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The paper is devoted to the problem of mining graph data. The goal of this process is to discover possibly certain sequences
appearing in data. Both rough set flow graphs and fuzzy flow graphs are used to represent sequences of items originally
arranged in tables representing information systems. Information systems are considered in the Pawlak sense, as knowledge
representation systems. In the paper, an approach involving ant based clustering is proposed. We show that ant based
clustering can be used not only for building possible large groups of similar objects, but also to build larger structures (in
our case, sequences) of objects to obtain or preserve the desired properties.
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1. Introduction

Modeling behavior of systems, including biological,
technological, medical, economical, sociological, and
psychological ones, by means of diverse soft computing
tools is one of the popular tasks in computer science
research (Marwala, 2013; Tadeusiewicz, 2015). On the
basis of such models, a sequence (including temporal)
data mining becomes an important issue (Dong and
Pei, 2007; Kumar et al., 2011; Mitsa, 2010). There
is huge literature concerning this topic. In many
domains, sequences of objects (states, events or other
representations of phenomena) are collected. Discovering
valuable knowledge from such sets of sequences is
an important task in many applications, e.g., behavior
analysis, gene analysis, process mining.

In the presented approach, we are interested in
sequences that are ordered objects, particularly objects
recorded in consecutive time instants. Mining data to
discover interesting sequences is one of the common
tasks among machine learning problems. On the one
hand, most studies consider mining simple or complex
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sequences to find the so-called frequent episodes (Huang
and Chang, 2008; Mannila et al., 1997), i.e., collections
of events occurring frequently together. On the other
hand, unique sequences, i.e., sequences which clash, in
some sense (for example, according to a given criterion),
with other sequences in the set, are discovered (Pancerz
et al., 2012).

In the presented approach, we are interested in
possibly certain sequences appearing in data. Possibly
certain sequences are sequences with certainties as high
as possible. We assume that data are arranged in the
form of data tables representing information systems
in the Pawlak sense, i.e., a knowledge representation
systems (Pawlak, 1991). The certainties of sequences are
determined on the basis of flow graphs (either rough set
flow graphs or fuzzy flow graphs) build for information
systems. In general, an information flow distribution is a
kind of knowledge that can be helpful in solving different
problems appearing in data analysis, especially, if we
deal with ordered data, i.e., data constituting sequences
of objects. In the literature, different approaches based on
flow graphs were proposed. The fundamental one, called
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flow networks, was proposed by Ford and Fulkerson
(2010). In the paper, we are interested in two other
approaches introduced in the area of data mining, namely,
fuzzy flow graphs proposed by Mieszkowicz-Rolka and
Rolka (2006) and flow graphs (called here rough set flow
graphs) proposed by Pawlak (2005).

Our approach differs from the approaches to
discovering frequent episodes. Firstly, episodes are
considered as collections of events that occur relatively
close to each other in a given partial order (Mannila
et al., 1997). Among others, serial and parallel episodes
are considered. In our approach, we are interested in
ordered (not partially) sets of attribute values or linguistic
values describing objects (cases) of interest. Secondly,
our approach is focused on certainties of sequences, not
on their frequencies of occurrence. It is worth noting
that the idea implemented in our approach differs from
sequence clustering which can be called vertical clustering
(sequences are clustered to build groups of sequences).
Meanwhile, our clustering can be called horizontal
clustering. Shorter pieces of sequences (one-element
sequences at the beginning) are joined to build longer ones
(in order to get as high certainty as possible).

In real life data, the space for all possible sequences
is very large. Therefore, we propose to use the
ant-based clustering procedure that represents one of
the heuristic approaches in discovering possibly certain
sequences. Ant-based clustering is a biologically inspired
data clustering technique (see Deneubourg et al., 1991;
Handl et al., 2006; Lumer and Faieta, 1994). An important
contribution of our paper is to show that ant based
clustering can be used not only for building possible large
groups of similar objects but also to build larger structures
(in our case, sequences) of objects to obtain or preserve
the desired properties (Parpinelli et al., 2002; Pancerz
et al., 2015).

The remaining part of the paper is organized as
follows. Section 2 provides a thorough description
of the theoretical background for each aspect of the
proposed approach. Definitions of significant notions
are explained by simple examples. In Section 3, the
ant-based clustering procedure for discovering possibly
certain sequences (created over the sets of attribute values
or created over the sets of linguistic values associated with
linguistic variables defined for attributes in information
systems) is presented. Moreover, the description of results
of experiments on real life data is included in Section
3. Finally, Section 4 consists of some conclusions and
directions for further work.

