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Two approximate representations are proposed for distributed parameter systems described by two linear hyperbolic PDEs
with two time- and space-dependent state variables and two collocated boundary inputs. Using the method of lines with
the backward difference scheme, the original PDEs are transformed into a set of ODEs and expressed in the form of a
finite number of dynamical subsystems (sections). Each section of the approximation model is described by state-space
equations with matrix-valued state, input and output operators, or, equivalently, by a rational transfer function matrix. The
cascade interconnection of a number of sections results in the overall approximation model expressed in finite-dimensional
state-space or rational transfer function domains, respectively. The discussion is illustrated with a practical example of
a parallel-flow double-pipe heat exchanger. Its steady-state, frequency and impulse responses obtained from the original
infinite-dimensional representation are compared with those resulting from its approximate models of different orders. The
results show better approximation quality for the “crossover” input–output channels where the in-domain effects prevail as
compared with the “straightforward” channels, where the time-delay phenomena are dominating.
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1. Introduction

The analysis of even linear mathematical models of
distributed parameter systems (DPSs) can be much more
challenging, due to their mathematical complexity, than
in the case of lumped parameter systems (LPSs), where
the spatial effects are neglected or averaged. Therefore,
in practical applications, the original infinite-dimensional
models of DPSs are often replaced by their various
finite-dimensional approximations. A typical example
is the indirect controller design (also known as early
lumping) procedure, where the first step towards the
controller design is the finite-dimensional approximation
of the original infinite-dimensional model of the system
being controlled. Despite some drawbacks, this approach
has the advantage of making available a wide range of
tools intended for controller design for finite-dimensional
systems, assuming that the controller designed using the
finite-dimensional approximation has the desired effect on
the original system (Ray, 1981; Curtain and Morris, 2009;
Li and Qi, 2010; Jones and Kerrigan, 2010; Levine, 2011;

Rauh et al., 2016).

Depending on the type of the mathematical
representation used to describe the approximation
model, different control schemes can be subsequently
applied. For example, if a transfer function model is
available, it is possible to design a controller using
well-known frequency-domain techniques. On the
other hand, state-space models allow using various
state feedback algorithms, such as, e.g., linear-quadratic
(LQR) or linear-quadratic-Gaussian (LQG) control
schemes. Finally, for both kinds of the above-mentioned
representations, various model predictive control (MPC)
strategies can be used.

In the current paper we consider approximate
state-space and transfer function models for a certain
class of DPSs, the so-called 2×2 hyperbolic systems of
balance laws. This class includes phenomena such as
those occurring in pipelines, oil wells, irrigation channels,
heat exchangers and traffic flow systems, and has recently
been intensively studied in the literature (Bastin and
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Coron, 2016; Bartecki, 2016; Deutscher, 2017; Anfinsen
and Aamo, 2019; Kitsos et al., 2019; Coron et al., 2019),
to mention only some recent works.

As shown in some previous works on DPSs, their
state-space representation can be made similar to the
classical one used for the finite-dimensional systems.
However, instead of the state matrix A we have
here an unbounded differential state operator acting on
a suitable function space. The role of the input and
output matrices B and C is played by some control
and observation operators, respectively, which are often
also unbounded (see, e.g., Curtain and Zwart, 1995;
Emirsajłow and Townley, 2000; Arov et al., 2012;
Bartecki, 2015a). Also the well-known definition of the
transfer function, as the input–output mapping defined
in the Laplace transform domain, remains valid for
the considered infinite-dimensional case. However, the
transfer functions are usually irrational here and contain
transcendental and/or fractional functions of the complex
variable s. It causes some features which do not
appear in the finite-dimensional case, such as an infinite
number of poles and/or zeros, and, consequently, infinite
“oscillations” in their frequency responses (see, e.g.,
Callier and Winkin, 1993; Zwart, 2004; Curtain and
Morris, 2009; Bartecki, 2013b).

Therefore, a lot of attention has been paid so
far to the approximation of various DPS models, also
of those described by hyperbolic PDEs resulting from
the balance laws of continuum physics. However, the
resulting approximations are usually given in the form
of numerical models obtained from various conservative
finite difference or finite volume schemes (Godlewski
and Raviart, 1996; Cockburn et al., 1998; Ahmad and
Berzins, 2001; LeVeque, 2002; Shakeri and Dehghan,
2008; Gugat et al., 2018), which are not very convenient
for control system design. To the best of the author’s
knowledge, no, or very little, previous research has
regarded approximation models in the form of state-space
or transfer function models for 2×2 hyperbolic systems.
One of the few is the work of Litrico and Fromion
(2009b) where rational transfer function models are used
to obtain finite-dimensional approximations for linearized
open channel flow equations.

To further reduce the gap, in this paper we
propose approximate finite-dimensional state-space and
rational transfer function models for the given 2×2
linear hyperbolic systems with a specific, collocated
configuration of boundary inputs. It can be seen as
a significant extension and continuation of the idea
presented for the first time by Bartecki (2019), who
proposed an approximate state-space model. The
current paper is organized as follows. Section 2
recalls the mathematical model of the considered DPSs
in the form of weakly coupled linear hyperbolic
PDEs with boundary conditions representing collocated

boundary inputs signals. The models in the form of
infinite-dimensional state-space equations as well as of
irrational transfer functions are recalled, together with
the constant steady-state analysis. The relationship
of these models to the frequency- and time-domain
responses of the system is also reminded here. Section 3
introduces the approximation model based on the method
of lines (MOL) with the backward difference scheme
applied to the spatial domain, giving as a result the
high finite-dimensional model in the form of ordinary
differential equations (ODEs). Next, the state-space
and transfer function representations resulting from the
MOL approximation model are derived and their stability
analysis is performed. In Section 4 the parallel-flow
double-pipe heat exchanger is considered as a typical
example of the 2×2 hyperbolic systems with collocated
boundary inputs. Its finite-dimensional state-space
and transfer function representations are considered for
different numbers of spatial sections. The constant
steady-state, frequency- and time-domain responses of
the original PDE model of the exchanger are compared
with those obtained from its approximations of different
orders. The model approximation quality is assessed,
both by the visual comparison of their frequency-
and time-domain responses and the frequency-domain
analysis of approximation error magnitudes. The article
concludes with Section 5 containing a short summary and
directions for further research.

2. 2×2 Linear hyperbolic systems

2.1. PDE representation. We consider dynamical
systems which can be mathematically described, usually
after some simplifying assumptions, by the following
system of the two weakly coupled linear PDEs of
hyperbolic type (Bastin and Coron, 2016; Bartecki, 2016;
Anfinsen and Aamo, 2018; Kitsos et al., 2019):

∂x (l, t)

∂t
+ Λ

∂x (l, t)

∂l
= Kx (l, t) , (1)

where

x(l, t) =
[
x1(l, t) x2(l, t)

]T
: Ω×Θ → R

2 (2)

is a vector function representing the spatiotemporal
distribution of the two state variables, with Ω = [0, L]
being the domain of the one-dimensional spatial variable
l and Θ = [0,+∞), the domain of the time variable t.

Furthermore, Λ and K in (1) are uniform and
time-invariant (i.e., independent of l and t, respectively)
matrices of coefficients,

Λ =

[
λ1 0

0 λ2

]

, K =

[
k11 k12

k21 k22

]

, (3)

with k11, k12, k21, k22 ∈ R representing the so-called
source terms (i.e., the in-domain coupling coefficients)
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and λ1, λ2 ∈ R
+ being the characteristic speeds of the

system, usually representing the mass or energy transport
rates. In general, λ1 and λ2 can be of any sign, but we
consider here the specific case of the two mass or energy
flows going in the same direction, i.e., from l = 0 to
l = L.

In order to obtain a unique solution of (1), the
appropriate initial and boundary conditions need to be
specified. The initial conditions describe the spatial
profiles of both state variables at t = 0,

x1(l, 0) = x10(l), x2(l, 0) = x20(l), (4)

where x10(l), x20(l) : Ω → R are functions representing
these initial profiles.

