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This paper proposes a methodology for observer-based fault estimation of leader-following linear multi-agent systems
subject to actuator faults. First, a proportional-integral distributed fault estimation observer is developed to estimate both
actuator faults and states of each follower agent by considering directed and undirected graph topologies. Second, based
on the proposed quadratic Lyapunov equation, sufficient conditions for the asymptotic convergence of the observer are
obtained as a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the proposed approach.
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1. Introduction

In recent years, cooperative control for multi-agents
systems (MASs) has been widely studied as a solution
for problems where multiple systems have to collaborate
to reach a common goal. In this scenario, an
individual control law for each of the agents cannot
provide a satisfactory performance of the global control
task. Particularly, in cooperative control on graphs, the
control protocols must be distributed since they need
an information exchange between the agents (Lewis
et al., 2013), e.g., distributed cooperative control of
microgrids (Nasirian et al., 2014), trajectory tracking
and decentralized navigation (Prodan et al., 2013),
cooperative formation control of autonomous underwater
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vehicles (Das et al., 2016), formation control of unmanned
aerial vehicles (UAVs) (Kuriki and Namerikawa, 2014),
cooperative control of manipulators (Li et al., 2016), to
mention a few.

Among different topics of MASs, the
leader-following, also called cooperative tracking
control, has become the most popular consensus problem.
In this case, the leader sends information to the agents;
then the controller tries to reduce the error so all follower
agents can track the desired trajectory generated by
the leader (Lewis et al., 2013; Zhai, 2015). In the
literature, there is extensive research about this problem;
for example, in the work of Wang and Wu (2012) a
leader-following formation control for a second-order
nonlinear multi-agent system under fixed and switching
topologies is exposed. Cai and Huang (2014) present a
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leader-following control for multiple spacecraft systems.
Zhang et al. (2014) discuss an adaptive technique for fault
estimation. Ma et al. (2015) and Zhao et al. (2017) outline
two different approaches for second-order multi-agent
systems, one being an optimal strategy and the other an
event-triggered strategy for the communication graph,
respectively. However, few works are dedicated to detect
and isolate faults for MASs.

The purpose of a fault diagnosis system is to generate
an alarm when a fault occurs as well as to detect,
locate, and estimate the magnitude of the faulty element
(López-Estrada et al., 2019; Bermúdez et al., 2018).
Specifically, fault estimation has been well discussed for
single-agent systems by Yang and Yin (2018; 2019b), who
addressed the state and fault estimation for Markovian
jump systems in the presence of simultaneous sensor
and actuator faults and recently for applications as
wheeled mobile manipulators (Yang and Yin, 2019a).
Nevertheless, few works have been proposed for fault
diagnosis in MASs. In particular, for leader-following
cooperative control problems, Shi et al. (2014) use a bank
of optimal robust observers to detect and isolate actuator
faults. Chen and Song (2015) developed an actuator fault
detection module for directed graphs, while Li (2015)
proposed a controller for multi-agent systems subject to
a loss of actuator effectiveness with an adaptive observer.

Furthermore, few works related to fault estimation
have been reported, e.g., Zhou et al. (2014) achieve
fault tolerant cooperative control with a sliding mode
observer to estimate faults. Ye et al. (2017) presented
an adaptive observer to estimate the states and bias faults
with multiple leaders. An unknown input observer (UIO)
is designed by Wu et al. (2018) to estimate states and
faults for directed graphs in the presence of exosystem
disturbances. Yang et al. (2018) present a distributed
adaptive fault estimation algorithm for undirected graphs.
Nevertheless, to the best of the authors’ knowledge,
proportional-integrative (PI) distributed fault estimation
observers (DFEOs) (Zhang et al., 2015) have not
been reported in the literature for fault estimation in
leader-following applications.

