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Two approximate representations are proposed for distributed parameter systems described by two linear hyperbolic PDEs
with two time- and space-dependent state variables and two collocated boundary inputs. Using the method of lines with
the backward difference scheme, the original PDEs are transformed into a set of ODEs and expressed in the form of a
finite number of dynamical subsystems (sections). Each section of the approximation model is described by state-space
equations with matrix-valued state, input and output operators, or, equivalently, by a rational transfer function matrix. The
cascade interconnection of a number of sections results in the overall approximation model expressed in finite-dimensional
state-space or rational transfer function domains, respectively. The discussion is illustrated with a practical example of
a parallel-flow double-pipe heat exchanger. Its steady-state, frequency and impulse responses obtained from the original
infinite-dimensional representation are compared with those resulting from its approximate models of different orders. The
results show better approximation quality for the “crossover” input—output channels where the in-domain effects prevail as
compared with the “straightforward” channels, where the time-delay phenomena are dominating.
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1. Introduction

The analysis of even linear mathematical models of
distributed parameter systems (DPSs) can be much more
challenging, due to their mathematical complexity, than
in the case of lumped parameter systems (LPSs), where
the spatial effects are neglected or averaged. Therefore,
in practical applications, the original infinite-dimensional
models of DPSs are often replaced by their various
finite-dimensional approximations. A typical example
is the indirect controller design (also known as early
lumping) procedure, where the first step towards the
controller design is the finite-dimensional approximation
of the original infinite-dimensional model of the system
being controlled. Despite some drawbacks, this approach
has the advantage of making available a wide range of
tools intended for controller design for finite-dimensional
systems, assuming that the controller designed using the
finite-dimensional approximation has the desired effect on
the original system (Ray, 1981; Curtain and Morris, 2009;
Li and Qi, 2010; Jones and Kerrigan, 2010; Levine, 2011;

Rauh er al., 2016).

Depending on the type of the mathematical
representation used to describe the approximation
model, different control schemes can be subsequently
applied. For example, if a transfer function model is
available, it is possible to design a controller using
well-known frequency-domain techniques. On the
other hand, state-space models allow using various
state feedback algorithms, such as, e.g., linear-quadratic
(LQR) or linear-quadratic-Gaussian (LQG) control
schemes. Finally, for both kinds of the above-mentioned
representations, various model predictive control (MPC)
strategies can be used.

In the current paper we consider approximate
state-space and transfer function models for a certain
class of DPSs, the so-called 2x2 hyperbolic systems of
balance laws. This class includes phenomena such as
those occurring in pipelines, oil wells, irrigation channels,
heat exchangers and traffic flow systems, and has recently
been intensively studied in the literature (Bastin and
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Coron, 2016; Bartecki, 2016; Deutscher, 2017; Anfinsen
and Aamo, 2019; Kitsos et al., 2019; Coron et al., 2019),
to mention only some recent works.

As shown in some previous works on DPSs, their
state-space representation can be made similar to the
classical one used for the finite-dimensional systems.
However, instead of the state matrix A we have
here an unbounded differential state operator acting on
a suitable function space. The role of the input and
output matrices B and C is played by some control
and observation operators, respectively, which are often
also unbounded (see, e.g., Curtain and Zwart, 1995;
Emirsajlow and Townley, 2000; Arov et al., 2012;
Bartecki, 2015a). Also the well-known definition of the
transfer function, as the input—output mapping defined
in the Laplace transform domain, remains valid for
the considered infinite-dimensional case. However, the
transfer functions are usually irrational here and contain
transcendental and/or fractional functions of the complex
variable s. It causes some features which do not
appear in the finite-dimensional case, such as an infinite
number of poles and/or zeros, and, consequently, infinite
“oscillations” in their frequency responses (see, e.g.,
Callier and Winkin, 1993; Zwart, 2004; Curtain and
Morris, 2009; Bartecki, 2013b).

Therefore, a lot of attention has been paid so
far to the approximation of various DPS models, also
of those described by hyperbolic PDEs resulting from
the balance laws of continuum physics. However, the
resulting approximations are usually given in the form
of numerical models obtained from various conservative
finite difference or finite volume schemes (Godlewski
and Raviart, 1996; Cockburn et al., 1998; Ahmad and
Berzins, 2001; LeVeque, 2002; Shakeri and Dehghan,
2008; Gugat et al., 2018), which are not very convenient
for control system design. To the best of the author’s
knowledge, no, or very little, previous research has
regarded approximation models in the form of state-space
or transfer function models for 2x2 hyperbolic systems.
One of the few is the work of Litrico and Fromion
(2009b) where rational transfer function models are used
to obtain finite-dimensional approximations for linearized
open channel flow equations.

To further reduce the gap, in this paper we
propose approximate finite-dimensional state-space and
rational transfer function models for the given 2x2
linear hyperbolic systems with a specific, collocated
configuration of boundary inputs. It can be seen as
a significant extension and continuation of the idea
presented for the first time by Bartecki (2019), who
proposed an approximate state-space model. The
current paper is organized as follows.  Section
recalls the mathematical model of the considered DPSs
in the form of weakly coupled linear hyperbolic
PDEs with boundary conditions representing collocated

boundary inputs signals. The models in the form of
infinite-dimensional state-space equations as well as of
irrational transfer functions are recalled, together with
the constant steady-state analysis. The relationship
of these models to the frequency- and time-domain
responses of the system is also reminded here. Section[3]
introduces the approximation model based on the method
of lines (MOL) with the backward difference scheme
applied to the spatial domain, giving as a result the
high finite-dimensional model in the form of ordinary
differential equations (ODEs). Next, the state-space
and transfer function representations resulting from the
MOL approximation model are derived and their stability
analysis is performed. In Section M the parallel-flow
double-pipe heat exchanger is considered as a typical
example of the 2x2 hyperbolic systems with collocated
boundary inputs. Its finite-dimensional state-space
and transfer function representations are considered for
different numbers of spatial sections. The constant
steady-state, frequency- and time-domain responses of
the original PDE model of the exchanger are compared
with those obtained from its approximations of different
orders. The model approximation quality is assessed,
both by the visual comparison of their frequency-
and time-domain responses and the frequency-domain
analysis of approximation error magnitudes. The article
concludes with Section[3l containing a short summary and
directions for further research.