Furthermore, the boundary conditions represent the
requirements to be met by the solution at the boundary
points of Ω, i.e., at l = 0 or/and at l = L. In general,
they can express the boundary reflections and feedbacks
(i.e., the interconnections between the state variables at
l = 0 and/or at l = L), as well as they can take into
account the boundary inputs to the system. The latter case
is particularly important in the control problems when the
manipulated control inputs are physically located at the
system boundaries.

Therefore, in this paper we assume that the boundary
conditions are expressed directly by the inhomogeneities
introduced by the two external inputs, without any
feedback or reflection. Since we take into account the case
of λ1 > 0 and λ2 > 0 in (3), both considered boundary
conditions should be imposed at l = 0,

x1(0, t) = u1(t), x2(0, t) = u2(t), (5)

with u1(t), u2(t) : Θ → R being the Laplace
transformable input signals which can include both
controls and external disturbances (see Bartecki, 2013b).

In addition to the above-mentioned boundary inputs
to the system, we also introduce two output signals, given
as pointwise “observations” or “measurements” of the
state variables performed usually at the end of the spatial
domain,

y1(t) = x1(L, t), y2(t) = x2(L, t), (6)

which may be considered anti-collocated to the boundary
inputs (5).

We omit here the detailed analysis concerned with
the existence and well-posedness of the solutions of the
system (1)–(6) since it has been already done, e.g., by
Litrico and Fromion (2009a) based on the important
results presented by Russell (1978) as well as Curtain and
Zwart (1995). These issues have been also thoroughly
analyzed for more general classes of hyperbolic systems
by Bastin and Coron (2016). As shown there, the
exponential convergence of the solution of the Cauchy

problem (1)–(4) to zero in the L2 norm is guaranteed for
the matrix K+KT in (3) being negative-semidefinite, i.e.,
for

ξT (K +KT )ξ ≤ 0, ∀ξ ∈ R
2. (7)

It can be understood that the associated physical
system has no internal energy sources and only dissipates
energy, which is satisfied by many chemical and thermal
engineering systems like tubular reactors and heat
exchangers.

2.2. State-space representation. The classical state
space representation of finite-dimensional linear systems
usually includes, except the matrix state operator A, also
the input and output operators represented by the matrices
B and C, and sometimes also the feedthrough matrix D.
For the considered case of infinite-dimensional systems,
various abstract state space representations can be used
which have been discussed, e.g., by Curtain and Zwart
(1995), Emirsajłow and Townley (2000), Grabowski
and Callier (2001) or Bartecki (2015a). One of these
representations, the so-called additive form of the state
equations, is based on the same general concept as the
one used for the finite-dimensional systems, and for this
reason it will be recalled below.

Result 1. The state and output equations for the system
introduced in Section 2.1 can be expressed as follows:

dx(t)

dt
= Ax(t) +Bu(t), t ≥ 0, x(0) = x0, (8)

y(t) = Cx(t), (9)

where x(t) represents the state variables in (2) defined on
the following Hilbert function space X

x(t)=
[
x1(t) x2(t)

]T∈ X =L2(Ω,R)⊕ L2(Ω,R) ,
(10)

u(t) is the vector of boundary input signals in (5)

u(t) =
[
u1(t) u2(t)

]T ∈ R
2, (11)

y(t) is the vector of output signals in (6)

y(t) =
[
y1(t) y2(t)

]T ∈ R
2, (12)

A : X ⊃ D(A) → X is the differential state operator
based on (1) and given by

Ah = −Λ
dh

dl
+Kh, h = [h1, h2]

T ∈ D(A), (13)

with the following domain:

D(A)=
{ {h∈H1(Ω,R)⊕H1(Ω,R) }∣∣

h1(0)=h2(0)=0
}
, (14)
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where H1(Ω,R) is the Sobolev space of functions with
first distributional derivatives lying in L2(Ω,R).

B in (8) represents an unbounded boundary input
operator which for the considered collocated input con-
figuration (5) takes the following form:

B = diag
(
λ1δ (l) , λ2δ (l)

)
, (15)

where δ (l), l ∈ Ω, denotes the Dirac delta distribution.
Finally, C in (9) is the following output operator

Cx (t)=

⎡

⎢
⎢
⎣

∫ L

0

δ(μ−L)x1(μ, t)dμ
∫ L

0

δ(μ−L)x2(μ, t)dμ

⎤

⎥
⎥
⎦=

[
x1(L, t)
x2(L, t)

]
, (16)

which results from (6) and is based on the so-called sifting
property of the Dirac delta distribution.

Proof. See the work of Bartecki (2015a). �

Remark 1. The most important consequence of the
form of the boundary input operator (15) is that the
state equation (8) should be studied in an extrapolation
space X−1, which is a completion of X in (10) with
an A-resolvent-induced norm (Engel and Nagel, 2000;
Tucsnak and Weiss, 2009). Therefore, the presented
form of the state-space equations, although at first glance
seems to be attractive because it resembles a classic
finite-dimensional concept, may not be very convenient
for control engineers.

2.3. Transfer function representation. In contrast to
the lumped parameter systems which are described by
the rational transfer functions, the transfer functions of
distributed parameter systems are irrational (e.g., Zwart,
2004; Curtain and Morris, 2009). Transfer function
analysis of the considered hyperbolic systems of balance
laws was the subject of some of the author’s papers
(see, e.g., Bartecki, 2013a), as well as his monograph
(Bartecki, 2016). Therefore, the results relating to the
irrational transfer function representation of the 2×2
hyperbolic systems with collocated boundary inputs are
recalled below.

Result 2. Assuming that the observation (measurement)
of both state variables x1 and x2 in (2) can be made at any
spatial point l ∈ Ω, we introduce the following distributed
transfer function matrix G(l, s):

G(l, s) =

[
g11(l, s) g12(l, s)

g21(l, s) g22(l, s)

]

, (17)

where

g11(l, s) =
x1(l, s)

u1(s)
, g12(l, s) =

x1(l, s)

u2(s)
, (18)

g21(l, s) =
x2(l, s)

u1(s)
, g22(l, s) =

x2(l, s)

u2(s)
, (19)

for zero initial conditions (4), with x1(l, s), x2(l, s) and
u1(s), u2(s) being the Laplace transforms in time of the
state (2) and the input (5) variables, respectively1.

The expressions for the elements of the transfer func-
tion matrix G(l, s) in (17) take the following form:

g11(l, s) =
φ1(s)− p22(s)

φ1(s)− φ2(s)
eφ1(s)l

− φ2(s)− p22(s)

φ1(s)− φ2(s)
eφ2(s)l,

(20)

g12(l, s) =
p12

φ1(s)− φ2(s)

(
eφ1(s)l − eφ2(s)l

)
, (21)

g21(l, s) =
p21

φ1(s)− φ2(s)

(
eφ1(s)l − eφ2(s)l

)
, (22)

g22(l, s) =
φ1(s)− p11(s)

φ1(s)− φ2(s)
eφ1(s)l

− φ2(s)− p11(s)

φ1(s)− φ2(s)
eφ2(s)l,

(23)

where

p11(s) =
k11 − s

λ1
, p12 =

k12
λ1

, (24)

p21 =
k21
λ2

, p22(s) =
k22 − s

λ2
. (25)

and
φ1,2(s) = α(s)± β(s), (26)

with

α(s) =
1

2
(p11(s) + p22(s)) , (27)

β(s) =
1

2

√
(p11(s)− p22(s))

2
+ 4p12p21. (28)

Proof. It proceeds by using the Laplace transform
method; for details, see the work of Bartecki (2013b). �

Corollary 1. Assuming that the observation (measure-
ment) of both state variables x1 and x2 is performed at the
boundary outputs y1 and y2 given by (6), we obtain, based
on Result 2, the following boundary transfer function ma-
trix G(s) = G(L, s):

G(s) =

[
g11(s) g12(s)

g21(s) g22(s)

]

, (29)

where

g11(s) =
y1(s)

u1(s)
, g12(s) =

y1(s)

u2(s)
, (30)

g21(s) =
y2(s)

u1(s)
, g22(s) =

y2(s)

u2(s)
, (31)

1We stick to the notation x(l, s) and u(s) assuming that the param-
eter s alone indicates the Laplace transform in time of x(l, t) and u(t),
respectively.
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with the expressions for the transfer functions (30)–(31)
obtained by substituting l = L in (20)–(23).