Therefore, the main contribution is to propose a
proportional-integral distributed fault estimation observer
(PI-DFEO) for MASs with a distributed approach.
Moreover, the PI-DFEO estimates both the system
states and actuator faults without requiring a bank of
observers. Furthermore, to guarantee robustness against
measurement noise and disturbances, an H∞ criterion was
considered. As a result, sufficient conditions to compute
the observer gains are given by a set of feasible linear
matrix inequalities. In order to reach the main goal, it
is assumed that the control law of each agent depends on
its own information and the information provided by its
neighbors, and a graph topology is considered in order to
show the connection between the agents. The proposed

Fig. 1. Graph example.

approach can be applied to directed and undirected graphs,
according to graph theory. Finally, the performance of the
proposed method is tested through numerical examples of
formation control.

The paper is organized as follows: Section 2
introduces the mathematical principles related to MASs
and the problem statement Section 3 presents the
main result, where an LMI is developed based on the
appropriate Lyapunov function. Section 4 provides a
numerical example in order to validate the theoretical
result. Finally, Section 5 presents the conclusions and
future work.

2. Background

2.1. Mathematical preliminaries. Consider a graph
G = (V , E ,A) with a set of N nodes V =
(v1, v2, . . . , vN ); a set of edges E ⊂ V × V that
interconnects the nodes in the graph and its associated
adjacency matrix A = [aij ] ∈ R

N×N whose entries
depend on the communication between agents in the graph
as it is explained later.

Elements of E rooted at node j and ended at node i
are denoted by (vj , vi), which means that information can
flow from node j to node i. Elements aij are the weights
of the edge (vj , vi), aij = 1 if edge (vj , vi) ∈ E , i.e., exist
a connection between agent vj and agent vi, otherwise
aij = 0. For example, for a system of three agents, the
corresponding graph is as in Fig. 1. For undirected graphs
we have (vj , vi) = (vi, vj), i.e., communication between
agents is bidirectional and therefore A = AT . Otherwise,
it is considered a directed graph or a digraph. In this
paper, only graphs with aii = 0 are considered. Another
important definition is the weighted in-degree of node vi
which expresses the i-th row sum of A:

di =

N∑

j=1

aij , (1)

with which D = diag(di) is the diagonal in-degree
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matrix. Finally, let L = D − A be the Laplacian matrix
that includes all the communication information between
the agents.

A graph that contains a node that acts like a command
generator (leader node) is modeled with an augmented
graph Ḡ = (V̄ , Ē , Ā) with a set of N + 1 nodes V̄ =
(v0, v1, . . . , vN ) and a set of edges Ē ⊂ V̄ × V̄ . With no
loss of generality, the leader node is labeled as v0. Then,
if there exists a connection between the leader node and
the nodes of the i-th follower, an edge (v0, vi) is said
to exist with gi = 1 as the weight. These weights are
called pinning gains and the diagonal matrix of pinning
gains is defined as G = diag(gi); it represents the
connections between the leader node and the i-th agents
(Lewis et al., 2013). Finally, to express a complete
space-state model of all agents the Kronecker product ⊗
is used which is defined, given two matrices A = [aij ] and
B, as A⊗B = [aijB].

2.2. Problem statement and system description.
Consider a collection of N + 1 identical agents where
the follower nodes are represented with faults through the
following space-state model:

ẋi(t) = Axi(t) +Bui(t) +Hfi(t),

yi(t) = Cxi(t),
(2)

where i = 1, . . . , N refers to the i-th agent in the
multi-agent system, xi(t) ∈ R

n is the state vector, ui(t) ∈
R

m is the control input vector, fi(t) ∈ R
r represents the

system component or actuator fault vector, and yi(t) ∈ R
p

is the output vector. The pair (A,C) is assumed to be
observable and matrix H is constant with appropriate
dimensions.

Without loss of generality, the leader agent labeled
with the subscript 0 is modeled as follows:

ẋ0(t) = Ax0(t). (3)

Remark 1. Note that the leader agent does not have any
input. This holds for the standard multi-agent systems
theory and for the purpose of this work. However, it is
worth mentioning that a controller for the leader agent
can be developed independently applying any other single
agent control theory (Lewis et al., 2013).

For the development of this work, the following
assumptions and lemma are needed:

Assumption 1. (Lewis et al., 2013) In order for all
follower agents to track the state of the leader, the graph
must have a spanning tree with the leader node as the
root, i.e., the leader node can send information directly
or indirectly to all follower agents.