2. 2x2 Linear hyperbolic systems

2.1. PDE representation. We consider dynamical
systems which can be mathematically described, usually
after some simplifying assumptions, by the following
system of the two weakly coupled linear PDEs of
hyperbolic type (Bastin and Coron, 2016; Bartecki, 2016;
Anfinsen and Aamo, 2018; Kitsos et al., 2019):

oz (1,t) Ox (1,t)
o A

=Kz (l,t), (1)
where
2(l,t) = [m1(L,t) w2(,0)]" QxO5RE (2

is a vector function representing the spatiotemporal
distribution of the two state variables, with Q = [0, L]
being the domain of the one-dimensional spatial variable
l and © = [0, +00), the domain of the time variable ¢.

Furthermore, A and K in (I) are uniform and
time-invariant (i.e., independent of [ and ¢, respectively)
matrices of coefficients,

A 0 k k

1 K= 11 12 ’ 3)
0 X ka1 ka2
with k11, k12, ko1,ke2 € R representing the so-called
source terms (i.e., the in-domain coupling coefficients)
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and A1, A2 € R being the characteristic speeds of the
system, usually representing the mass or energy transport
rates. In general, \; and Ay can be of any sign, but we
consider here the specific case of the two mass or energy
flows going in the same direction, i.e., from [ = 0 to
l=1L.

In order to obtain a unique solution of (), the
appropriate initial and boundary conditions need to be
specified. The initial conditions describe the spatial
profiles of both state variables at ¢ = 0,

Il(l,O) :xlo(l), IQ(Z,O) :.’,Ego(l), (4)

where 210(1), z20(l) : © — R are functions representing
these initial profiles.

Furthermore, the boundary conditions represent the
requirements to be met by the solution at the boundary
points of €, i.e., at [ = 0 or/and at [ = L. In general,
they can express the boundary reflections and feedbacks
(i.e., the interconnections between the state variables at
!l = 0 and/or at [ = L), as well as they can take into
account the boundary inputs to the system. The latter case
is particularly important in the control problems when the
manipulated control inputs are physically located at the
system boundaries.

Therefore, in this paper we assume that the boundary
conditions are expressed directly by the inhomogeneities
introduced by the two external inputs, without any
feedback or reflection. Since we take into account the case
of Ay > 0 and X2 > 0in @), both considered boundary
conditions should be imposed at [ = 0,

Il(ovt) = ul(t)v :EQ(Ovt) = UQ(t)v (5)

with wi(t), wua(t) © — R being the Laplace
transformable input signals which can include both
controls and external disturbances (see Bartecki, 2013b).

In addition to the above-mentioned boundary inputs
to the system, we also introduce two output signals, given
as pointwise “observations” or “measurements” of the
state variables performed usually at the end of the spatial
domain,

y1<t) le(L,t), y2<t) :w2<L7t)’ (6)

which may be considered anti-collocated to the boundary
inputs (@3).

We omit here the detailed analysis concerned with
the existence and well-posedness of the solutions of the
system (I)—(@) since it has been already done, e.g., by
Litrico and Fromion (2009a) based on the important
results presented by Russell (1978) as well as Curtain and
Zwart (1995). These issues have been also thoroughly
analyzed for more general classes of hyperbolic systems
by Bastin and Coron (2016). As shown there, the
exponential convergence of the solution of the Cauchy

problem (@)-(@ to zero in the L5 norm is guaranteed for
the matrix K + K7 in (3) being negative-semidefinite, i.e.,
for

(K + KT)e <0, VeEeR2 7)

It can be understood that the associated physical
system has no internal energy sources and only dissipates
energy, which is satisfied by many chemical and thermal
engineering systems like tubular reactors and heat
exchangers.

2.2. State-space representation. The classical state
space representation of finite-dimensional linear systems
usually includes, except the matrix state operator A, also
the input and output operators represented by the matrices
B and C, and sometimes also the feedthrough matrix D.
For the considered case of infinite-dimensional systems,
various abstract state space representations can be used
which have been discussed, e.g., by Curtain and Zwart
(1995), Emirsajlow and Townley (2000), Grabowski
and Callier (2001) or Bartecki (2015a). One of these
representations, the so-called additive form of the state
equations, is based on the same general concept as the
one used for the finite-dimensional systems, and for this
reason it will be recalled below.

Result 1. The state and output equations for the system
introduced in Section[2.1l can be expressed as follows:

dx(t) B
q z(0) =z, (8)

y(t) = Ca(), ©)

= Ax(t) + Bu(t), t>0,

where x(t) represents the state variables in (2)) defined on
the following Hilbert function space X

2(t)=[z1(t) z2(t)] € X=LX(QLR) & L2(QR),

(10)
u(t) is the vector of boundary input signals in (3)
u(t) = [us(t) ua(t)]” € R, (11)
y(t) is the vector of output signals in (6)
T
y(t) = [n(t) 12(t)] €R? (12)

A : X D D(A) — X is the differential state operator
based on (1) and given by

dh
Ah=—-A + Kh, h= [h1, ho]" € D(A), (13)
with the following domain:

D(A)={ {heH' (LR) & H' (Q,R) }
h1(0)=ha(0)=0}, (14)
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where H(Q,R) is the Sobolev space of functions with
first distributional derivatives lying in L2(£, R).

B in (8) represents an unbounded boundary input
operator which for the considered collocated input con-
figuration (Q) takes the following form:

B = diag (M6 (1), A28 (1)), (15)

where 0 (1), I € Q, denotes the Dirac delta distribution.
Finally, C'in (9) is the following output operator

L
| =D .00

L
| Dyt

which results from (6) and is based on the so-called sifting
property of the Dirac delta distribution.

Proof. See the work of Bartecki (2015a). [ ]

Remark 1.  The most important consequence of the
form of the boundary input operator (I3) is that the
state equation (8) should be studied in an extrapolation
space X1, which is a completion of X in (I0) with
an A-resolvent-induced norm (Engel and Nagel, 2000;
Tucsnak and Weiss, 2009). Therefore, the presented
form of the state-space equations, although at first glance
seems to be attractive because it resembles a classic
finite-dimensional concept, may not be very convenient
for control engineers.