Corollary 2. From Result 2 we have that the vector of the
Laplace-transformed state variables (2) can be obtained,
assuming zero initial conditions, from the following rela-
tionship:

x(l, s) = G(l, s)u(s), (32)

with u(s) being the Laplace transformed boundary input
vector (11). Similarly, we can obtain the vector of the
Laplace-transformed output signals (12) as

y(s) = G(s)u(s), (33)

where G(s) is the boundary transfer function matrix given
by Corollary 1.

Remark 2. It can be shown that the transfer function
matrix G(s) given by Corollary 1 belongs to the Hardy
space H2,2

∞ , defined as the space of functions G : C →
C

2,2 which are analytic and bounded in the open right
half of the complex plane, Re(s) > 0 (see Callier
and Winkin, 1993). Moreover, as can be seen from
(24)–(28), these transfer functions have fractional powers
of s. Therefore, they can also be classified as fractional
transfer functions which have been receiving increasing
attention in the literature (see Curtain and Morris, 2009).

2.4. Constant steady-state solution. In the case
of DPSs, the steady-state solution provides not only
information about the static input–output mappings as it
does for LPSs, but it also describes the fixed distribution
of the state variables inside the spatial domain of the
system. Below, the definition of the constant steady-state
solution is formulated and next, the expressions for the
steady-state distribution of the state variables are shown
for the considered 2×2 hyperbolic systems.

Definition 1. The constant steady-state solution

x̄(l) =
[
x̄1(l) x̄2(l)

]T
: Ω → R

2 (34)

of the initial-boundary value problem (1)–(5) is a solution
that does not depend on time, i.e., the one which can be
obtained by the assumption that the time derivative in (1)
is zero,

∂x1 (l, t)

∂t
=

∂x2 (l, t)

∂t
= 0, (35)

which defines an equilibrium point of the system, together
with the assumption on constant boundary conditions (5)

x̄1(0) = ū1, x̄2(0) = ū2, ū1, ū2 ∈ R. (36)

Result 3. The constant steady-state spatial distribution of
the state variables x1 and x2 of the system (1)–(5) can be

expressed, assuming constant collocated boundary inputs
(36), by the following equations:

x̄1 (l)=

(
λ2φ1−k22

2λ2β
eφ1l−λ2φ2−k22

2λ2β
eφ2l

)
ū1

+
k12
2λ1β

(
eφ1l−eφ2l

)
ū2,

(37)

x̄2 (l) =
k21
2λ2β

(
eφ1l−eφ2l

)
ū1

+

(
λ1φ1−k11

2λ1β
eφ1l−λ1φ2−k11

2λ1β
eφ2l

)
ū2,

(38)

where φ1,2 = φ1,2(0), α = α(0) and β = β(0) are given
by (26), (27) and (28), respectively, assuming s = 0.

Proof. After setting to zero the time derivative in (1) and
replacing x(l, t) by x̄(l), we obtain the following system
of two ODEs:

λ1
dx̄1 (l)

dl
= k11x̄1 (l) + k12x̄2 (l) , (39)

λ2
dx̄2 (l)

dl
= k21x̄1 (l) + k22x̄2 (l) , (40)

with the boundary conditions (36). The solution of (39)
and (40) is then given by (37) and (38). �

Corollary 3. The constant steady-state solution x̄(l)
given by Result 3 can be alternatively obtained from the
relationship

x̄(l) = G(l, 0)ū, (41)

where
ū =

[
ū1 ū2

]T
(42)

is the vector of constant boundary inputs (36) and G(l, 0)
is the distributed transfer function matrix given by Re-
sult 2, evaluated at s = 0. Therefore, G(l, 0) can be seen
as the spatially distributed steady-state gain matrix of the
system.

Consequently, the values of the output vector (12) in
the constant steady-state conditions can be calculated as

ȳ = G(0)ū, (43)

where G(0) is the boundary transfer function matrix given
by Corollary 1, evaluated at s = 0. Therefore, G(0) can
be seen as the steady-state boundary gain matrix of the
system.

2.5. Frequency- and time-domain responses. In
order to obtain frequency responses for the considered
systems, we need to replace the operator variable s in
the transfer functions given by Result 2 and Corollary
1 with the expression iω, where ω ≥ 0 is the
angular frequency. This operation transforms the system
representation from the Laplace transform domain to the
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Fourier transform domain which, in turn, can be seen as
the frequency-domain description of the system. Like
in the case of LPSs, the frequency responses can be
represented here in a number of ways, of which two are
most commonly used: Nyquist and Bode plots.

On the other hand, the time-domain analysis
is also possible using the transfer function
representation, bearing in mind that it directly expresses
Laplace-transformed impulse responses of the system.
Therefore, the spatially distributed impulse responses
gij(l, t) can be calculated based on the following formula
expressing the inverse Laplace transform:

gij (l, t) = L −1
s {gij (l, s)}

=
1

2πi
lim

T→∞

α+iT∫

α−iT

estgij (l, s) ds,
(44)

where gij(l, s) for i = 1, 2 and j = 1, 2 represent
the distributed transfer functions given by Result 2. By
replacing the distributed transfer function gij(l, s) in (44)
by its boundary counterpart gij(s) = gij(L, s) given by
Corollary 1, we obtain as a result the boundary impulse
response gij(t), i.e., the impulse response evaluated at
l = L. The calculations of the Bromwich integral in (44)
along the vertical line Re(s) = α can be facilitated, e.g.,
by the use of the Cauchy residue theorem. For practical
reasons, this laborious task can be replaced by finding
the expressions for the inverse Laplace transforms in
look-up tables (see, e.g., Polyanin and Manzhirov, 1998).
The analytical formulas for the impulse responses of
the considered hyperbolic systems can be found in the
monograph by Bartecki (2016).

3. Approximation models

This section deals with the finite-dimensional
approximation models of the considered 2×2 hyperbolic
systems with collocated boundary inputs, introduced in
Section 2. In Section 3.1, by using the method of lines we
replace the original PDE representation of the system by
a set of ODEs. Next, based on the ODE representation,
the finite-dimensional state-space approximation model
is derived in Section 3.2. In a similar way, the rational
transfer function approximation model is developed in
Section 3.3. Finally, Section 3.4 deals with the frequency-
and time-domain measures of the approximation error.

3.1. MOL approximation. The idea of the method of
lines (MOL) consists in replacing the spatial derivatives
in a PDE with their algebraic approximations. This
can be done using several methods, such as, e.g.,
finite elements, splines, weighted residuals or polynomial
approximations. Once this is done, the spatial derivatives
are no longer stated in terms of the spatial independent

variables. In effect, only the time variable remains in
the resulting equations (Ahmad and Berzins, 2001; Koto,
2004; Schiesser and Griffiths, 2009). The most important
advantage of the MOL approach is that it has not only the
simplicity of the explicit methods, but also the stability
advantage of the implicit ones unless a poor numerical
method for solution of ODEs is employed. It is possible to
achieve higher-order approximations in the discretization
of spatial derivatives without significant increases in the
computational complexity (Shakeri and Dehghan, 2008).

In order to obtain the approximation model for the
hyperbolic system introduced in Section 2.1, we use the
finite difference (FD) method. For the assumed case of
both positive characteristic speeds λ1 > 0 and λ2 >
0, the backward difference is applied, which results in
replacing the spatial derivatives in (1) with their algebraic
approximations (Mattheij et al., 2005):

∂x1(l, t)

∂l
≈ x1,n(t)− x1,n−1(t)

Δln
, (45)

∂x2(l, t)

∂l
≈ x2,n(t)− x2,n−1(t)

Δln
, (46)

where

x1,n(t) = x1(ln, t), x2,n(t) = x2(ln, t), (47)

represent the values of the state variables at the spatial
discretization points ln, n = 1, 2, . . . , N , assuming that
l0 = 0, lN = L, and

Δln = ln − ln−1 (48)

is the spatial grid size, which, in general, does not have to
be the same for different n.