Assumption 2. In order to eliminate the derivative of
the fault in the dynamic estimation error, it is assumed

that ḟ(t) ≈ 0, which is also known as the slow variation
condition. Note that, from a practical point of view, this
condition can be relaxed as discussed by Chadli et al.
(2013) and Rotondo et al. (2016).

Lemma 1. (Lewis et al., 2013) Under Assumption 1, the
matrix (L+G) is nonsingular. In addition, this matrix is
positive definite.

In order to estimate states, the following distributed
observer is proposed:

˙̂xi(t) = Ax̂i(t) +Bui(t)−Rζi(t) +Hf̂i(t),

ŷi(t) = Cx̂i(t),

f̂i(t) = −ΓF
(
ζi(t) +

∫ t

tf

ζi(t) dt
)
,

(4)

where i = 1, . . . , N , x̂i(t) ∈ R
n is the estimated state,

ŷi(t) ∈ R
p is the estimated output, ζi(t) ∈ R

q is the
relative output estimation error of the i-th agent in the
communication graph defined later, R ∈ R

n×q is the
observer gain matrix to be designed, and f̂i(t) is the
estimated fault. To deal with fault estimation, a distributed
PI fault estimator f̂i(t) is proposed where the relative
output estimation error ζi is used. Additionally, an integral
term of ζi is added that allows the observer to have a faster
convergence to the fault, F ∈ R

r×p is the fault estimator
gain matrix to be designed, and matrix Γ = ΓT > 0 is
the learning rate. Note that tf indicates the time when the
fault occurs.

Then, the problem is reformulated to find the gain
matrices R and F , such that the estimation error between
system (2) and observer (4) tends asymptotically to zero
for all follower agents. Communication between follower
agents and the leader agent is established through the
pinning gain matrix G defined in Section 2.1.

3. Main contribution

The main idea of this paper is to estimate states and
faults of the follower agents in a MAS using the observer
proposed in (4). Then, according to MAS theory, the
relative output estimation error ζi, which expresses the
information exchanged between the agents, is defined as
(Lewis et al., 2013)

ζi(t) =

N∑

j=1

aij

((
ŷi(t)− yi(t)

)− (
ŷj(t)− yj(t)

))

+ gi

((
ŷi(t)− yi(t)

)− (
ŷ0(t)− y0(t)

))
,

i = 1, . . . , N, (5)

where ŷi(t) is the observer output of the i-th agent, ŷj(t)
is the observer output of the j-th agent that constitutes
a neighbors of agent i in the collection of systems, gi
represents the nodes pinned to the leader node.
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From Remark 1, since the leader agent can be treated
independently and an observer for the leader agent is not
needed, it is reasonable to assume for the MAS model that
the output estimation error of the leader agent is equal to
zero, i.e., ŷ0(t) − y0(t) = 0. Then, the relative output
estimation error is reduced to the following expression:

ζi(t) =
N∑

j=1

aij

((
ŷi(t)− yi(t)

)− (
ŷj(t)− yj(t)

))

+ gi
(
ŷi(t)− yi(t)

)
, i = 1, . . . , N. (6)

In order to develop the DFEO, it is necessary to
define the dynamic error for both state estimation and fault
estimation. The state estimation error vector for the i-th
agent is defined as

exi(t) = x̂i(t)− xi(t). (7)

Then the dynamic state estimation error is given as

ėxi(t) =
˙̂xi(t)− ẋi(t)

= Ax̂i(t) +Bui(t) +H ˆfi(t)−Rζi(t)

−Axi(t)−Bui(t)−Hfi(t)

= A(x̂i(t)− xi(t)) +H(f̂i(t)− fi(t))

−Rζi(t),

(8)

where the relative output estimation error ζi can be
expressed as

ζi(t) =

N∑

j=1

aij(Cx̂i(t))−
N∑

j=1

aij(Cxi(t))

−
N∑

j=1

aij(Cx̂j(t)) +

N∑

j=1

aij(Cxj(t)) + gi(Cx̂i(t))

− gi(Cxi(t)).