Cx(t)= = B;Eé t)} , (16)

2.3. Transfer function representation. In contrast to
the lumped parameter systems which are described by
the rational transfer functions, the transfer functions of
distributed parameter systems are irrational (e.g., Zwart,
2004; Curtain and Morris, 2009). Transfer function
analysis of the considered hyperbolic systems of balance
laws was the subject of some of the author’s papers
(see, e.g., Bartecki, 2013a), as well as his monograph
(Bartecki, 2016). Therefore, the results relating to the
irrational transfer function representation of the 2x2
hyperbolic systems with collocated boundary inputs are
recalled below.

Result 2. Assuming that the observation (measurement)
of both state variables x1 and x5 in (2) can be made at any
spatial point | € ), we introduce the following distributed
transfer function matrix G(1, s):

o gll(lvs) 912(17‘5)
Gl <) = Lizl(l,s) 922(178)] ’ an
where

Jfor zero initial conditions ), with z1(l,s), z2(l,s) and
u1(s), ua(s) being the Laplace transforms in time of the
state (2)) and the input @) variables, respectivebll

The expressions for the elements of the transfer func-
tion matrix G(l, s) in ([7) take the following form:

$1(s) — pzz( ) b1 ()1
l -7 2 E7=N 7
e, (20)
_ P2(s) — p22(3)e¢2(s
P1(s) — ¢da(s)
_ D12 P1() _ opa(s)l
)= 5oy S () ev
P21 d1(s)l _ Ap2(s)l
9= 50y 2 () @2

o1(s) — ¢2(s) (23)
_ $2(s) —pui(s) oP2(s)l
¢1(s) — p2(s) ’
where
ki1 —s k12
— == 24
p11(s) Y P12 N (24)
ka1 - koo — s
P21 = N p22(s) = N (25)
and
d1,2(s) = a(s) £ 6(s), (26)
with
1
a(s) = (pn( ) +p22(s)) s (27
1
\/ (p11(5) — p22(5))” + 4p12par. (28)
Proof. It proceeds by using the Laplace transform

method; for details, see the work of Bartecki (2013b). ®

Corollary 1. Assuming that the observation (measure-
ment) of both state variables x1 and x5 is performed at the
boundary outputs y1 and 1y given by (6)), we obtain, based
on Result2 the following boundary transfer function ma-

trix G(s) = G(L, s):
~|gu(s)  g12(s)
Gls) = [921(8) 922(8)] ' 9)
where
e wl)
gi1(s) = wi(s) g12(8) ()’ (30)
(o) = B g = 2

'We stick to the notation (I, s) and u(s) assuming that the param-
eter s alone indicates the Laplace transform in time of (I, t) and u(t),
respectively.
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with the expressions for the transfer functions (30)—(31)
obtained by substituting | = L in (20)—23).

Corollary 2. From Result2lwe have that the vector of the
Laplace-transformed state variables () can be obtained,
assuming zero initial conditions, from the following rela-
tionship:

x(l,8) = G(I, s)u(s), (32)

with u(s) being the Laplace transformed boundary input
vector (L1). Similarly, we can obtain the vector of the
Laplace-transformed output signals (I2) as

y(s) = G(s)uls), (33)

where G(s) is the boundary transfer function matrix given
by Corollary[ll

Remark 2. It can be shown that the transfer function
matrix G(s) given by Corollary [T belongs to the Hardy
space H%?2, defined as the space of functions G : C —
C?%2 which are analytic and bounded in the open right
half of the complex plane, Re(s) > 0 (see Callier
and Winkin, 1993). Moreover, as can be seen from
22— [238), these transfer functions have fractional powers
of s. Therefore, they can also be classified as fractional
transfer functions which have been receiving increasing
attention in the literature (see Curtain and Morris, 2009).

2.4. Constant steady-state solution. In the case
of DPSs, the steady-state solution provides not only
information about the static input—output mappings as it
does for LPSs, but it also describes the fixed distribution
of the state variables inside the spatial domain of the
system. Below, the definition of the constant steady-state
solution is formulated and next, the expressions for the
steady-state distribution of the state variables are shown
for the considered 2 x2 hyperbolic systems.

Definition 1. The constant steady-state solution
2(0) = [1(1) 20)]" Q- R? (34)

of the initial-boundary value problem (I)—(3) is a solution
that does not depend on time, i.e., the one which can be
obtained by the assumption that the time derivative in ()
is zero,
6,’B1 (l,t) o 6,’B2 (l,t)
o ot

which defines an equilibrium point of the system, together
with the assumption on constant boundary conditions (3))

=0, (35)

71(0) = w1, 72(0) = 1w, w,u2 €R. (36

Result 3. The constant steady-state spatial distribution of
the state variables x1 and x4 of the system ({I)—([3) can be

expressed, assuming constant collocated boundary inputs
(38), by the following equations:

_ [ AePi—ka 4y Aada—kor 4

1 (l)—( W e W e U1 .
k2 @1l Pl ~
W (e e )uz,

_ ko1 y N -

Z2 (1) = 555 (' =e") @ .

A1 —kn é11 A2 —k11 Bl \ ~
*( B VI

where ¢1.2 = ¢1,2(0), a = a(0) and B = [(0) are given
by (28), (27 and 28), respectively, assuming s = 0.
Proof. After setting to zero the time derivative in () and

replacing x(l,t) by Z(l), we obtain the following system
of two ODEs:

dz1 (1)

A1 1 kiiZy (1) + k1222 (1), (39)
dzs (1
A2 C2”< ) _ ko121 (1) + k2@ (1) , (40)
with the boundary conditions (36). The solution of (39)
and (@0) is then given by (37) and (3R). [

Corollary 3.  The constant steady-state solution Z(l)
given by Result B can be alternatively obtained from the
relationship

z(l) = G(I,0)u, (41)

where
a=[u w)]" (42)
is the vector of constant boundary inputs (36) and G(1,0)
is the distributed transfer function matrix given by Re-
sult2] evaluated at s = 0. Therefore, G(1,0) can be seen
as the spatially distributed steady-state gain matrix of the
system.
Consequently, the values of the output vector (I2) in
the constant steady-state conditions can be calculated as

y=G0)a, (43)

where G(0) is the boundary transfer function matrix given
by Corollary[l] evaluated at s = 0. Therefore, G(0) can
be seen as the steady-state boundary gain matrix of the
system.