As a result, the approximation model takes here the
form of a system of 2N ODEs, with the following two
equations representing the single n-th section:

dx1,n(t)

dt
=− λ1

Δln
x1,n(t)+

λ1

Δln
x1,n−1(t)

+k11x1,n(t)+k12x2,n(t),

(49)

dx2,n(t)

dt
=− λ2

Δln
x2,n(t)+

λ2

Δln
x2,n−1(t)

+k21x1,n(t)+k22x2,n(t),

(50)

where x1,n−1(t) and x2,n−1(t) can be considered as two
section inputs, whereas x1,n(t) and x2,n(t) can be taken
as two section outputs.

The considered ODE approximation model can be
therefore seen as a cascade interconnection of N sections,
each given by (49)–(50), with the section outputs being
connected to the corresponding inputs of the next section.
In addition, we notice that the inputs to the first section
should be identified with the system boundary inputs (5),
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whereas the outputs of the last (N -th) section represent
approximate system outputs (6).

Finally, the initial conditions (4) are transformed here
to the following form:

x1,n(0) = x10,n = x10(ln), (51)

x2,n(0) = x20,n = x20(ln), (52)

where x10(ln) and x20(ln) are the initial profile values of
both state variables in (4) evaluated at l = ln.

3.2. State-space representation. In the following
three paragraphs, the state-space representation of the
considered approximation model is discussed, for both the
single section and the resultant N -section model.

3.2.1. Single section. Introduce the following
output/state vector for the n-th section of the MOL
approximation model discussed in Section 3.1:

y(n)(t) =
[
y1,n(t) y2,n(t)

]T

= x(n)(t) =
[
x1,n(t) x2,n(t)

]T (53)

together with the section input vector given for n =
2, 3, . . . , N by

u(n)(t) =
[
u1,n(t) u2,n(t)

]T

= x(n−1)(t) =
[
x1,n−1(t) x2,n−1(t)

]T
,

(54)

and for n = 1 by the boundary input signals (5). As
can be seen, the output signals of the n-th section, n =
1, 2, . . . , N − 1, are considered to be the input signals
for the next (n + 1)-th section, which corresponds to the
cascade interconnection of the individual sections.

Result 4. The state-space equations of the single n-
th section of the approximation model take the following
form:

dx(n)(t)

dt
= Anx(n)(t) +Bnu(n)(t) , (55)

y(n)(t) = Cnx(n)(t) , (56)

where

An =

[
− λ1

Δln
+ k11 k12

k21 − λ2

Δln
+ k22

]

, (57)

Bn =

[
λ1

Δln
0

0 λ2

Δln

]

, Cn =

[
1 0
0 1

]
, (58)

are the state, input and output matrices of the n-th section,
respectively. The state equation (55) is completed by the
initial conditions (51)–(52).

Fig. 1. Single section of the approximate state-space model.

Proof. It is based on (49)–(50) and (53)–(54). �

The structure of the single section of the approximate
state-space model is presented in Fig. 1.

As it can be easily shown, the characteristic
polynomial of the state matrix An in (57) is given by

pAn (s) = det (sI −An) = s2 + a1,ns+ a0,n (59)

with

a1,n=
λ1

Δln
+

λ2

Δln
−k11−k22, (60)

a0,n=

(
k11− λ1

Δln

)(
k22− λ2

Δln

)
− k21k12. (61)

In order to ensure the asymptotic stability of the
section, both eigenvalues of An in (57) which are given
by

s(1,2),n = −a1,n
2

±
√

a21,n − 4a0,n

2
, (62)

need to have negative real parts, i.e.,

Re
{
s(1,2),n

}
< 0, (63)

which will be satisfied, e.g., for An being diagonally
dominant with negative diagonal elements. A more
detailed result is given below.

Result 5. The eigenvalues (62) of the state matrix An

in (57) are real for a21,n ≥ 4a0,n and complex for a21,n <
4a0,n. In the second case, the complex conjugate pair is
asymptotically stable for a1,n > 0, which can be written,
based on (60), as

λ1 + λ2

Δln
> k11 + k22, (64)

which means that Δln needs to be sufficiently small com-
pared with the characteristic speeds λ1, λ2 and source
terms k11, k22.

For the case of real eigenvalues, the asymptotic sta-
bility condition (64) needs to be complemented by the ad-
ditional requirement a0,n > 0, which can be written based
on (61) as

(
k11 − λ1

Δln

)(
k22 − λ2

Δln

)
> k12 + k21. (65)
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Proof. It results directly from (59)–(63). �

Remark 3. As can be seen from (55)–(58), the matrices
An, Bn and Cn represent a controllable and observable
dynamical subsystem (see also Fig. 1).

3.2.2. N -section model. Introduce the following state
vector x̂(t) of the approximation model consisting of N
cascade interconnected sections discussed in Paragraph
3.2.1 (see also Fig. 3 later in the paper):

x̂(t)=
[
x(1)(t) . . . x(N)(t)

]T

=
[
x1,1(t) x2,1(t) . . . x1,N (t) x2,N (t)

]T
,

(66)

together with the boundary input vector u(t) in (11)
affecting its first section (n = 1)

u(t) = u(1)(t) =
[
u1,1(t) u2,1(t)

]T
, (67)

and the approximated output vector ŷ(t) in (12) taken
from the last section (n = N )

ŷ(t) = y(N)(t) =
[
y1,N (t) y2,N (t)

]T
. (68)

Result 6. The state-space representation of the overall
N -section approximation model takes the following form:

dx̂ (t)

dt
= Âx̂ (t) + B̂u (t) , (69)

ŷ (t) = Ĉx̂ (t) , (70)

where Â ∈ R
2N×2N , B̂ ∈ R

2N×2 and Ĉ ∈ R
2×2N are

approximated state, input and output operators, respec-
tively, given by the following matrices:

Â=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

A1 02×2 02×2 02×2 · · · · · · 02×2

B2C1 A2 02×2 02×2 · · · · · · 02×2

02×2 B3C2 A3 02×2 · · · · · · 02×2

02×2 02×2 B4C3
. . .

. . . · · · 02×2

02×2 02×2 02×2
. . .

. . .
. . .

...
...

...
...

. . .
. . . AN−1 02×2

02×2 02×2 02×2 · · · 02×2 BNCN−1 AN

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

,

(71)

B̂ =
[
B1 02×2 · · · 02×2

]T
, (72)

Ĉ =
[
02×2 · · · 02×2 CN

]
, (73)

where An, Bn, Cn, for n = 1, 2, . . . , N , are the state,
input and output matrices of the individual sections given
by (57) and (58). The state equation (69) is complemented
with the initial conditions (51)–(52) for each section of the
model.

Proof. It follows directly from the state-space
representation of the cascade interconnection of N
dynamical subsystems given by the matrices An, Bn, Cn

(see, e.g., Albertos and Sala, 2004). �

Corollary 4. Based on the state equation (69) of Result 6
we have that the Laplace-transformed approximate state
vector (66) can be obtained, assuming zero initial condi-
tions, from the relationship

x̂(s) =
(
sI − Â

)−1

B̂u(s), s ∈ ρ(Â), (74)

where Â and B̂ are the state (71) and input (72) matri-
ces of the approximation model, respectively, u(s) is the
Laplace-transformed input vector (67) and ρ(Â) denotes
the resolvent set of Â. Taking into account also the output
equation (70), we obtain

ŷ(s) = Ĉ
(
sI − Â

)−1

B̂u(s), s ∈ ρ(Â), (75)

where Ĉ is the output matrix (73).

Corollary 5. Based on the properties of the above-
mentioned cascade interconnection, it can be stated that
the eigenvalues of the state matrix Â in (71) are given by
the union of the eigenvalues of individual sections,

s(1,2,...,2N−1,2N) =

N⋃

n=1

s(1,2),n. (76)

Therefore, in order to ensure the asymptotic stability of
the approximate state-space model given by Result 6, all
the eigenvalues of the section state matrices An, n =
1, 2, . . . , N , need to have negative real parts—see Re-
sult 5.