(9)

Then, from (1),

ζi(t) = diCx̂i(t)− diCxi(t)−
[
ai1 . . . aiN

]
⎡

⎢⎣
Cx̂1(t)

...
Cx̂N (t)

⎤

⎥⎦

+
[
ai1 . . . aiN

]
⎡

⎢⎣
Cx1(t)

...
CxN (t)

⎤

⎥⎦

+ giCx̂i(t)− giCxi(t).

(10)

Define the global vectors

ζ(t) =
[
ζT1 (t), . . . , ζ

T
N (t)

]T ∈ R
pN ,

x(t) =
[
xT
1 (t), . . . , x

T
N (t)

]T ∈ R
nN ,

ex(t) =
[
eTx1

(t), . . . , eTxN
(t)

]T ∈ R
nN .

Given the adjacency matrix A = [aij ], the diagonal
in-degree matrix D = diag{di}, the diagonal pinning
gain matrix G = diag{gi}, and the Laplacian matrix
defined as L = D −A, we get

ζ(t) = (D ⊗ C)x̂(t)− (D ⊗ C)x(t) − (A⊗ C)x̂(t)

+ (A⊗ C)x(t) + (G⊗ C)x̂(t)

− (G⊗ C)x(t)

= ((D −A+G)⊗ C)(x̂(t)− x(t))

= ((L +G)⊗ C)ex(t).

(11)

Then, the global distributed state estimation dynamic
error for the whole MAS is given by

ėx(t) = (IN ⊗A)ex(t) + (IN ⊗H)ef(t)

− (IN ⊗R)[((L +G)⊗ C)ex(t)]

= (IN ⊗A− (L+G)⊗RC)ex(t)

+ (IN ⊗H)ef (t).

(12)

The fault estimation error vector for the i-th agent is
defined as

efi(t) = f̂i(t)− fi(t), (13)

where the fault estimation dynamic error can be obtained
with

ėfi(t) =
˙̂
fi(t)− ḟi(t)

= −ΓF (ζi(t) + ζ̇i(t)) − ḟi(t).
(14)

Let ḟ(t) =
[
ḟT
1 (t), . . . , ḟT

N (t)
]T ∈ R

nN be the
global fault vector. Then, the global distributed fault
estimation dynamic error for the whole MAS is given by

ėf (t) = −((L+G)⊗ΓFC)(ex(t)+ ėx(t))− ḟ (t). (15)

If only faults with small variations are considered, we
assume that ḟ ≈ 0 (Estrada et al., 2015), which leads to

ėf(t) = −((L+G)⊗ ΓFC)(ex(t) + ėx(t)). (16)

Now, the H∞ criterion (Hu et al., 2016) that is
included in the developed DFEO in order to provide
robustness to the observer is formed as

Jrd := V̇e(t) + J1 < 0, (17)

where Ve(t) is the candidate Lyapunov function, J1 =
eTx (t)ex(t) − γ2eTf (t)ef (t), γ > 0 is a scalar value. J1
can be expressed in matrix form:

J1 =
[
eTx (t) eTf (t)

] [I 0
0 −γ2I

] [
ex(t)
ef (t)

]
. (18)
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Theorem 1. Assume that there exist a symmetric positive
definite matrix P ∈ R

n×n, and matrices Y ∈ R
n×p and

F ∈ R
r×p that satisfy

[
IN ⊗ (ATP + PA)− Λ Φ

∗ φ

]
< 0, (19)

HTP = FC, (20)

where Λ = (L+G)⊗ (Y C) + (L+G)T ⊗CTY T )− I ,
Φ = IN ⊗ PH − (L + G)T ⊗ (ATPH + PH) + (L +
G)2T ⊗ (CTY TH), φ = −(L+G)T ⊗ (HTPH)− (L+
G) ⊗ (HTPH) − γ2I . Then the observer gain matrix R
can be calculated by R = P−1Y .

Proof. Consider the following Lyapunov function:

Ve(t) = eTx (t)(IN ⊗ P )ex(t)

+ ef (t)
T (IN ⊗ Γ−1)ef (t).