2.5. Frequency- and time-domain responses. In
order to obtain frequency responses for the considered
systems, we need to replace the operator variable s in
the transfer functions given by Result 2| and Corollary
[0 with the expression iw, where w > 0 is the
angular frequency. This operation transforms the system
representation from the Laplace transform domain to the

aamcs
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Fourier transform domain which, in turn, can be seen as
the frequency-domain description of the system. Like
in the case of LPSs, the frequency responses can be
represented here in a number of ways, of which two are
most commonly used: Nyquist and Bode plots.

On the other hand, the time-domain analysis
is also possible wusing the transfer function
representation, bearing in mind that it directly expresses
Laplace-transformed impulse responses of the system.
Therefore, the spatially distributed impulse responses
gij(1,t) can be calculated based on the following formula
expressing the inverse Laplace transform:

013 (:8) = 2 gy (1))
a+iT
i at (44)
~ g, | eu(be)ds
a—iT
where g;;(l,s) for i = 1,2 and j = 1,2 represent

the distributed transfer functions given by Result 2l By
replacing the distributed transfer function g;;(l, s) in @4)
by its boundary counterpart g;;(s) = ¢;;(L, s) given by
Corollary [l we obtain as a result the boundary impulse
response g;;(t), i.e., the impulse response evaluated at
I = L. The calculations of the Bromwich integral in (44)
along the vertical line Re(s) = « can be facilitated, e.g.,
by the use of the Cauchy residue theorem. For practical
reasons, this laborious task can be replaced by finding
the expressions for the inverse Laplace transforms in
look-up tables (see, e.g., Polyanin and Manzhirov, 1998).
The analytical formulas for the impulse responses of
the considered hyperbolic systems can be found in the
monograph by Bartecki (2016).

3. Approximation models

This section deals with the finite-dimensional
approximation models of the considered 2x2 hyperbolic
systems with collocated boundary inputs, introduced in
Section2l In Section[31] by using the method of lines we
replace the original PDE representation of the system by
a set of ODEs. Next, based on the ODE representation,
the finite-dimensional state-space approximation model
is derived in Section In a similar way, the rational
transfer function approximation model is developed in
Section[3.3] Finally, Section[3.4]deals with the frequency-
and time-domain measures of the approximation error.

3.1. MOL approximation. The idea of the method of
lines (MOL) consists in replacing the spatial derivatives
in a PDE with their algebraic approximations. This
can be done using several methods, such as, e.g.,
finite elements, splines, weighted residuals or polynomial
approximations. Once this is done, the spatial derivatives
are no longer stated in terms of the spatial independent

variables. In effect, only the time variable remains in
the resulting equations (Ahmad and Berzins, 2001; Koto,
2004; Schiesser and Griffiths, 2009). The most important
advantage of the MOL approach is that it has not only the
simplicity of the explicit methods, but also the stability
advantage of the implicit ones unless a poor numerical
method for solution of ODEs is employed. It is possible to
achieve higher-order approximations in the discretization
of spatial derivatives without significant increases in the
computational complexity (Shakeri and Dehghan, 2008).

In order to obtain the approximation model for the
hyperbolic system introduced in Section 2.1l we use the
finite difference (FD) method. For the assumed case of
both positive characteristic speeds Ay > 0 and Ay >
0, the backward difference is applied, which results in
replacing the spatial derivatives in () with their algebraic
approximations (Mattheij et al., 2005):

8x1 (l,t) - Il,n(t) — Il,nfl(t)

o Al, ’ 45)
81'2 (l, t) - ZT2.n (t) — wg,n_l(t)
o Al ’ (46)

where

Il’n(t) =T (ln, t), xg’n(t) = IQ(ln, t), (47)

represent the values of the state variables at the spatial
discretization points l,,, n = 1,2,..., N, assuming that
lo=0,ly = L,and

Al =1, — ln1 (48)

is the spatial grid size, which, in general, does not have to
be the same for different n.

As a result, the approximation model takes here the
form of a system of 2N ODEs, with the following two
equations representing the single n-th section:

dJ?Ln(t) - )\1 )\1

A ) M A
dt ALE Ay T (49)

+h1121,0 () +F k12225 (1),

(t)+

dIQn(t) )\2

—2nl L 2 ot e (t

dt Al 2 +a n“ 0 (s
+ho121 0 () +haowan(t),

(

)
where 21 ,—1(t) and z3,,_1(t) can be considered as two
section inputs, whereas x1 ,,(t) and 3, (t) can be taken
as two section outputs.

The considered ODE approximation model can be
therefore seen as a cascade interconnection of NV sections,
each given by @9)-(30), with the section outputs being
connected to the corresponding inputs of the next section.
In addition, we notice that the inputs to the first section
should be identified with the system boundary inputs (),
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whereas the outputs of the last (/V-th) section represent
approximate system outputs @.

Finally, the initial conditions (4)) are transformed here
to the following form:

1,n(0) = 2100 = z10(ln), (51)
22.,(0) = z20,n = z20(ln), (52)

where x10(l,,) and x20(l,,) are the initial profile values of
both state variables in @) evaluated at [ = [,,.

3.2.  State-space representation. In the following
three paragraphs, the state-space representation of the
considered approximation model is discussed, for both the
single section and the resultant /V-section model.

3.2.1. Single section. Introduce the following
output/state vector for the n-th section of the MOL
approximation model discussed in Section 3.1}

Yn) (t) = [yl,n<t) y2,n(t)]T
= (1) = [210(t) 220(8)]"

together with the section input vector given for n =
2,3,...,N by

(53)

iy (8) = [urn(t)  uzn(t)]”
T

= x(n—l)(t) = [xl,n—l(t) x2,n—1(t)] y
(54)

and for n = 1 by the boundary input signals B3). As
can be seen, the output signals of the n-th section, n =
1,2,...,N — 1, are considered to be the input signals
for the next (n + 1)-th section, which corresponds to the
cascade interconnection of the individual sections.