Corollary 6. The approximation of the constant steady-
state solutions x̄(l) and ȳ given by Result 3 and Corollary
3 can be expressed, using the approximate state-space
model from Result 6 and Corollary 4, in the following
form:

¯̂x = −Â−1B̂ū, det(Â) �= 0, (77)

¯̂y = Ĉ ¯̂x = −ĈÂ−1B̂ū, (78)

where ū is the vector of constant boundary input signals
(42), ¯̂x is the constant steady-state state vector (66) of
the approximation model and ¯̂y is its constant steady-state
output vector (68).

3.3. Transfer function representation. In the
following three sections, the transfer function
representation for the considered MOL-based
approximation model is discussed, starting with the
single n-th section and ending with the resultant
N -section model.
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3.3.1. Single section.

Result 7. The transfer function matrix Gn(s) of the sin-
gle n-th section of the approximation model introduced in
Section 3.1 takes the following form:

Gn(s) =

[
g11,n(s) g12,n(s)

g21,n(s) g22,n(s)

]

, (79)

where

g11,n(s) =
y1,n(s)

u1,n(s)
, g12,n(s) =

y1,n(s)

u2,n(s)
, (80)

g21,n(s) =
y2,n(s)

u1,n(s)
, g22,n(s) =

y2,n(s)

u2,n(s)
, (81)

for zero initial conditions (51)-(52), with y1,n(s), y2,n(s)
and u1,n(s), u2,n(s) being the Laplace-transformed out-
put and input signals of the n-th section, given by (53) and
(54), respectively.

The elements of the transfer function matrix Gn(s)
in (79)–(81) take the following form:

g11,n(s) =
b11,1,ns+ b11,0,n
s2 + a1,ns+ a0,n

, (82)

g12,n(s) =
b12,0,n

s2 + a1,ns+ a0,n
, (83)

g21,n(s) =
b21,0,n

s2 + a1,ns+ a0,n
, (84)

g22,n(s) =
b22,1,ns+ b22,0,n
s2 + a1,ns+ a0,n

, (85)

where

b11,1,n =
λ1

Δln
, b11,0,n =

λ1

Δln

(
λ2

Δln
− k22

)
, (86)

b12,0,n = k12
λ2

Δln
, b21,0,n = k21

λ1

Δln
, (87)

b22,1,n =
λ2

Δln
, b22,0,n =

λ2

Δln

(
λ1

Δln
− k11

)
, (88)

and a1,n, a0,n are the parameters of the characteristic
polynomial given by (59)–(61).

Proof. By applying the Laplace transform to (49)
and (50) with zero initial conditions (51) and (52) and
solving the resulting equations with respect to x1,n(s)
and x2,n(s), we obtain the transfer functions given by
(82)–(88). �

Remark 4. According to Remark 3, the single section
represents a controllable and observable dynamical
system, and thus the poles of the transfer functions
(82)–(85) are equal to the eigenvalues (62) of the state
matrix An (57). Therefore, Result 5 concerning stability
analysis in terms of the eigenvalues of An, remains valid
in terms of the poles of Gn(s).

Fig. 2. Single section of the approximate transfer function
model.

Corollary 7. As can be seen from (82)–(85), the rela-
tive degree of g11,n(s) and g22,n(s) is equal to 1 and of
g12,n(s) and g21,n(s) is equal to 2. In addition, we can
state that transfer functions g12,n(s) and g21,n(s) do not
have zeros, whereas g11,n(s) and g22,n(s) have single ze-
ros at

z11,n = −b11,0,n
b11,1,n

= k22 − λ2

Δln
, (89)

z22,n = −b22,0,n
b22,1,n

= k11 − λ1

Δln
. (90)

Therefore, in order to ensure the minimum-phase
property for the single section, the following two condi-
tions should be met simultaneously:

λ1

Δln
> k11,

λ2

Δln
> k22, (91)

which means that the section length should be small
enough compared with the system parameters—see the
stability condition (64).

The structure of the single section of the approximate
transfer function model is presented in Fig. 2.

3.3.2. N -section model. Consider the approximation
model in the form of a cascade interconnection of N
sections, each described by the transfer function matrix
Gn(s) given by Result 7 (see Fig. 3).

Result 8. Assuming that the observation of the state
variables x1,n and x2,n of the approximation model can
be made for any spatial discretization point ln, n =
1, 2, . . . , N (i.e., at each section output y1,n and y2,n of
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Fig. 3. Block diagram of the approximation state space and transfer function models.

the cascade interconnected model), we introduce the fol-
lowing approximate distributed transfer function matrix
Ĝ(ln, s):

Ĝ(ln, s) =

[
ĝ11(ln, s) ĝ12(ln, s)

ĝ21(ln, s) ĝ22(ln, s)

]

, (92)

where

ĝ11(ln, s) =
y1,n(s)

u1(s)
, ĝ12(ln, s) =

y1,n(s)

u2(s)
, (93)

ĝ21(ln, s) =
y2,n(s)

u1(s)
, ĝ22(l, s) =

y2,n(s)

u2(s)
, (94)

for zero initial conditions (51)–(52), with y1,n(s), y2,n(s)
and u1(s), u2(s) being the Laplace-transformed n-th sec-
tion output (53) and boundary input (67) signals, respec-
tively.

The transfer function matrix Ĝ(ln, s) given by (92)–
(94) can be seen as a rational approximation of the ir-
rational distributed transfer function matrix G(l, s) intro-
duced by Result 2 assuming l = ln, and it can be calcu-
lated as follows:

Ĝ(ln, s) = Gn(s)Gn−1(s) . . . G1(s), (95)

where Gn(s), Gn−1(s), . . . , G1(s) are transfer function
matrices of individual sections given by Result 7.

Proof. It is based on the transfer function representation
of the cascade interconnection of n dynamical subsystems
given by their transfer functions (see, e.g., Albertos and
Sala, 2004). �

Corollary 8. Assuming that the observation of the state
variables x1,n and x2,n of the approximation model is
made at the end of the cascade (i.e., at y1,N and y2,N )

we obtain the following approximate boundary transfer
function matrix Ĝ(s) = Ĝ(lN , s):

Ĝ(s) =

[
ĝ11(s) ĝ12(s)

ĝ21(s) ĝ22(s)

]

, (96)

where

ĝ11(s)=
y1,N(s)

u1(s)
, ĝ12(s)=

y1,N(s)

u2(s)
, (97)

ĝ21(s)=
y2,N(s)

u1(s)
, ĝ22(s)=

y2,N(s)

u2(s)
, (98)

for zero initial conditions (51) and (52), with y1,N (s),
y2,N (s) and u1(s), u2(s) being the Laplace-transformed
N -th section output (68) and boundary input (67) signals,
respectively.

The transfer function matrix Ĝ(s) given by (96)–
(98) can be seen as a rational approximation of the irra-
tional boundary transfer function matrix G(s) introduced
by Corollary 1 and can be obtained as follows:

Ĝ(s) = GN (s)GN−1(s) . . . G1(s), (99)

where GN (s), GN−1(s), . . . , G1(s) are transfer function
matrices of individual sections given by Result 7.

Corollary 9. From Result 8 we have that the vector of
the Laplace-transformed n-th section outputs (53) repre-
senting approximate state variables x1 and x2 evaluated
at l = ln can be calculated as

y(n)(s) = x̂(ln, s) = Ĝ(ln, s)u(s), (100)

with u(s) being the Laplace transformed boundary input
vector (67). Similarly, from Corollary 8 we have that the
vector of the Laplace-transformed N -th section outputs
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representing approximated output signals y1 and y2 can
be calculated as

y(N)(s) = ŷ(s) = Ĝ(s)u(s). (101)

Moreover, by comparing (101) with (75), we obtain

Ĝ(s) = Ĉ
(
sI − Â

)−1

B̂, s ∈ ρ(Â). (102)

representing the well-known transformation from the
state-space to the transfer function representation.