2. Theoretical background

2.1. Information systems. In the approach presented
in this paper, information systems are understood as
Pawlak’s knowledge representation systems (Pawlak,

1991). In this sense, information systems are a
mathematical tool for describing some objects, cases,
phenomena we are intended to analyze, classify, group,
etc.

Definition 1. An information system IS is the quadruple

IS = (U,A, {Va}a∈A, finf),

where

• U is a nonempty, finite set of objects,

• A is a nonempty, finite set of attributes,

• {Va}a∈A is a family of nonempty sets of attribute
values,

• finf : A × U → ⋃
a∈A Va is an information function

such that finf(a, u) ∈ Va for each a ∈ A and u ∈ U .
Any information system can be presented as a data

table. The columns of the table are labeled with attributes
from the set A, the rows are labeled with objects from
the set U , and the entries of the table are the values of the
information function finf assigning to each attribute a ∈ A
and each object u ∈ U a value of a on u.

We can consider an information system IS =
(U,A, {Va}a∈A, finf) in which a set A of attributes is
ordered (particularly ordered in time). In this case, a set
A of attributes in IS is, in fact, a sequence of attributes,
i.e., A = 〈at : t = 1, 2, . . . ,m〉, where at is the attribute
determining values of objects from U at (time)point t.
Further, we will be interested in such information systems.

In the case of information systems with the ordered
sets of attributes, we can consider sequences of attribute
values.

Definition 2. Let IS = (U,A, {Va}a∈A, finf) be an
information system, where A = 〈at : t = 1, 2, . . . ,m〉.
s(j) = 〈vs1 , vs2 , . . . , vsk〉, k ≤ m, is a sequence over the
sets of attribute values in IS, i.e., vs1 ∈ Vaj , vs2 ∈ Vaj+1 ,
. . . , vsk ∈ Vaj+k−1

, where j ∈ {1, 2, . . . ,m−k}, starting
at point j. The cardinality card(s(j)) of a sequence s(j)
will be denoted by |s(j)|.
Remark 1. Let s(j) be a sequence over the sets of
attribute values in a given information system IS starting
at any point j. If |s(j)| = 1, then the sequence s(j) is
called a degenerated sequence.

Example 1. Consider a simple information system IS1 =
(U1, A1, {Va}a∈A1 , f1

inf), where U1 = {u1, u2, . . . , u10},
A1 = 〈a1, a2, a3〉, Va1 = {X,Y, Z}, Va2 = {W,Y, Z},
and Va3 = {X,Y }. This information system is presented
as a data table in Table 1. The sequences

• s1(1) = 〈Z,Z, Y 〉,
• s2(1) = 〈X,Y 〉,
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Table 1. Information system IS1 presented as a data table.
U1 A1 a1 a2 a3

u1 X W X
u2 Y W X
u3 X Y X
u4 Z Y Y
u5 X Y X
u6 X Y Y
u7 X Y Y
u8 Y Z X
u9 Y Z Y
u10 Z Z Y

are sequences over the sets of attribute values in IS1. One
can see that |s1(1)| = 3 and |s2(1)| = 2. �

There are two key types of attribute values in
information systems: numerical and symbolic. Numerical
values are expressed by numbers (e.g., real numbers,
integers, prime numbers, etc.). Symbolic values usually
describe qualitative concepts. Let R be a set of real
numbers. A numerical attribute in an information system
is an attribute whose set of values is a non-empty subset
of R. A symbolic attribute in an information system is
an attribute whose set of values includes symbolic values
only.

2.2. Fuzzification. Fuzzification is the process that
transforms the real value variables into linguistic variables
whose domains contain linguistic values which can be
described by fuzzy sets (their membership functions).

Now, we are interested in information systems with
numerical attributes only. Let IS = (U,A, {Va}a∈A, finf)
be an information system such that Va ⊆ R for each a ∈
A. For each attribute a ∈ A, we can define a linguistic
variable λa. With each linguistic variable λa, a set Lλa of
linguistic values is associated:

Lλa = {la1 , la2 , . . . , laka
}.

Each linguistic value lai , where i = 1, 2, . . . , ka, is
described by a membership function μlai

: R → [0, 1]. In
the literature, a lot of different membership functions have
been defined to describe linguistic values (e.g., triangular,
trapezoidal).

2.3. Fuzzified information systems. For an
information system with numerical attributes only,
we can create a fuzzified information system as a result
of the application of fuzzification processes for sets of
attribute values.

Definition 3. Let

• IS = (U,A, {Va}a∈A, finf) be an information
system with U = {u1, u2, . . . , un} and A =
{a1, a2, . . . , am}, such that Va ⊆ R for each a ∈ A,

• {Lλa}a∈A be the family of sets of linguistic values
associated with linguistic variables from the family
{λa}a∈A defined for attributes from A, where Lλa =
{la1 , la2 , . . . , laka

} for each a ∈ A.

