0

88
.4

4
84

.5
8

82
.6

3
88

.2
4

85
.3

5
81

.8
1

88
.6

8
86

.1
2

R
oa

d
86

.4
0

88
.6

5
87

.5
1

86
.6

0
86

.5
5

86
.5

8
86

.6
7

86
.6

9
86

.6
8

86
.5

3
83

.6
1

85
.0

5
85

.5
9

89
.2

7
88

.4
0

S
tr

uc
tu

re
s

74
.0

8
88

.4
7

80
.7

1
84

.3
0

74
.7

8
79

.2
9

84
.4

0
77

.2
7

80
.6

9
77

.8
3

86
.9

9
82

.1
2

85
.6

5
74

.1
8

82
.1

7
D

ig
gi

ng
pi

le
82

.1
2

88
.8

2
85

.3
5

86
.3

3
77

.7
5

81
.8

4
87

.5
1

75
.7

4
81

.2
5

89
.3

4
81

.5
8

85
.3

1
89

.6
3

83
.5

0
86

.4
7

D
es

er
t

80
.1

1
89

.3
9

84
.5

2
87

.8
3

82
.3

1
84

.9
9

88
.6

1
83

.6
7

86
.0

8
88

.2
0

88
.0

5
88

.1
3

89
.7

9
85

.4
5

88
.5

7
w

at
er

s
89

.8
7

73
.4

5
80

.9
3

89
.1

1
69

.2
3

78
.0

6
87

.2
4

77
.7

4
82

.2
5

86
.7

9
89

.6
5

86
.2

0
87

.9
9

86
.0

2
87

.0
0

O
A

84
.7

2
84

.5
9

83
.8

7
84

.2
5

86
.2

2



Classification of high resolution satellite images using improved U-Net 411

Table 5. Wilcoxon test results for the experiment based on the
World-View2 dataset. The resulting p-value is to test
the null hypothesis at the 5% significance level, while
h is a logical value indicating the test decision. Here
h = 1 indicates a rejection of the null hypothesis and
h = 0 indicates a failure to reject the null hypothesis.
FCN-8s SegNet U-Net ASPP-Unet

p 0.2581 0.1359 0.1903 0.2973
h 0 0 0 0

U-Net. We use U-Net as our key learning module.
In detail, a contracting path is used to encode the rich
contextual information, while a symmetric expanding path
is adopted to recover the object boundaries. At the
bridge part, we use ASPP with image-level features to
learn multi-scale feature maps from different semantic
levels. The effectiveness of the proposed method is
elaborately examined based on the experiments on two
satellite image datasets. Our experiments show that the
proposed approach yields the best performance on both
visual comparison and quantitative metrics evaluation
compared with other deep learning methods. Therefore,
it is promising to exploit the potential of our models
for multiclass object segmentation on satellite images.
However, like any other deep learning architectures,
the proposed architecture requires a large number of
ground truth samples, which limits the widespread use
in the real world application to a certain extent. In
the future, weakly supervised learning and samples
generation techniques may be developed to improve the
applicability of our model for semantic segmentation
tasks. Besides, the super-pixel segmentation can be
applied as a pre-processing step to reduce the number of
optimization elements in the proposed model.
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