Remark 5. As can be seen from (82)–(85) and (99),
the degree of the polynomial in the denominators of the
elements of the transfer function matrix Ĝ(s) is equal
to 2N , whereas the degree of the nominators equals N
for ĝ11(s) and ĝ22(s), and N − 1 for ĝ12(s) and ĝ21(s).
Consequently, the relative degree of ĝ11(s) and ĝ22(s) is
equal to N , and of ĝ12(s) and ĝ21(s) is equal to N + 1.

Remark 6. We assume here that in the cascaded
system of Fig. 3 no pole-zero cancellation occurs,
i.e., the number of poles in Ĝ(s) is the sum of the
number of poles in G1(s), G2(s), . . . , GN (s), and equals
2N . In this case, the poles of the approximation model
are given by the union of poles of individual sections,
and are equal to the eigenvalues (76) of the state-space
approximation model. Therefore, in order to ensure the
stability of the approximation model Ĝ(s), all the transfer
functions Gn(s), n = 1, 2, . . . , N need to represent
stable dynamical subsystems. This means that the stability
condition (64) needs to be fulfilled for each section of the
model.

Corollary 10. The approximation of the constant steady-
state solution x̄(l) given by Corollary 3 can be performed,
using the approximate distributed transfer function matrix
Ĝ(ln, s) from Result 8 evaluated at s = 0, based on the
following equation:

¯̂x(ln) = Ĝ(ln, 0)ū, (103)

where ū is the constant boundary input vector (42). Con-
sequently, the approximate constant steady-state output
vector of the system can be calculated as

¯̂y = Ĝ(0)ū, (104)

where Ĝ(0) is the approximate boundary transfer function
matrix given by Corollary 8, evaluated at s = 0.

3.4. Approximation error measures. Here we restrict
ourselves to the boundary transfer functions which
means that the frequency- and time-domain responses
of the original PDE-based model and its MOL-based
approximations are to be compared at l = L only.
Visual comparison of these responses can be seen as

a simple assessment of the quality of the approximation
models of different orders. This quality can be expressed
in a more accurate, quantitative way using, e.g., the
frequency-domain approximation error, defined for the
single input–output chanel as

e(iω) = g(iω)− ĝ(iω), (105)

where g(iω) is the boundary frequency response of the
original infinite-dimensional system and ĝ(iω) is the
boundary frequency response of its finite-dimensional
approximation.

Next, an appropriate measure of the approximation
error needs to be applied and the two most common
metrics used here are the H2- and H∞-norms (Partington,
2004). Assuming that e(iω) is strictly proper and has
no poles on the imaginary axis, its H2-norm is finite and
given by (Doyle et al., 1992)

‖e (iω)‖H2
=

√
1

2π

∫ ∞

0

|e (iω)|2 dω, (106)

which, by Parseval’s theorem, also represents the square
root of the energy of e(t)

‖e (iω)‖H2
= ‖e (t)‖L2

=

√∫ ∞

0

|e (t)|2 dt, (107)

where
e (t) = g(t)− ĝ(t) (108)

is the approximation error of the boundary impulse
response.

On the other hand, assuming that e(iω) is proper and
has no poles on the imaginary axis, its H∞-norm is finite
and given by

‖e (iω)‖H∞ = sup
ω

|e(iω)| . (109)

For the more general case of a multivariable system,
the approximation errors can be written as the matrix

E(iω) = G(iω)− Ĝ(iω), (110)

which is 2×2 in our case, and for which the H2-norm is
given by

‖E(iω)‖H2
=

√
1

2π

∫ ∞

0

tr
[
E(−iω)TE(iω)

]
dω (111)

and the H∞-norm by

‖E (iω)‖H∞ = sup
ω

σ̄ (E(iω)) , (112)

where σ̄ is the maximum singular value of E(iω).
As shown by Curtain and Morris (2009), the error

in the H∞-norm between the original transfer function
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g(s) and its approximation ĝ(s) yields a uniform bound on
the approximation error over all input signals u(t) ∈ L2.
Transfer functions g(s) ∈ H∞ can be approximated in
the H∞-norm if they are continuous on the imaginary
axis and have a well-defined limit at infinity. A typical
example of the system that does not meet these conditions
is the pure time-delay system with the irrational transfer
function g(s) = e−τs. Both the above-mentioned norms
are used in the following example to assess the quality of
the finite-dimensional approximation models. We restrict
ourselves in this example to the two selected input–output
channels with different approximation properties.

4. Example: A parallel-flow double-pipe
heat exchanger

As an example, we consider here a double-pipe heat
exchanger shown in Fig. 4. The mathematical description
of its dynamical properties takes, under some simplifying
assumptions, the form of the two following PDEs
(Zavala-Río et al., 2009; Maidi et al., 2010; Bartecki,
2016):

∂ϑ1(l, t)

∂t
+v1

∂ϑ1(l, t)

∂l
=α1

(
ϑ2(l, t)−ϑ1(l, t)

)
, (113)

∂ϑ2(l, t)

∂t
+v2

∂ϑ2(l, t)

∂l
=α2

(
ϑ1(l, t)−ϑ2(l, t)

)
, (114)

where ϑ1(l, t) and ϑ2(l, t) represent the spatio-temporal
temperature distributions of the tube- and shell-side fluids,
respectively, t denotes time and l ∈ [0, L] is the spatial
variable with L being the length of the exchanger, v1
and v2 represent velocities of the fluids, whereas α1

and α2 are generalized parameters including heat transfer
coefficients, fluid densities, specific heats, and geometric
dimensions of the exchanger. As can be seen, Eqns. (113)
and (114) are given in the form of Eqns. (1)–(3) with

Λ =

[
v1 0

0 v2

]

, K =

[
−α1 α1

α2 −α2

]

. (115)

We consider here the case of the heat exchanger
working in the so-called parallel-flow mode, where both
fluids flow in the same direction—see solid arrows
indicating v1 > 0 and v2 > 0 in Fig. 4. For this
configuration we assume the inlet temperatures of both
fluids as the input signals,

u1(t) = ϑ1(0, t), u2(t) = ϑ2(0, t), (116)

which corresponds to the collocated configuration of
boundary inputs introduced in (5). The most important,
from the control point of view, are the fluid temperatures
measured at the exchanger outflow. Therefore, we assume
the following output signals:

y1(t) = ϑ1(L, t), y2(t) = ϑ2(L, t), (117)

Fig. 4. Cross section along the axis of the double-pipe heat
exchanger. Solid arrows show flow directions for the
parallel-flow mode and dotted ones—for the counter-
flow mode.

which represents the boundary output configuration given
by (6). Taking into account the spatio-temporal dynamics
of the considered plant, its infinite-dimensional state space
representation is given by Result 1 and its distributed and
boundary transfer functions are given by Result 2 and
Corollary 1, respectively. In the next section we analyze
its state-space and transfer function approximation models
based on the results presented in Section 3. For this
purpose we assume the following parameter values in
(113) and (114): L = 5 m, v1 = 1 m/s, v2 = 0.2 m/s,
α1 = α2 = 0.05 1/s.

4.1. Approximate state-space model. Assuming that
the heat exchanger model is divided into, e.g., N = 100
uniform sections, we obtain the following length of the
single section:

Δln =
L

N
= 0.05 m, n = 1, 2, . . . , N, (118)

and, for the assumed parameter values, the following
state-space matrices in (57) and (58):

An =

[−20.05 0.05
0.05 −4.05

]
, (119)

Bn =

[
20 0
0 4

]
, Cn =

[
1 0
0 1

]
, (120)

which after cascade interconnection of N sections yield
the state-space approximation model given by Result 6.

4.1.1. Eigenvalues of the approximation model.
Since in the considered example we have α1 = α2 in
(115) and, consequently, k12 = k21 in (3), the state matrix
An (57) of the single section is real and symmetric (and
thus Hermitian) with two real eigenvalues s1,n and s2,n.
The even partition of the DPS model into N = 100
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Fig. 5. Logarithmic plot of eigenvalues s(1,2),n of the section
state matrix An vs. the number of sections N .

sections results in 100 pairs of the following eigenvalues
of the approximate state matrix Â in (71): s1,n ≈
−4.0498, s2,n ≈ −20.0502. Since all the eigenvalues
are negative, the resulting approximation model is stable,
according to Remark 6.