Result 4.  The state-space equations of the single n-
th section of the approximation model take the following
form:

dx%(t) = Ant@)(8) + Bruwy (), (55)
Yy () = Crn) (1) (56)
where
— Rtk k12
An = %21 *A)‘—l"’n + koo |’ 57
w3 aB Y

are the state, input and output matrices of the n-th section,
respectively. The state equation (33) is completed by the

initial conditions (X1)—(32).

ul,n([) + Xl,n(t yl,n([2
B, + + f ) Ca

uen(t) + PG NG Yan(t)

Uz,n(t) 4 [« You(t)

[An, By, G

Fig. 1. Single section of the approximate state-space model.

Proof. It is based on @9)—(50) and (33)—(34). ]

The structure of the single section of the approximate
state-space model is presented in Fig. [1l

As it can be easily shown, the characteristic
polynomial of the state matrix A,, in (37) is given by

pa, (s) =det (sI — A,) =s*>+a1ns+aon (59

with
A A
a1,n= A—lln+ Al2n — k11— koo, (60)
A A
ag,n= (hlﬁ)(bzﬁ) — ko1k12.  (61)

In order to ensure the asymptotic stability of the
section, both eigenvalues of A,, in (37) which are given
by

2
a7 . — 4a
ai,n 1,n 0,n

S12)m = T + s (62)
need to have negative real parts, i.e.,
Re {s(1,2).n} <0, (63)

which will be satisfied, e.g., for A, being diagonally
dominant with negative diagonal elements. A more
detailed result is given below.

Result 5. The eigenvalues (62) of the state matrix A,
in (32) are real for ain > 4ag,, and complex for ain <
4ag,pn. In the second case, the complex conjugate pair is
asymptotically stable for ay , > 0, which can be written,

based on (60), as

A1+ A2
Al,

which means that Al,, needs to be sufficiently small com-
pared with the characteristic speeds \i, A2 and source
terms ki1, koo.

For the case of real eigenvalues, the asymptotic sta-
bility condition (64) needs to be complemented by the ad-
ditional requirement ag ,, > 0, which can be written based

on (61) as

A A
(ku - A—lln) <k22 - A—li) > k1o + ka1, (65)

> ki1 + koo, (64)

aamcs
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Proof. It results directly from (39)—(63). [

Remark 3. As can be seen from (33)—(58)), the matrices
A,, B, and C,, represent a controllable and observable
dynamical subsystem (see also Fig. [I).

3.2.2. N-section model. Introduce the following state
vector Z(t) of the approximation model consisting of N
cascade interconnected sections discussed in Paragraph
B.2.1l(see also Fig. Bllater in the paper):

. I(N) (t)] T

(66)
=[z11(t) w2u(t) ...

T

zin(t) xon(t)]

together with the boundary input vector w(t) in ()
affecting its first section (n = 1)

u(t) = uy(t) = [ura(t) wea(t)]’,  (67)

and the approximated output vector §(¢) in (I2) taken
from the last section (n = N)

9(t) =y (@) = [yn(@) gan®]’.  (68)

Result 6. The state-space representation of the overall
N -section approximation model takes the following form:

%f) — Ai (t) + Bu(t), (69)
B0 =Ca ), 70

where A € REVX2N B ¢ R2N%2 gpg & € R22N gre
approximated state, input and output operators, respec-
tively, given by the following matrices:

[ A1 O2x2 O2x2 O2xo2 O2x2]

ByCy Ay 0Oax2 Oaxo -+ coo Oaxe

Oax2 B3Cy Az Ogxa - T P
A—| O2x2

O2x2 BsCs . . coo Oaxe
O2x2 0Oax2 0O2x2 :

An—1 Oax2
O2x2 BNCn—1 AN |

| O2x2 O2x2  O2x2

(71
B= [Br 02x2 02x2]T, (72)
C = [02x2 02x2 Cn], (73)

where Ay, B,, Cp, forn = 1,2,..., N, are the state,
input and output matrices of the individual sections given
by (52) and (58). The state equation (69) is complemented
with the initial conditions (X1)—32) for each section of the
model.

Proof. It follows directly from the state-space
representation of the cascade interconnection of N
dynamical subsystems given by the matrices A4,,, B,,, C,
(see, e.g., Albertos and Sala, 2004). [ ]

Corollary 4. Based on the state equation (69) of Result[6]
we have that the Laplace-transformed approximate state
vector ([66) can be obtained, assuming zero initial condi-
tions, from the relationship

#(s) = (s[ - A)_l Bu(s), sep(d), (4

where A and B are the state (Z1) and input (Z2) matri-
ces of the approximation model, respectively, u(s) is the
Laplace-transformed input vector (67) and p(/i) denotes
the resolvent set of A. Taking into account also the output
equation ([Z0), we obtain

i(s)=C (51 - A)*1 Bu(s), sep(d), (5

where C' is the output matrix (Z3).

Corollary 5.  Based on the properties of the above-
mentioned cascade interconnection, it can be stated that
the eigenvalues of the state matrix A in 1) are given by
the union of the eigenvalues of individual sections,

N
$(1,2,...2N—1,2N) = U 8(1,2),n- (76)

n=1
Therefore, in order to ensure the asymptotic stability of
the approximate state-space model given by Resultlf] all
the eigenvalues of the section state matrices A,, n =

1,2,..., N, need to have negative real parts—see Re-
sultB

Corollary 6. The approximation of the constant steady-
state solutions T(l) and § given by Result[3land Corollary
can be expressed, using the approximate state-space
model from Result [6l and Corollary E) in the following
form:

&=—A""Ba, det(A)#£0, (77)
§=0C%=—-CA'Ba, (78)
where u is the vector of constant boundary input signals
@2), % is the constant steady-state state vector (66) of

the approximation model and 7] is its constant steady-state
output vector (63).