(21)

Calculating its derivative, we get

V̇e(t) = ėTx (t)(IN ⊗ P )ex(t) + eTx (t)(IN ⊗ P )ėx(t)

+ ėTf (t)(IN ⊗ Γ−1)ef (t)

+ eTf (t)(IN ⊗ Γ−1)ėf (t).

(22)

Substituting (12) and (16) in (22), we obtain

V̇e(t) =
(
eTx (t)(IN ⊗A− (L+G)⊗RC)T

+ eTf (t)(IN ⊗H)T
)
(IN ⊗ P )ex(t)

+ eTx (t)(IN ⊗ P )
(
(IN ⊗A− (L+G)⊗RC)

ex(t) + (IN ⊗H)ef(t)
)
−
(
(ex(t) + ėx(t))

T

((L+G)T ⊗ ΓFC)T
)
(IN ⊗ Γ−1)ef (t)

− ef (t)
T (IN ⊗ Γ−1)

(
((L+G)⊗ ΓFC)(ex(t)

+ ėx(t))
)

= eTx (t)(IN ⊗ATP − (L+G)T ⊗ CTRTP )ex(t)

+ eTf (t)(IN ⊗HTP )ex(t)

+ eTx (t)(IN ⊗ PA− (L+G)⊗ PRC)ex(t)

+ eTx (t)(IN ⊗ PH)ef (t)

− (ex(t) + ėx(t))
T ((L+G)T ⊗ (CTFT ))ef (t)

− eTf (t)((L +G)⊗ (FC))(ex(t) + ėx(t))

(23)

with Y = PR and HTP = FC. From Theorem 1, (23)

can be transformed to

V̇e(t) = eTx (t)(IN ⊗ (ATP + PA)

− (L+G)T ⊗ CTY T − (L+G)⊗ Y C)ex(t)

+ 2eTx (t)(IN ⊗ PH)ef(t)

− 2eTx (t)
(
(L+G)T ⊗ PH

)
ef (t)

−2ėTx (t)
(
(L+G)T ⊗ PH

)
ef (t)

︸ ︷︷ ︸
ex

,

(24)

where

ex = −2
(
eTx (t)(IN ⊗A− (L+G)⊗RC)T

+ eTf (t)(IN ⊗H)T
)(

(L+G)T ⊗ PH
)
ef(t)

= −2eTx (t)
(
(L+G)T ⊗ATPH

− (L+G)2T ⊗ CTY TH
)
ef (t)

− 2eTf (t)
(
(L +G)T ⊗HTPH

)
ef (t).

(25)

Then, substituting (25) in (24), we get

V̇e(t) = eTx (t)(IN ⊗ (ATP + PA)− (L+G)T ⊗ CTY T

− (L+G)⊗ Y C)ex(t) + 2eTx (t)(IN ⊗ PH

− (L+G)T ⊗ (PH +ATPH)

+ (L+G)2T ⊗ CTY TH)ef (t)

− 2eTf (t)((L +G)T ⊗HTPH)ef(t).

(26)

Then, the term J1 from (17) is added to (26) to apply the
H∞ criterion

Jrd = eTx (t)(IN ⊗ (ATP + PA)− (L+G)T ⊗ CTY T

− (L+G)⊗ Y C)ex(t) + 2eTx (t)(IN ⊗ PH

− (L+G)T ⊗ (PH +ATPH)

+ (L+G)2T ⊗ CTY TH)ef (t)

− 2eTf (t)((L +G)T ⊗HTPH)ef (t)

+ eTx (t)ex(t)− γ2eTf (t)ef (t),

(27)

which leads to the matrix representation provided in
Theorem 1. This completes the proof. �

Remark 2. From Section 2.1, undirected graphs imply
(L + G) = (L + G)T that is a special case of directed
graphs. Theorem 1 can account for both (L+G) = (L+
G)T and (L + G) �= (L + G)T . Thus it can be used for
directed and undirected graphs topologies.
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Fig. 2. Communication graph for the numerical example.