A fuzzified information system F(IS) corresponding to IS,
is the quadruple

F(IS) = (UF ,Φ, {Vφ}φ∈Φ, f
F
inf),

where

• UF is a nonempty, finite set of objects such that each
u∗ ∈ UF corresponds exactly to one u ∈ U ,

• Φ = Φa1 ∪ Φa2 ∪ · · · ∪ Φam is the nonempty, finite
set of fuzzified attributes, such that

– Φa1 = {al
a1
1
1 , a

l
a1
2
1 , . . . , a

l
a1
ka1

1 },
– Φa2 = {al

a2
1
2 , a

l
a2
2
2 , . . . , a

l
a2
ka2
2 },

– . . . ,

– Φam = {al
am
1
m , a

lam
2
m , . . . , a

lam
kam
m },

• {Vφ}φ∈Φ is a family of sets of fuzzified attribute
values and Vφ = [0, 1] for each φ ∈ Φ,

• fF
inf : Φ × UF → ⋃

φ∈Φ Vφ is the information
function such that

– fF
inf(a

lai , u∗) ∈ Vφ for each al
a
i ∈ Φ and u∗ ∈

UF ,

– fF
inf(a

lai , u∗) = μlai
(finf(a, u)), where μlai

is a
membership function describing lai and u∗ ∈
UF corresponds to u ∈ U ,

for each a ∈ A and i = 1, 2, . . . , ka.

If some attributes of an information system
are symbolic (this situation is common for decision
attributes), then we can use the so-called binary
fuzzification for them.

If, for a given a ∈ A, the value set of a is a finite set
Va = {v1, v2, . . . , vka} of symbolic values, then

• Φa = {av1 , av2 , . . . , avka },

• fF
inf(a

vi , u∗) =

{
1, finf(a, u) = vi,

0, finf(a, u) 	= vi,

where u∗ ∈ UF corresponds to u ∈ U and i =
1, 2, . . . , ka. One can see that in this case we use, in fact,
the so-called fuzzy singleton membership function.

In the case of information systems being fuzzified,
in which the sets of attributes are ordered, we can define
sequences of linguistic values.
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Table 2. Information system IS2 presented as a data table.
U2 A2 a1 a2 a3

u1 0.2 3.1 4.7
u2 0.5 1.0 2.8
u3 1.8 4.4 2.0
u4 3.4 4.3 0.9
u5 3.5 2.5 0.4
u6 0.6 1.2 2.6
u7 0.7 0.9 3.4
u8 2.4 2.9 4.9
u9 0.8 0.8 2.0
u10 3.5 2.1 0.3

Definition 4. Let IS = (U,A, {Va}a∈A, finf) be an
information system, where A = 〈at : t = 1, 2, . . . ,m〉,
and let {Lλa}a∈A be a family of sets of linguistic
values associated with linguistic variables from the
family {λa}a∈A defined for attributes from A, where
Lλa = {la1 , la2 , . . . , laka

} for each a ∈ A. s(j) =
〈vs1 , vs2 , . . . , vsk〉, 1 < k ≤ m, is a sequence over
the sets of linguistic values associated with linguistic
variables defined for attributes from A, i.e., vs1 ∈ Lλaj ,
vs2 ∈ Lλaj+1 , . . . , vsk ∈ Lλaj+k−1 , where j ∈
{1, 2, . . . ,m− k}, starting at point j.

It is worth noting that, referring to Remark 1, we
can also consider degenerated sequences over the sets
of linguistic values associated with linguistic variables
defined for attributes in a given information system.

Example 2. Consider a simple information system IS2 =
(U2, A2, {Va}a∈A2, f2

inf), where U1 = {u1, u2, . . . , u10},
A2 = 〈a1, a2, a3〉. This information system is presented
as a data table in Table 2.

For each attribute a ∈ A2, we have defined a
linguistic variable λa with a set Lλa of linguistic values
Lλa = {low,medium, high}. An example of the fuzzified
information system F(IS2) = (UF ,Φ, {Vφ}φ∈Φ, f

F
inf)

corresponding to the information system IS2 is presented
as a data table in Table 3.

The following sequences:

• s1(1) = 〈low, low, medium〉,
• s2(2) = 〈low, high〉

are sequences over the sets of linguistic values associated
with linguistic variables defined for attributes from A2.

�

2.4. Triangular norms. For sets of real numbers
within the interval [0, 1], a special class of functions,
called triangular norms, is considered. Triangular norms
can be either t-norms or t-conorms (Klement et al., 2000).