3.3. Transfer function representation. In the
following three sections, the transfer function
representation  for the considered MOL-based

approximation model is discussed, starting with the
single n-th section and ending with the resultant
N-section model.
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3.3.1. Single section.

Result 7. The transfer function matrix G.,,(s) of the sin-
gle n-th section of the approximation model introduced in
Section3.1l takes the following form:

G(s) = g11,n(8)  g12,n(8) ’ (79)
921,n($) 922,n($)
where
gi1n(s) = zi"g gi2n(s) = 32"8 (80)
g21.n(s) = ziniz)), g22.n(8) = zzniz)), (81)

Jfor zero initial conditions (XI)-(32), with y1 »(s), y2.n ()
and uy (), uz,n(s) being the Laplace-transformed out-
put and input signals of the n-th section, given by (33) and

(34, respectively.
The elements of the transfer function matrix G, (s)

in (Z9—(81) take the following form:

~ bir1ns +bi10m

— 82

911,n(5) 2 +arns +agn’ (82)
b12,0,n

- 0. 83

912,n(5) T arns + ao’ (83)
b21,0,n

- 0. 84

921771(5) 32 + al,ns + aO,n? ( )
b b

922,n(3) _ 22,1,nS + 022.0,n (85)

)
52 + a1,nS + ao,n

where

A SRS
b1 = AL bi1,0n = AL (Aln k22), (86)

A A
bi2,0n = k12ﬁ, b21,0,n = k21 j» (87
A A A
bao1n = ﬁ, ba20n = ﬁ (j— kll)a (88)

and a1 n, aon are the parameters of the characteristic
polynomial given by (59)—(61).

Proof. By applying the Laplace transform to (49)
and (30) with zero initial conditions (31) and (32) and
solving the resulting equations with respect to 1 ,(s)
and x2,(s), we obtain the transfer functions given by

®2)—(®8). n

Remark 4. According to Remark 3 the single section
represents a controllable and observable dynamical
system, and thus the poles of the transfer functions
(82)—(83) are equal to the eigenvalues (62) of the state
matrix A, (37). Therefore, Result[§ concerning stability
analysis in terms of the eigenvalues of A,,, remains valid
in terms of the poles of G, (s).

G(5)
u ,n(S) + Y.H(S)
1 v g1 ,(5) —>Q+—;>
&21,4(5)
u(s) Y (s)
&i2,n(8)
() RO
o 220 F>O——

Fig. 2. Single section of the approximate transfer function
model.

Corollary 7. As can be seen from (82)—(83), the rela-
tive degree of g11,n(s) and gaa.n(s) is equal to 1 and of
g12,n(8) and g1 () is equal to 2. In addition, we can
state that transfer functions gi2.,,(s) and gs1,,(s) do not
have zeros, whereas g11,n(8) and ga2 ,(s) have single ze-
ros at

bi1.on A
11,0 = *bi’?’ = koo — ﬁ, (89)
b22,0,n A1
. R S 90
222, b22,1,n 11 Al, (90)

Therefore, in order to ensure the minimum-phase
property for the single section, the following two condi-
tions should be met simultaneously:

A
LSk,

A
AL 2> ko, 91)

Al,

which means that the section length should be small
enough compared with the system parameters—see the

stability condition (64).

The structure of the single section of the approximate
transfer function model is presented in Fig.

3.3.2. N-section model. Consider the approximation
model in the form of a cascade interconnection of N
sections, each described by the transfer function matrix
G (s) given by Result[7] (see Fig. B).

Result 8.  Assuming that the observation of the state
variables x1 ,, and 2y, of the approximation model can
be made for any spatial discretization point l,, n =
1,2,..., N (i.e., at each section output Y1, and Yy, of

@amcs
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15 = A TP A
A G(s A B C
: GCh5) | d9 AEL
| |
ui(s) =:u1,1(s) X1)(5) ra(s)=u2(s)|  xp(s) |112(8) :=u1_3(52 .V1,1v-1(5)=u1.1v(52 X () ms)= J71(52
! () =[Xz,1(s) | i _[xN,l(s) g
| _[xl,z () X2,2(8) | “lan2(s)
u(s)|=1uw(s) Yy (8)=up)(s) Yo () =um(s)  Mnn(s)=um(s) Yo ($)=|s)
: [AllBll q] [AZIBZIQ] : [AN/BNICN]
l I P s :
u(s) |= : Uz1(s) G (S) Y21(8)=uz2(s) GZ(S) )2,2(8) i=uz,3(;) Yena(8)=uz,mM(5) GN(S) Yam($)=|1a(s)
|
: _____ sectionl = section2 | : section N
I I I I >
b=0 yu=y A Ab=h-1, b Ah=lely, =L !

Fig. 3. Block diagram of the approximation state space and transfer function models.

the cascade interconnected model), we introduce the fol-

lowing approximate distributed transfer function matrix
G(ln, s):

A G11(lnys)  G12(ln, 8)
G ln, = | . R y 92
(In 3) L}zl(lmS) 922(ln73)] ©2)
where

~ - yl,n<3) ~ o yl,’ﬂ(s)
gll(lmS) - 'LLl(S) ) ng(lTL?S) - u2(8) ) (93)
~ o y2,n<3) ~ _ y2,’ﬂ(8)
ng(lnaS) - Ul(S) 5 922(135) - u2($) 5 (94)

for zero initial conditions (XI)-(32), with y1,,(8), y2,n(s)
and uy (), uz(s) being the Laplace-transformed n-th sec-
tion output (33) and boundary input (67) signals, respec-
tively.