Remark 3. It is important to remark here that the pro-
posed PI observer estimates simultaneously the states and
the faults of the MAS. This cannot be addressed with a
proportional observer, for which a bank of observers is
required in order to isolate the fault. Also, the PI-DFEO
proposed here has not been reported in the literature in the
MAS context.

4. Results

In this section, a numerical example is given to illustrate
the effectiveness of the theoretical results. To this end, the
system investigated by Zhang et al. (2015) is considered.
The problem regards a collection of five identical aircraft.
The leader agent and four follower agents, with the
directed communication topology, are depicted in Fig. 2
(the formation graph).

Each aircraft is modeled in a state-space
representation as

A =

⎡

⎢⎢⎣

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200

0 0 1 0

⎤

⎥⎥⎦ ,

B =

⎡

⎢⎢⎣

0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900

0 0

⎤

⎥⎥⎦ , C =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦ ,

where the state vector is defined as

xi(t) =
[
vh(t) vv(t) q(t) θ(t)

]T

and whose elements are the horizontal velocity, the
vertical velocity, the pitch rate, and the pitch angle,
respectively. The input vector includes collective pitch
control and longitudinal cyclic pitch control.

The adjacency matrix A, the in-degree matrix D, the
Laplacian matrix L and the pinning gain matrix G are

Table 1. Magnitudes of faults for Agent 2.
Actuator 1 Time Actuator 2

0 0 s ≤ t < 2 s 0
0.2u2,1 2 s ≤ t < 4 s 0.15u2,2

0 4 s ≤ t < 6 s 0
−0.2u2,1 6 s ≤ t < 8 s −0.15u2,2

0 8 s ≤ t < 12 s 0

Table 2. Magnitudes of faults for Agent 4.
Actuator 1 Time Actuator 2

0 0 s ≤ t < 2 s 0
0.05u4,1 2 s ≤ t < 4 s 0

0 4 s ≤ t < 6 s 0
−0.05u4,1 6 s ≤ t < 8 s 0

0 8 s ≤ t < 12 s 0
0 t ≥ 4 s 0.2sin(0.5t)u4,2

obtained from Fig. 2,

A =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤

⎥⎥⎦ , D =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ ,

L =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
−1 0 1 0
0 −1 0 1

⎤

⎥⎥⎦ , G =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ .

As can be seen from Fig. 2, a spanning tree in the
proposed graph exists and all eigenvalues of (L +G) are
1, i.e., (L +G) > 0, which fulfills Lemma 1.

For this numerical experiment, the following
notation is used to define all vectors:

qa(t) =
[
qa,b(t) qa,b(t)

]T
,

where a is the agent label and b is the vector element.
Then, as each agent has only two actuators, faults
in Agents 2 and 4 can be represented as f2(t) =[
f2,1(t) f2,2(t)

]T
and f4(t) =

[
f4,1(t) f4,2(t)

]T
,

respectively. Faults occur simultaneously in Agents 2 and
4, and their evolution are described in Tables 1 and 2,
respectively.

The magnitude of 0.2 represents a degradation of
20% on the actuator u2,1. Therefore, 0.15u2,2 represents a
15% of degradation of Actuator 2. A similar analysis can
be done for Agent 4 based on Table 2. It is worth noting
that faults are co-occurring in both agents. Note that this
degradation affects the thrust given by the rotors, and this
may have several consequences on the system.

The initial conditions of the agents were randomly
chosen in the interval [0, 3] in order to be nonzero. Thus,
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the initial conditions are

agent1 =
[
1.6436 0.9044 2.0943 2.9972

]T
,

agent2 =
[
2.8282 2.1033 1.9996 0.5134

]T
,

agent3 =
[
1.2532 1.9990 0.5344 0.0978

]T
,

agent4 =
[
2.9492 1.6174 0.3840 1.6836

]T
.

The initial conditions of the agent observers were
randomly chosen at different intervals:

observer1 =
[
1.6456 0.3822 0.9343 0.4461

]T
,

observer2 =
[
1.0151 2.8898 −0.7424 −2.2763

]T
,

observer3 =
[
2.5713 2.4692 2.5728 3.7685

]T
,

observer4 =
[
0.7378 1.7110 0.8565 0.4524

]T
.