Definition 5. A t-norm is a function T : [0, 1]× [0, 1]→
[0, 1] such that, for x, y, w, z ∈ [0, 1] the following
conditions are satisfied:

1. T (x, 1) = x, T (x, 0) = 0,

2. T (x, y) = T (y, x),

3. T (x, T (y, z)) = T (T (x, y), z),

4. if x ≤ y and w ≤ z, then T (x,w) ≤ T (y, z).

Definition 6. A t-conorm is a function S : [0, 1] ×
[0, 1] → [0, 1] such that, for x, y, w, z ∈ [0, 1] the
following conditions are satisfied:

1. S(x, 1) = 1, S(x, 0) = x,

2. S(x, y) = S(y, x),

3. S(x, S(y, z)) = S(S(x, y), z),

4. if x ≤ y and w ≤ z, then S(x,w) ≤ S(y, z).

In the literature, numerous different triangular norms
have been defined. The most popular ones are as follows:

• t-norms:

– Zadeh’s t-norm,

TZ(x, y) = min(x, y),

– algebraic t-norm,

TA(x, y) = xy,

– Lukasiewicz’s t-norm,

TL(x, y) = max(x+ y − 1, 0),

– Einstein’s t-norm,

TE(x, y) =
xy

2− (x + y − xy)
,

• t-conorms:

– Zadeh’s t-conorm,

SZ(x, y) = max(x, y),

– probabilistic t-conorm,

SP (x, y) = x+ y − xy,

– Lukasiewicz’s t-conorm,

SL(x, y) = min(x+ y, 1),

– Einstein’s t-conorm,

SE(x, y) =
x+ y

1 + xy
,

where x, y ∈ [0, 1].
A triangular norm (either t-norm or t-conorm), will

be generally denoted by F (x, y), where x, y ∈ [0, 1].
Moreover, we will use the notation F (x1, x2, . . . , xr) for
F (x1, F (x2, . . . , F (xr−1, xr)), where x1, x2, . . . , xr ∈
[0, 1].
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Table 3. Fuzzified information system F(IS2) corresponding to the information system IS2 presented as a data table.

UF Φ alow
1 amedium

1 ahigh
1 alow

2 amedium
2 ahigh

2 alow
3 amedium

3 ahigh
3

u∗
1 1.0000 0.0000 0.0000 0.0000 0.6000 0.5500 0.0000 0.0000 1.0000

u∗
2 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.1000 0.8000 0.4000

u∗
3 0.6000 0.5333 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667 0.0000

u∗
4 0.0000 0.4000 0.7000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000

u∗
5 0.0000 0.3333 0.7500 0.2500 1.0000 0.2500 1.0000 0.0000 0.0000

u∗
6 1.0000 0.0000 0.0000 0.9000 0.1333 0.0000 0.2000 0.9333 0.3000

u∗
7 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.4000 0.7000

u∗
8 0.3000 0.9333 0.2000 0.0500 0.7333 0.4500 0.0000 0.0000 1.0000

u∗
9 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.5000 0.6667 0.0000

u∗
10 0.0000 0.3333 0.7500 0.4500 0.7333 0.0500 1.0000 0.0000 0.0000

2.5. Rough set flow graphs. Rough set flow graphs
were defined by Pawlak (2005) as a tool for reasoning
from data.

Definition 7. Let IS = (U,A, {Va}a∈A, finf) be an
information system with U = {u1, u2, . . . , un} and A =
{a1, a2, . . . , am}, such that Va = {v1a, v2a, . . . , vka

a } for
each a ∈ A. A rough set flow graph corresponding to IS
is the quintuple

RSFG(IS) = (N,B, cer, str, cov),

where

• N = Na1 ∪ Na2 ∪ · · · ∪ Nam is a set of nodes
such that for each a ∈ {a1, a2, . . . , am}: Na =

{âv1
a , âv

2
a , . . . , âv

ka
a },

• B ⊆ N × N is a set of multi-labeled directed
branches such that for any (nx, ny) ∈ B, nx ∈
Nai−1 and ny ∈ Nai and i ∈ {2, 3, . . . ,m},

• cer : B → [0, 1] is a certainty function labeling
branches such that

cer(â
vx
a−1

i−1 , â
vy
a

i )

=
card({u∈U :finf(ai−1,u)=vx

ai−1
∧finf(ai,u)=vy

ai
})

card({u∈U :ai−1(u)=vx
ai−1

}) ,

for any (â
vx
a−1

i−1 , â
vy
a

i ) ∈ B,

• str : B → [0, 1] is a strength function labeling
branches such that

str(â
vx
a−1

i−1 , â
vy
a

i )

=
card({u∈U :finf(ai−1,u)=vx

ai−1
∧finf(ai,u)=vy

ai
})

card(U) ,

for any (â
vx
a−1

i−1 , â
vy
a

i ) ∈ B,

• cov : B → [0, 1] is a covering function labeling
branches such that

cov(â
vx
a−1

i−1 , â
vy
a

i )

=
card({u∈U :finf(ai−1,u)=vx

ai−1
∧finf(ai,u)=vy

ai
})

card({u∈U :ai(u)=vy
ai

}) ,

for any (â
vx
a−1

i−1 , â
vy
a

i ) ∈ B.