The transfer function matrix G(l,,, s) given by ([@2)—
(©4) can be seen as a rational approximation of the ir-
rational distributed transfer function matrix G(l, s) intro-
duced by Result[2 assuming | = l,,, and it can be calcu-
lated as follows:

G(ln,s) = Gn(8)Gn1(s)...G1(s), (95
where Gy (8),Gpn-1(8),...,G1(8) are transfer function
matrices of individual sections given by Result[]]

Proof. 1t is based on the transfer function representation
of the cascade interconnection of n dynamical subsystems
given by their transfer functions (see, e.g., Albertos and
Sala, 2004). |

Corollary 8. Assuming that the observation of the state
variables x1 , and 2, of the approximation model is
made at the end of the cascade (i.e., at y1,n and Y2 N)

we obtain the following approximate boundary transfer
function matrix G(s) = G(ln, s):

Aoy |9ui(s)  Gra(s)
o= mes) gm(s)]’ o0
where
gu(s>y;’ﬁs), ng(s)y;’j(S), ©7)
L _vanN(s) . yaN(s)
g21(s) (s G22(8) wals) (98)

for zero initial conditions (31) and ©2), with y1 n(s),
y2.n(8) and ui(s), ua(s) being the Laplace-transformed
N-th section output (68) and boundary input (67) signals,
respectively.

The transfer function matrix G(s) given by ([@8)-
(98) can be seen as a rational approximation of the irra-
tional boundary transfer function matrix G(s) introduced
by Corollary[lland can be obtained as follows:

G(s) = Gn(s)Gn-1(s)...G1(s), (99)
where Gy (8), Gn_1(5), ..., G1(s) are transfer function
matrices of individual sections given by Result[7]

Corollary 9. From Result[8lwe have that the vector of
the Laplace-transformed n-th section outputs (33) repre-
senting approximate state variables x1 and xa evaluated
atl =1, can be calculated as

Yy (5) = 2(ln, s) = G(ln, s)u(s),  (100)

with u(s) being the Laplace transformed boundary input
vector ([67). Similarly, from Corollary 8 we have that the
vector of the Laplace-transformed N-th section outputs
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representing approximated output signals y; and y2 can
be calculated as

Yy (s) = 9(s) = G(s)u(s). (101)

Moreover, by comparing (I01) with (Z3), we obtain
N A Nt A ~
G(s)=C (51 - A) B, sep(d). 102

representing the well-known transformation from the
state-space to the transfer function representation.

Remark 5. As can be seen from (82)—(83) and (99),
the degree of the polynomial in the denominators of the
elements of the transfer function matrix G(s) is equal
to 2N, whereas the degree of the nominators equals N
for g11(s) and §22(s), and N — 1 for §12(s) and go1(s).
Consequently, the relative degree of §11(s) and gao(s) is
equal to N, and of g12(s) and go1(s) is equal to N + 1.

Remark 6. We assume here that in the cascaded
system of Fig. no pole-zero cancellation occurs,
i.e., the number of poles in G‘(s) is the sum of the
number of poles in G1(s), G2(s), ..., Gn(s), and equals
2N. In this case, the poles of the approximation model
are given by the union of poles of individual sections,
and are equal to the eigenvalues (Z8) of the state-space
approximation model. Therefore, in order to ensure the
stability of the approximation model G(s), all the transfer
functions G,,(s), » = 1,2,...,N need to represent
stable dynamical subsystems. This means that the stability
condition (64) needs to be fulfilled for each section of the
model.

Corollary 10. The approximation of the constant steady-
state solution Z(1) given by Corollary 3 can be performed,
using the approximate distributed transfer function matrix
G(l,, s) from Result® evaluated at s = 0, based on the
following equation:

i) = G(l,,0)a, (103)

where 1 is the constant boundary input vector [@2)). Con-
sequently, the approximate constant steady-state output
vector of the system can be calculated as

g =G(0)a, (104)

where G (0) is the approximate boundary transfer function
matrix given by Corollary[8 evaluated at s = 0.

3.4. Approximation error measures. Here we restrict
ourselves to the boundary transfer functions which
means that the frequency- and time-domain responses
of the original PDE-based model and its MOL-based
approximations are to be compared at [ = L only.
Visual comparison of these responses can be seen as

a simple assessment of the quality of the approximation
models of different orders. This quality can be expressed
in a more accurate, quantitative way using, e.g., the
frequency-domain approximation error, defined for the
single input—output chanel as

e(iw) = g(iw) — g(iw), (105)

where g(iw) is the boundary frequency response of the
original infinite-dimensional system and §(iw) is the
boundary frequency response of its finite-dimensional
approximation.

Next, an appropriate measure of the approximation
error needs to be applied and the two most common
metrics used here are the H2- and H.-norms (Partington,
2004). Assuming that e(iw) is strictly proper and has
no poles on the imaginary axis, its Ho-norm is finite and
given by (Doyle et al., 1992)

1 oo
lle (iw)]l4, = \/ﬁ/o le (iw)* dw, (106)

which, by Parseval’s theorem, also represents the square
root of the energy of e(t)

le (), = lle B, = / () dt, (107

where
e(t) =g(t) —g(t) (108)
is the approximation error of the boundary impulse
response.
On the other hand, assuming that e(iw) is proper and
has no poles on the imaginary axis, its Ho-norm is finite
and given by

lle (iw) |5, = sup le(iw)]. (109)

For the more general case of a multivariable system,
the approximation errors can be written as the matrix

E(iw) = G(iw) — G(iw), (110)

which is 2x2 in our case, and for which the Hs-norm is
given by

|E(iw)||H2\/%/Ooir [B(iw)" B(iw)] dw (111)
and the H,-norm by
1 (i)l = supa (E(iw)), (112)
where & is the maximum singular value of E(iw).

As shown by Curtain and Morris (2009), the error
in the Ho-norm between the original transfer function

@amcs



K. Bartecki

486
¢(s) and its approximation g(s) yields a uniform bound on
the approximation error over all input signals u(t) € Ls.
Transfer functions g(s) € Hoo can be approximated in
the Hoo-norm if they are continuous on the imaginary
axis and have a well-defined limit at infinity. A typical
example of the system that does not meet these conditions
is the pure time-delay system with the irrational transfer
function g(s) = e~ "°. Both the above-mentioned norms
are used in the following example to assess the quality of
the finite-dimensional approximation models. We restrict
ourselves in this example to the two selected input—output
channels with different approximation properties.