In order to test robustness, white Gaussian noise with
variance 0.01 and zero mean is assumed for the sensors.
Defining H = B, and applying Theorem 1, the following
constant matrices P , Y , R and F are obtained with the
YALMIP toolbox and the SEDUMI solver:

P =

⎡

⎢⎢⎣

1.2439 0.0126 0.1161 0.3070
0.0126 0.0378 0.0461 0.0349
0.1161 0.0461 0.0862 0.0470
0.3070 0.0349 0.0470 0.1608

⎤

⎥⎥⎦ ,

Y =

⎡

⎢⎢⎣

0.8754 0.1567 0.3070
0.0504 0.0614 0.0782
0.1261 0.0765 0.1178
−0.3325 −0.0399 0.0381

⎤

⎥⎥⎦ ,

R =

⎡

⎢⎢⎣

5.2205 1.1986 1.0049
29.1051 8.5784 6.7898
−13.2428 −3.4711 −2.2591
−14.4876 −3.3858 −2.4964

⎤

⎥⎥⎦ ,

F =

[−0.0460 −0.1149 −0.2609
0.6444 −0.0780 0.0572

]
,

Γ =

[
13 3
3 13

]
.

Figure 3 presents the fault estimate f̂2,1 for
Actuator 1 in Agent 2 and Fig. 4 shows the fault estimate
f̂4,1 for Actuator 1 in Agent 4. In both figures, it is
possible to see that the estimates converge asymptotically
to the fault quickly even when the dynamics of the fault
changes (observe the behavior of the fault estimator after
2 s, 4 s, 6 s and 8 s). Finally, Figs. 5 and 6 show the
state estimation error for Agents 1–4. They all converge
asymptotically to zero. Note that state estimation error
increase in the presence of faults at times 2 s, 4 s, 6 s, and
8 s for Agents 2 and 4 that are the only agents with faults.
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Fig. 3. Fault estimation for Agent 2.

0 2 4 6 8 10 12

Time (s)

-2

-1

0

1

2

M
ag

ni
tu

d

0 2 4 6 8 10 12

Time (s)

-1

0

1

M
ag

ni
tu

d

Fig. 4. Fault estimation for Agent 4.

Nevertheless, the observer is robust enough to estimate
states even with multiple and simultaneous faults, as can
be seen in Figs. 5 and 6.

Other tests were performed with different initial
conditions of the observer to validate the convergence.
These initial conditions were chosen randomly to
illustrate the observer performance. Nonetheless, due
to space limitations, only one test is reported here.
As expected, the observers adequately converge to the
values of the states and faults. Note that all observers
converge regardless of the initial conditions. However,
the convergence time varies depending on the difference
between the initial state of the observer and the systems.
From a practical point of view, the tolerance of the
convergence time depends on the precision required in the
application. In any case, this convergence time could be
improved by choosing the initial conditions as close as
possible to the real states.

5. Conclusions

According to the results presented, the proposed
proportional-integral observer for leader-following
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Fig. 5. Estimation error for States 1 and 2.
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Fig. 6. Estimation error for States 3 and 4.

applications estimates fast and accurately the actuator
faults in multiple follower agents in the multi-agent
system. In this case, the learning rate in the fault
estimator Γ was chosen heuristically since there is no
established methodology to select an optimal value.
Furthermore, the graphs can be indistinctly directed
or undirected because the Laplacian matrix does not
need to be symmetric in Theorem 1, which means that
bidirectional or directed communication between agents
is supported.

This research is focused to the observer design and
does not integrate a control algorithm for the multi-agent
system. Future work will be focused on extending
the proposed method to nonlinear multi-agent systems.
Another path to follow will be to provide a method to
select a suitable learning rate for proportional-integral
observers. Note also that the information given by the
proportional-integral observer can be integrated into an
active fault-tolerant control scheme. This problem will be
addressed in a future contribution.
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de Chiapas, Mexico, in 2017. He is currently
pursuing his MSc degree at Tecnológico Na-
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