One can see that we can distinguish particular layers
in the set N of nodes of RSFG(IS). The layer Na,
where a ∈ {a1, a2, . . . , am}, corresponds exactly to one
attribute a ∈ A. Each node in the layer Na corresponds
exactly to one value from the set Va of values of a.

Example 3. Let us return to an information system
IS1 considered in Example 1. The rough set flow graph
corresponding to the information system IS1 visualized
using the Graphviz tool (Ellson et al., 2004) is shown in
Fig. 1. �

On the basis of a rough set flow graph RSFG(IS)
corresponding to a given information system IS, we can
calculate certainties of non-degenerated sequences over
the sets of attribute values in IS.

Definition 8. Let

• RSFG(IS) = (N,B, cer, str, cov) be a rough
set flow graph corresponding to an information
system IS = (U,A, {Va}a∈A, finf), where A =
〈at : t = 1, 2, . . . ,m〉,
• s(j) = 〈vs1 , vs2 , . . . , vsk〉, be a sequence starting at

point j, where j < m, over the sets of attribute values
in IS, |s(j)| > 1.

The certainty cer(s(j)) of the sequence s(j) is defined as

cer(s(j))

= F (cer(â
vs1
j , â

vs2
j+1), cer(â

vs2
j+1, â

vs3
j+2), . . . ,

cer(â
vsk−1

j+k−2, â
vsk
j+k−1)),

where F is a given triangular norm (see Section 2.4).
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Fig. 1. Rough set flow graph corresponding to the information system IS1.

Example 4. For the sequences considered in Example 1,
one can see that

• cer(âZ1 , â
Z
2 ) = 0.5,

• cer(âZ2 , â
Y
3 ) = 0.6667,

• cer(âX1 , âY2 ) = 0.8.

Hence, we obtain the certainties of the considered
sequences as collected in Table 4. �

2.6. Fuzzy flow graphs. Fuzzy flow graphs were
proposed by Mieszkowicz-Rolka and Rolka (2006) to
allow representation of information/decision tables with
fuzzy attributes.

Definition 9. Let F(IS) = (UF ,Φ, {Vφ}φ∈Φ, f
F
inf)

be a fuzzified information system corresponding to an
information system IS = (U,A, {Va}a∈A, finf) with U =
{u1, u2, . . . , un} and A = {a1, a2, . . . , am}. A fuzzy flow
graph corresponding to F(IS) is the triple

FFG(F(IS)) = (N,B, cer),

where

• N = Na1 ∪ Na2 ∪ · · · ∪ Nam is a set of nodes
such that for each a ∈ {a1, a2, . . . , am}: Na =
{âla1 , âla2 , . . . , âlaka },
• B ⊆ N × N is a set of labeled directed branches

such that for any (φ̂x, φ̂y) ∈ B, φ̂x ∈ Nai−1 and

φ̂y ∈ Nai and i ∈ {2, 3, . . . ,m},

• cer : B → [0, 1] is a certainty function labeling
branches such that:

cer(âl
aj
x

j , â
l
ak
y

k )

=
1

card(U)

∑

u∗∈UF
finf(a

l
aj
x

j , u∗)finf(a
l
ak
y

k , u∗)

for any (âl
aj
x

j , â
l
ak
y

k ) ∈ B.

One can see that we can distinguish particular layers
in the set N of nodes of FFG(F(IS)). The layer
Na, where a ∈ {a1, a2, . . . , am}, corresponds exactly
to one attribute a ∈ A. Each node in the layer Na

corresponds exactly to one linguistic value from the set
Lλa of linguistic values assigned to a linguistic variable
λa defined for the attribute a. It is worth noting that,
in the numerator of the fraction defining the value of the
certainty function, the so-called fuzzy cardinality (power)
is calculated.