It is obvious that the eigenvalues depend on the value
of N . Figure 5 shows the logarithmic plot of s1,n and
s2,n vs. the number of (even) sections N . The higher
the value of N , the smaller the value of Δln in (57)
and, consequently, the diagonal elements of An become
significantly greater than the off-diagonal ones, which
results in eigenvalues close to these diagonal terms (see
Result 5).

4.1.2. Constant steady-state responses. As was
mentioned in Section 2.4, the constant steady-state
solution of Eqns. (113)–(117) not only makes it possible
to determine the constant outlet temperatures ϑ̄1(L) and
ϑ̄2(L) of the fluids assuming their constant inlet values
ϑ̄1(0) and ϑ̄2(0), but also enables the analysis of their
steady-state spatial profiles, ϑ̄1(l) and ϑ̄2(l) for l ∈ [0, L],
which may be of great importance from a technological
point of view.

The steady-state temperature profiles obtained for
the considered parallel-flow heat exchanger, both for the
original PDE model from Result 3 as well as for the
N -section approximation models from Corollary 6, are
shown in Fig. 6. As can be seen, the larger the value
of N , the better the mapping of the exact steady-state
solutions ϑ̄1(l) and ϑ̄2(l) of the original PDE by their

approximations ¯̂
ϑ1(l) and ¯̂

ϑ2(l), respectively.

4.2. Approximate transfer function model.
Assuming, in much the same way as in Section 4.1,
that the heat exchanger model is evenly partitioned into
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Fig. 6. Constant steady-state temperature profiles ϑ̄1(l) and
ϑ̄2(l) for the PDE and the approximation models
(parallel-flow configuration with ϑ̄1(0) = 100◦C,
ϑ̄2(0)=50◦C).

N = 100 sections, we obtain, based on Result 7, the
following transfer functions of the single section:

g11,n(s)=
20s+81

pAn(s)
, g12,n(s)=

0.2

pAn(s)
, (121)

g21,n(s)=
1

pAn(s)
, g22,n(s)=

4s+80.2

pAn(s)
, (122)

with
pAn(s) = s2 + 24.1s+ 81.2 (123)

being the characteristic polynomial of the section state
matrix An in (119).

As stated in Remark 4, the poles of the transfer
functions in (121) and (122) are equal to the eigenvalues
of An and are located at s1,n ≈ −4.0498 and s2,n ≈
−20.0502, which means that all considered sections
represent stable dynamical subsystems. Therefore, the
cascade interconnection of N sections described by the
transfer function matrix Gn(s) given by Result 7 leads to
the approximation model Ĝ(s) given by Corollary 8, with
N pairs of stable poles s1,n and s2,n.

Moreover, the transfer functions g12,n(s) and
g21,n(s) in (121) and (122) do not have zeros, whereas
g11,n(s) and g22,n(s) have single zeros at z11,n = −4.05
and z11,n = −20.05, respectively, which means that they
represent minimum-phase dynamical subsystems.

4.2.1. Frequency- and time-domain responses. As
mentioned in Section 3.4, it is possible, based on the
boundary transfer functions g(s) and ĝ(s) obtained from
the PDE and high-dimensional ODE models, respectively,
to compare their dynamical properties, expressed both in
the frequency and the time domain. Insights obtained
from the frequency and time responses can be useful for
the analysis of the impact of the model order on the
approximation quality.
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Fig. 7. Nyquist frequency response g12(s) of the PDE model vs.
frequency responses ĝ12(s) of the approximation models
for the parallel-flow heat exchanger.
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Fig. 8. Impulse response g12(t) of the PDE model vs. impulse
responses ĝ12(t) of the approximation models for the
parallel-flow heat exchanger.

Figure 7 shows the Nyquist plots of the frequency
responses for the transfer function channel g12(s) of the
considered parallel-flow heat exchanger. It contains both
the boundary frequency response g12(iω) for the original
PDE model and the responses ĝ12(iω) of its rational
approximations with different numbers N of sections.
One can observe characteristic “loops” on the Nyquist plot
which are associated with the resonance-like phenomena
taking place inside the heat exchanger. Such dynamical
behavior is reported in the literature on heat exchangers
as well as it is known from the real-plant experiments
(Bartecki, 2015b; Lalot and Desmet, 2019). As in the
case of the previously analyzed constant steady-state
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Fig. 9. Nyquist frequency response g11(s) of the PDE model vs.
frequency responses ĝ11(s) of the approximation models
for the parallel-flow heat exchanger.
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Fig. 10. Impulse response g11(t) of the PDE model vs. impulse
responses ĝ11(t) of the approximation models for the
parallel-flow heat exchanger.

responses, it can be stated that the larger the order
of the approximation model, the better the mapping
of the original frequency response, together with the
above-mentioned oscillations.

Similar conclusions can be drawn based on the
analysis of boundary the impulse responses g12(t) for
the same input–output channel (Fig. 8). In order to
correctly map the fairly steep slopes of the original
impulse response of the PDE model, a relatively high
order ODE-based model is needed which is able to
correctly approximate its high-frequency modes.

The analogous plots for the transfer function channel
g11(s) are presented in Figs. 9 and 10. As can be seen
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Fig. 11. Approximation error magnitudes |e12(iω)| for different
numbers of sections N .

Table 1. Boundary magnitude values and norm estimates
of e12(iω) for ω ∈ [10−4, 102].

N |e12|ω=10−4 |e12|ω=102 ‖e12‖H2 ‖e12‖H∞ , ωp

1 2.95·10−2 1.15·10−4 1.11 5.51·10−2, 0.12
10 4.01·10−3 1.15·10−4 0.24 1.59·10−2, 0.19

100 4.16·10−4 1.15·10−4 0.07 4.85·10−3, 0.79
1000 4.18·10−5 1.15·10−4 0.02 1.53·10−3, 2.36

here, the approximation models of increasing orders try
to fit the responses of the infinite-dimensional system.
However, due to the dominating time-delay nature of this
channel, which results in the original frequency response
having no limit at infinity (see Fig. 9) and the impulse
response containing Dirac’s delta distribution at t =
L/v1 = 5 s (see Fig. 10), the approximation task is
definitely more difficult here than in the previous case.

4.2.2. Approximation error analysis. The analysis
below is based on the considerations presented in
Section 3.4. Figures 11 and 12 shows the magnitude
plots of the approximation errors e12(iω) and e11(iω),
respectively, obtained for different N based on (105).
More detailed data concerning the error magnitude and
H2- and H∞-norm values given by (106) and (109),
respectively, estimated numerically for ω ∈ [10−4, 102]
are presented in Table 1 for e12(iω) and in Table 2 for
e11(iω). At first glance, it is evident that for g12(s)
the approximation is better for higher frequencies than
for lower ones, whereas for g11(s) the opposite is true.
More specifically, it can be stated that for the case
of the “crossover” transfer function channel g12(s), the
magnitude of the approximation error tends to zero as
the frequency tends to infinity, and its maximal value
decreases as the number of sections N increases (Fig. 11).
Consequently, both approximation norms, ‖e12(iω)‖H2

given by (106) and ‖e12(iω)‖H∞ given by (109) seem to
tend to zero as N goes to infinity.

In contrast, for the “straightforward” transfer
function channel g11(s), the magnitude of the
approximation error stabilizes, with increasing frequency,
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Fig. 12. Approximation error magnitudes |e11(iω)| for different
numbers of sections N .

Table 2. Boundary magnitude values and norm estimates
of e11(iω) for ω ∈ [10−4, 102].