Example 5. For the information system IS2 and the
fuzzified information system F(textIS2) considered in
Example 2 the fuzzy flow graph corresponding to the
information system IS2 visualized using the Graphviz tool
(Ellson et al., 2004) is shown in Fig. 2. �

On the basis of a fuzzy flow graph FFG(IS)
corresponding to a given information system IS, we can
calculate certainties of non-degenerated sequences over
the sets of linguistic values associated with linguistic
variables defined for attributes in IS.
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Fig. 2. Fuzzy flow graph corresponding to the information system IS2.

Definition 10. Let

• FFG(IS) = (N,B, cer) be a fuzzy flow graph
corresponding to a fuzzified information system
F(IS) = (UF ,Φ, {Vφ}φ∈Φ, f

F
inf) corresponding to

an information system IS = (U,A, {Va}a∈A, finf),
where A = 〈at : t = 1, 2, . . . ,m〉,

• s(j) = 〈vs1 , vs2 , . . . , vsk〉, be a sequence starting at
point j, where j < m, over the sets of linguistic
values associated with linguistic variables defined for
attributes from A2, where |s(j)| > 1.

The certainty cer(s(j)) of the sequence s(j) is defined as

cer(s(j))

= F ((cer(â
vs1
j , â

vs2
j+1), cer(â

vs2
j+1, â

vs3
j+2), . . . ,

cer(â
vsk−1

j+k−2, â
vsk
j+k−1)),

where F is a given triangular norm (see Section 2.4).

Example 6. For the sequences considered in Example 2,
one can see that

• cer(âlow
1 , âlow

2 ) = 0.3915,

• cer(âlow
2 , âmedium

3 ) = 0.2707,

• cer(âlow
2 , âhigh

3 ) = 0.1420.

Hence, we obtain the certainties of the considered
sequences as collected in Table 5. �

3. Ant-based clustering for discovering
possibly certain sequences

Ant-based clustering is a biologically inspired data
clustering technique (Deneubourg et al., 1991; Handl

et al., 2006; Lumer and Faieta, 1994). It belongs to the
family of heuristic algorithms used in solving problems
with large spaces of possible solutions.

The classic ant-based clustering concerns spaces of
cases described by sets of features. In this case, distance
measures are commonly used to determine similarities
of cases. However, in research, the ant-based approach
was also used in clustering other kinds of phenomena,
for example, descriptors of decision rules (Parpinelli
et al., 2002; Pancerz et al., 2015). In this section,
we propose to use the ant-based clustering procedure
in discovering possibly certain sequences created over
the sets of attribute values or created over the sets
of linguistic values associated with linguistic variables
defined for attributes in information systems. The
application of a heuristic algorithm (in our proposition,
ant-based clustering) is needed since there is a large space
of all possible sequences to search.

Let IS = (U,A, {Va}a∈A, finf), where A =
〈at : t = 1, 2, . . . ,m〉, be an information system. The
number of all possible sequences created over the sets of
attribute values can be estimated by

(1 +m)m

2

m∏

t=1

|Vat |,

where |V | denotes the cardinality of the set V .
Let IS = (U,A, {Va}a∈A, finf), where A =

〈at : t = 1, 2, . . . ,m〉, be an information system and
{Lλa}a∈A be the family of sets of linguistic values
associated with linguistic variables from the family
{λa}a∈A defined for attributes from A, where Lλa =
{la1 , la2 , . . . , laka

} for each a ∈ A. The number of all
possible sequences created over the sets of linguistic
values associated with linguistic variables defined for
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Table 4. Certainties of the sequences considered in Example 1.
Triangular norm s1(1) = 〈Z,Z, Y 〉 s2(1) = 〈X,Y 〉
Zadeh’s t-norm 0.5000 0.8000
algebraic t-norm 0.3334 0.8000

Lukasiewicz’s t-norm 0.1667 0.8000
Einstein’s t-norm 0.2857 0.8000

Zadeh’s t-conorm 0.6667 0.8000
probabilistic t-conorm 0.8334 0.8000

Lukasiewicz’s t-conorm 1.0000 0.8000
Einstein’s t-conorm 0.8750 0.8000

Table 5. Certainties of the sequences considered in Example 2.
Triangular norm s1(1) = 〈low, low,medium〉 s2(2) = 〈low, high〉
Zadeh’s t-norm 0.2707 0.1420
algebraic t-norm 0.1060 0.1420

Lukasiewicz’s t-norm 0.0000 0.1420
Einstein’s t-norm 0.0734 0.1420

Zadeh’s t-conorm 0.3915 0.1420
probabilistic t-conorm 0.5562 0.1420

Lukasiewicz’s t-conorm 0.6622 0.1420
Einstein’s t-conorm 0.5987 0.1420

attributes can be estimated by

(1 +m)m

2

m∏

t=1

|kat |.

One can see that the search of the entire space
of sequences leads to the exponential time complexity
with respect to the number m of attributes in a given
information system.

Let FG(IS) = (N,B, cer) be a flow graph
that is either a rough set flow graph RSFG(IS) =
(N,B, cer, str, cov) without a strength function ‘str’
and a covering function ‘cov’ or a fuzzy flow graph
FFG(F(IS)) = (N,B, cer). The main idea of the
ant-based clustering procedure is to concatenate two
adjacent sequences to make a new longer sequence. The
probability of concatenation depends on the certainty of
the new sequence.

Definition 11. Let

• IS = (U,A, {Va}a∈A, finf), in which A =
〈at : t = 1, 2, . . . ,m〉 is an information system,

• s(j) be a sequence starting at point j, where j ≤ m,
over the sets of attribute values in IS,

• s′(j′) be a sequence starting at point j′, where j′ ≤
m, over the sets of attribute values in IS.

The sequences s(j) and s′(j′) are adjacent if and only if
either j + |s(j)| = j′ or j′ + |s′(j′)| = j.

A formal description of the algorithm for ant-based
clustering for discovering possibly certain sequences is
presented in Algorithm 3. Possibly certain sequences
are sequences with certainties as high as possible. The
algorithm has polynomial time complexity.

In Algorithm 3, the following functions are used:

• selectRandomlySequence, the function selecting
randomly one sequence from the set of sequences,

• selectRandomlyNumberFromUnitInterval,
the function selecting randomly one real number
from the unit interval [0.0, 1.0],

• concatenate, the function concatenating two
adjacent sequences to make a new longer sequence.

• certainty, the function calculating the certainty of
the given sequence (see Definitions 8 and 10).

Moreover, each ant object stores information on the
carried sequence (carriedSequence) by the ant and
each sequence object stores information on whether the
sequence is carried (isCarried) by the ant.

The set of possibly certain sequences discovered by
Algorithm 3 can be filtered. We can, for example,

• remove degenerated sequences,
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Algorithm 1. Ant-based clustering for discovering possibly certain sequences.

Require: FG(IS) = (N,B, cer): the flow graph, n: the number of iterations performed for the clustering process, ants:
the set of ants

1: sequences← ∅;
2: for each node nx ∈ N do
3: sequence← {x};
4: sequence.isCarried← false;
5: sequences← sequences ∪ {sequence};
6: end for
7: for each ant ∈ ants do
8: sequence← selectRandomlySequence(sequences);
9: if sequence.isCarried = FALSE then

10: sequence.isCarried← TRUE;
11: ant.carriedSequence← sequence;
12: else
13: ant.carriedSequence← NULL;
14: end if
15: end for
16: for k ← 1 . . . n do
17: for each ant ∈ ants do
18: if ant.carriedSequence = NULL then
19: sequence← selectRandomlySequence(sequences);
20: if sequence.isCarried = FALSE then
21: sequence.isCarried← TRUE;
22: ant.carriedSequence← sequence;
23: end if
24: else
25: sequence← selectRandomlySequence(sequences);
26: if sequence.isCarried = FALSE then
27: if areAdjacent(sequence, ant.carriedSequence) = TRUE then
28: newSequence← concatenate(sequence, ant.carriedSequence);
29: if selectRandomlyNumberFromUnitInterval ≤ certainty(newSequence) then
30: newSequence.isCarried← FALSE;
31: sequences← sequences ∪ {newSequence};
32: ant.carriedSequence← NULL;
33: end if
34: end if
35: end if
36: end if
37: end for
38: end for

• remove sequences being subsequences of other
sequences,

• remove sequences with certainties below a given
threshold,

• remove sequences of the length below a given
threshold.

It is worth noting that, in the case of rough set flow
graphs, we can also discover possibly strong sequences
replacing the certainties of sequences by the strengths of
sequences.

We have tested the presented approach on MMPI
data consisting of the so-called profiles of patients
screened with the MMPI (Minnesota Multiphasic
Personality Inventory) standardized psychometric test
(Nichols, 2011). The profile is composed of an ordered
values (generally, between 0 and 120) of thirteen scales.
The data set used in experiments was collected for
research by in a psychological outpatient clinic (Duch
et al., 1999). It includes profiles of 1710 women. For each
scale, a set of ten linguistic values was used to fuzzify
its numerical values. The boundary linguistic values
were described by the trapezoidal shaped membership
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Table 6. Results of experiments for the algebraic t-norm.
Fold ID No. of sequences found Avg. actual certainty Avg. difference Std dev.