N |e11|ω=10−4 |e11|ω=102 ‖e11‖H2 ‖e11‖H∞ , ωp

1 2.95·10−2 0.78 20.80 1.00, 0.82
10 4.01·10−3 0.78 18.11 0.80, 2.03

100 4.16·10−4 0.78 15.66 0.78, 7.97
1000 4.18·10−5 0.78 12.83 0.78, 34.08

to a non-zero constant level which does not depend on
N (Fig. 12). Consequently, its H2-norm is infinite and
its H∞-norm does not decrease as N increases. The
results for the transfer function channels g21(s) and
g22(s), which are not shown here due to limited space,
were similar, in qualitative terms, to the ones obtained for
g12(s) and g11(s), respectively.

To sum up, the MOL-based approximation of
the “straightforward” transfer function channels g11(s)
and g22(s) produces significantly worse results than
approximation of the “crossover” channels g12(s) and
g21(s). The main reason is the time-delay nature of the
first two transfer functions, for which, as is well known,
the rational approximation makes sense only over a finite
frequency band. It should be noted that for both types of
input–output channels, increasing the number of sections
of the approximation model contributes to the increase
in the model accuracy in the low and medium frequency
ranges.

5. Summary

In this paper we have discussed some results concerning
finite-dimensional approximation of DPSs described by
linear hyperbolic equations with boundary conditions
representing collocated external inputs to the system. The
approximation model has been considered here in the
form of a cascade interconnection of a number of sections
expressed both in the state-space and the transfer function
domains, resulting in a high-order, finite-dimensional
model. The quality of such models of different orders
has been verified by comparing their boundary frequency-
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and time-domain responses and measured using H2- and
H∞-norms of the approximation error.

It has been shown here that for the same DPS there
may exist transfer functions with different approximation
properties which depend on the boundary conditions.
Referring to the specific case considered in the paper,
all the irrational transfer functions of the original 2×2
hyperbolic system have the same denominators, since they
are based on the same resolvent of the state space operator
A. However, they differ in their numerators which largely
depend on the boundary input–output configuration.
Consequently, for the “crossover” input–output channels
the in-domain effects prevail which are easier to
approximate using rational transfer functions, whereas for
the “straightforward” channels the time-delay phenomena
dominate which make the approximation task more
difficult.

The obtained approximate state-space and
transfer function models can be used to accomplish
controller design for the 2×2 hyperbolic systems, using
conventional control schemes, without recourse to
complex DPS theory. However, the main drawback of the
presented approach is that the resulting approximation
models can be of a very high order—even in thousands,
as presented in the paper. Therefore, the next step to be
performed is to obtain a lower-order model, using, e.g.,
a balancing realization approach. Another option is to
use a different approximation approach than the MOL
strategy presented here, e.g., one of the techniques which
have been found effective in the model reduction of
time-delay systems. These include, i.a., Fourier–Laguerre
series, Padé approximants, shift-based approximations,
Malmquist bases, partial fractions, wavelet-based
techniques, Hankel-norm approximants and truncated
state-space realizations (see Partington, 2004).

Another task to be performed is to develop similar
approximate state-space and transfer function models
for the anti-collocated boundary input configuration,
occurring, e.g., in counter-flow heat exchangers. An even
more general approach could consist in a generalization
of the presented results to n×m hyperbolic systems,
i.e., systems with n equations convecting in one direction
and m equations convecting in the opposite direction, as
considered by Hu et al. (2016) and Anfinsen et al. (2017).
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Control of homodirectional and general heterodirectional
linear coupled hyperbolic PDEs, IEEE Transactions on Au-
tomatic Control 61(11): 3301–3314.

Jones, B.L. and Kerrigan, E.C. (2010). When is the discretization
of a spatially distributed system good enough for control?,
Automatica 46(9): 1462–1468.

Kitsos, C., Besançon, G. and Prieur, C. (2019). A
high-gain observer for a class of 2×2 hyperbolic systems
with C1 exponential convergence, IFAC-PapersOnLine
52(2): 174–179.

Koto, T. (2004). Method of lines approximations of delay
differential equations, Computers & Mathematics with Ap-
plications 48(1–2): 45–59.

Lalot, S. and Desmet, B. (2019). The harmonic response of
counter-flow heat exchangers—Analytical approach and
comparison with experiments, International Journal of
Thermal Sciences 135: 163–172.

LeVeque, R. (2002). Finite Volume Methods for Hyperbolic
Problems, Cambridge University Press, Cambridge.

Levine, W.S. (Ed.) (2011). The Control Systems Handbook:
Control System Advanced Methods, Electrical Engineering
Handbook, CRC Press, Boca Raton, FL.

Li, H.-X. and Qi, C. (2010). Modeling of distributed
parameter systems for applications—A synthesized review
from time-space separation, Journal of Process Control
20(8): 891–901.

Litrico, X. and Fromion, V. (2009a). Boundary control of
hyperbolic conservation laws using a frequency domain
approach, Automatica 45(3): 647–656.

Litrico, X. and Fromion, V. (2009b). Modeling and Control of
Hydrosystems, Springer, London.

Maidi, A., Diaf, M. and Corriou, J.-P. (2010). Boundary
control of a parallel-flow heat exchanger by
input–output linearization, Journal of Process Con-
trol 20(10): 1161–1174.

Mattheij, R.M.M., Rienstra, S.W. and ten Thije Boonkkamp,
J.H.M. (2005). Partial Differential Equations: Modeling,
Analysis, Computation, SIAM, Philadelphia, PA.

Partington, J.R. (2004). Some frequency-domain approaches to
the model reduction of delay systems, Annual Reviews in
Control 28(1): 65–73.

Polyanin, A.D. and Manzhirov, A.V. (1998). Handbook of Inte-
gral Equations, CRC Press, Boca Raton, FL.

Rauh, A., Senkel, L., Aschemann, H., Saurin, V.V. and
Kostin, G.V. (2016). An integrodifferential approach to
modeling, control, state estimation and optimization for
heat transfer systems, International Journal of Applied
Mathematics and Computer Science 26(1): 15–30, DOI:
10.1515/amcs-2016-0002.

Ray, W.H. (1981). Advanced Process Control, McGraw-Hill
New York, NY.

Russell, D.L. (1978). Controllability and stabilizability theory
for linear partial differential equations: Recent progress
and open questions, SIAM Review 20(4): 639–739.

Schiesser, W.E. and Griffiths, G.W. (2009). A Compendium
of Partial Differential Equation Models: Method of Lines
Analysis with Matlab, Cambridge University Press, New
York, NY.

Shakeri, F. and Dehghan, M. (2008). The method of lines for
solution of the one-dimensional wave equation subject to
an integral conservation condition, Computers & Mathe-
matics with Applications 56(9): 2175–2188.

Tucsnak, M. and Weiss, G. (2009). Observation and Control for
Operator Semigroups, Birkhäuser, Basel.

Zavala-Río, A., Astorga-Zaragoza, C.M. and
Hernández-González, O. (2009). Bounded positive
control for double-pipe heat exchangers, Control Engi-
neering Practice 17(1): 136–145.

Zwart, H. (2004). Transfer functions for infinite-dimensional
systems, Systems and Control Letters 52(3–4): 247–255.

Krzysztof Bartecki received an MSc and a PhD
in electrical engineering, as well as a DSc in au-
tomatic control and robotics from the Faculty of
Electrical, Control and Computer Engineering,
Opole University of Technology, in 1996, 2004
and 2016, respectively. Since 2017, he has been
an associate professor at the Institute of Con-
trol Engineering there. He has authored or co-
authored about 60 papers, mainly on mathemati-
cal modeling of distributed parameter systems.

Received: 12 February 2020
Revised: 28 April 2020
Accepted: 29 May 2020


	Introduction
	22 Linear hyperbolic systems
	PDE representation
	State-space representation
	Transfer function representation
	Constant steady-state solution
	Frequency- and time-domain responses

	Approximation models
	MOL approximation
	State-space representation
	Single section
	N-section model

	Transfer function representation
	Single section
	N-section model

	Approximation error measures

	Example: A parallel-flow double-pipe heat exchanger
	Approximate state-space model
	Eigenvalues of the approximation model
	Constant steady-state responses

	Approximate transfer function model
	Frequency- and time-domain responses
	Approximation error analysis


	Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