1 46 0.0395 0.0090 0.0099
2 44 0.0232 0.0041 0.0044
3 42 0.0260 0.0048 0.0050
4 42 0.0331 0.0064 0.0075
5 48 0.0275 0.0056 0.0054
6 47 0.0247 0.0068 0.0071
7 37 0.0215 0.0050 0.0067
8 46 0.0372 0.0076 0.0077
9 45 0.0287 0.0084 0.0089
10 42 0.0408 0.0055 0.0055

Table 7. Results of experiments for the probabilistic t-conorm.
Fold ID No. of sequences found Avg. actual certainty Avg. difference Std dev.

1 54 0.2868 0.0204 0.0166
2 63 0.2950 0.0331 0.0202
3 55 0.2433 0.0063 0.0059
4 61 0.3187 0.0158 0.0121
5 54 0.3317 0.0244 0.0134
6 54 0.2264 0.0188 0.0133
7 68 0.2493 0.0104 0.0086
8 56 0.3132 0.0110 0.0080
9 63 0.3193 0.0117 0.0089
10 62 0.3969 0.0092 0.0065

functions whereas the remaining ones by the triangular
shaped membership functions. The experiments were
performed using the ten-fold cross validation approach.
In each iteration, nine parts were used in the training
stage to create a fuzzy flow graph and to generate possibly
certain sequences of linguistic values using the ant-based
clustering. One part was used to determine actual
certainties of the sequences found in the training stage.
Next, we calculated the average value of actual certainties
of the sequences, the average value and the standard
deviation for differences between the actual certainties of
the sequences and the predicted certainties (determined
in the training step) of the sequences. Moreover, several
triangular norms were used to determine certainties
of sequences. In experiments, we used a tool called
CLAPSS (Classification and Prediction Software System)
(Pancerz, 2015), where the proposed approach has been
implemented.

The results of experiments are collected in Tables 6
and 7 for the algebraic t-norm and the probabilistic
t-conorm, respectively. In each fold, several dozen
sequences were found by the ant-based clustering. One

of the possibly certain sequences found has form

L = AV G3 → F = AV G3 → K = AV G2 →
1.Hp = AV G3 → 2.D = AV G1 →
3.Hy = HIGH → 4.P s = AV G3 →
5.Mk = AV G2 → 6.Pa = AV G3,

where L, F,K, . . . are scales (Nichols, 2011) and
AV G3, AV G2, . . . are linguistic values used in the
fuzzification process (Pancerz et al., 2018). The
average aggregated (using triangular norms) certainties
for sequences found were compared with those predicted
on the basis of a flow graph. On the basis of differences,
the errors of prediction were determined.

In general, the experiments showed that the
prediction error of certainties of sequences found is about
10%. Application of t-norms for determining certainties
of sequences may be treated as some pessimistic
approach, whereas application of t-conorms may be
identified as some optimistic approach.

4. Discussion and conclusions

Flow graphs (both those based on rough set theory and
those based on fuzzy set theory) are very useful tool
for modeling sequence data. Their potential in machine
learning seems not to be fully exploited (one can see
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a relatively low number of publications in this area).
Therefore, we have proposed an approach to sequence
data mining based on fuzzy flow graphs. Flow graphs have
become a base model of data flow. On the basis of this
model, searching for possibly certain sequences appearing
in data has been performed. Owing to the large space of all
possible sequences, we have proposed to use an ant-based
clustering procedure that represents one of the heuristic
approaches.

Experiments demonstrate that the proposed approach
is promising in solving sequence data mining problems.
It can be used in various problems concerning prediction
of sequence appearance in the future. The certainty of
such events is determined not on the basis of training
sequences (ordered sets of elements) treated as a whole,
but on the basis of aggregated certainties of coexistences
of consecutive adjacent elements in sequences. We can
say that local coexistences are taken into consideration.
The knowledge of certainties of coexistences is extracted
on the basis of flow graphs modeling sequence data.
This is a new idea, different from those based on global
coexistences of all elements of sequences (discovering
frequent item sets is an example). Due to the heuristic
character of the proposed approach, large spaces of
sequences can be mined. Because of application of
the ant-based clustering, the proposed approach requires
experimental selection of parameters (the number of ants,
the number of iterations, etc.) as well as functions
(dropping down and picking up functions, t-norms and
t-conorms). In some cases, this can be done using a
trial-and-error method. This is the main disadvantage of
the proposed approach.

Our further research will be focused mainly on two
directions. Firstly, in the case of fuzzy flow graphs, we
can test a variety of shapes of membership functions used
to model linguistic values as well as a variety of triangular
norms used to determine certainties of sequences found.
Secondly, a challenging thing is to use approaches in
which the domain knowledge is taken into consideration
in graph mining (Bazan et al., 2013; Pancerz, 2016).
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