4. Example: A parallel-flow double-pipe
heat exchanger

As an example, we consider here a double-pipe heat
exchanger shown in Fig. @] The mathematical description
of its dynamical properties takes, under some simplifying
assumptions, the form of the two following PDEs
(Zavala-Rio et al., 2009; Maidi et al., 2010; Bartecki,
2016):

V1 (L,t oY1 (1,t
18(15 )+Ul B(l )=a1(192(l,t)—191(1,t))7 (113)
90 (1, t (1,
28(15 : vz ia(l )Zaz(ﬁl(lat)—ﬁz(l,t)), (114)

where ¥1(l,t) and 95(l, t) represent the spatio-temporal
temperature distributions of the tube- and shell-side fluids,
respectively, ¢ denotes time and [ € [0, L] is the spatial
variable with L being the length of the exchanger, v;
and vy represent velocities of the fluids, whereas oy
and «p are generalized parameters including heat transfer
coefficients, fluid densities, specific heats, and geometric
dimensions of the exchanger. As can be seen, Eqns. (T13)
and (II4) are given in the form of Eqns. (I)—@) with

U1 O]
, K=
O V2

—Qq aq

A:

] . (115)

Q2 —Q

We consider here the case of the heat exchanger
working in the so-called parallel-flow mode, where both
fluids flow in the same direction—see solid arrows
indicating v; > 0 and v > 0 in Fig. @ For this
configuration we assume the inlet temperatures of both
fluids as the input signals,

ul(t) = 191(0,15), Ug(t) = 192(0,t), (116)

which corresponds to the collocated configuration of
boundary inputs introduced in (3). The most important,
from the control point of view, are the fluid temperatures
measured at the exchanger outflow. Therefore, we assume
the following output signals:

yl(t) = 191<L7t)a y2<t) = 192<L7t)’ (117)

tube

oot
=

v~

Fig. 4. Cross section along the axis of the double-pipe heat
exchanger. Solid arrows show flow directions for the
parallel-flow mode and dotted ones—for the counter-
flow mode.

which represents the boundary output configuration given
by (6). Taking into account the spatio-temporal dynamics
of the considered plant, its infinite-dimensional state space
representation is given by Result[T]and its distributed and
boundary transfer functions are given by Result [2| and
Corollary [I] respectively. In the next section we analyze
its state-space and transfer function approximation models
based on the results presented in Section Bl For this
purpose we assume the following parameter values in
(13 and (@d): L = 5m, v; = 1 m/s,ve = 0.2 m/s,
a1 =as =0.051/s.

4.1. Approximate state-space model. Assuming that
the heat exchanger model is divided into, e.g., N = 100
uniform sections, we obtain the following length of the
single section:

L

Al = =005m,  n=12..N (18

and, for the assumed parameter values, the following
state-space matrices in (37) and (38):

—20.05 0.05
An = [ 0.05 4.05} ’ (119)
20 0 10

which after cascade interconnection of N sections yield
the state-space approximation model given by Result[6l

4.1.1. Eigenvalues of the approximation model.
Since in the considered example we have a; = g in
(I13) and, consequently, k15 = ko1 in (3)), the state matrix
A, (3D of the single section is real and symmetric (and
thus Hermitian) with two real eigenvalues s1 ,, and s2 j,.
The even partition of the DPS model into N = 100
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100 F

S(12)n

10" F

103 . i
100 10' 102 10°

Fig. 5. Logarithmic plot of eigenvalues s 2, of the section
state matrix A, vs. the number of sections V.

sections results in 100 pairs of the following eigenvalues
of the approximate state matrix A in {D): S R
—4.0498, s2, ~ —20.0502. Since all the eigenvalues
are negative, the resulting approximation model is stable,
according to Remark[6l

It is obvious that the eigenvalues depend on the value
of N. Figure [3| shows the logarithmic plot of s;, and
$2., vs. the number of (even) sections N. The higher
the value of N, the smaller the value of Al, in &7)
and, consequently, the diagonal elements of A,, become
significantly greater than the off-diagonal ones, which
results in eigenvalues close to these diagonal terms (see

Result[3).

4.1.2. Constant steady-state responses. As was
mentioned in Section [2.4] the constant steady-state
solution of Eqns. (I13)—(I1Z) not only makes it possible
to determine the constant outlet temperatures ; (L) and
Jo(L) of the fluids assuming their constant inlet values
91(0) and J2(0), but also enables the analysis of their
steady-state spatial profiles, 91 (1) and 95 (1) for I € [0, L],
which may be of great importance from a technological
point of view.

The steady-state temperature profiles obtained for
the considered parallel-flow heat exchanger, both for the
original PDE model from Result 3] as well as for the
N-section approximation models from Corollary [6] are
shown in Fig. As can be seen, the larger the value
of N, the better the mapping of the exact steady-state
solutions ¥, (1) and J5(l) of the original PDE by their

approximations 1 () and (1), respectively.

4.2. Approximate transfer function model.
Assuming, in much the same way as in Section 1]
that the heat exchanger model is evenly partitioned into

[=©N=1 == N=10 - - - -N=100 N=1000 —— PDE]|

105

100 P~

95

90

85

80

75

9,00, d,0)

70

Fig. 6. Constant steady-state temperature profiles (1) and
Y2(l) for the PDE and the approximation models
(parallel-flow configuration with 91(0) = 100°C,
92(0) =50°C).

N = 100 sections, we obtain, based on Result [7] the
following transfer functions of the single section:

20s+81 0.2
911,n(3): s

a(s)=—=——, (121
o) T
1 45+80.2
n(s)= , nl(s)=————, (122)
g21,n(8) A () 922.n(8) A (3)
with
pa,(s) = 5% +24.15 4+ 81.2 (123)

being the characteristic polynomial of the section state
matrix A,, in (T19).

As stated in Remark [ the poles of the transfer
functions in (I21) and (I22) are equal to the eigenvalues
of A, and are located at s1, ~ —4.0498 and s3,, =~
—20.0502, which means that all considered sections
represent stable dynamical subsystems. Therefore, the
cascade interconnection of N sections described by the
transfer function matrix G,,(s) given by Result[7]leads to
the approximation model G(s) given by Corollary[8 with
N pairs of stable poles s1 5, and s2 .

Moreover, the transfer functions glz,n(s) and
g21,,(s) in (I2I) and (I2Z2) do not have zeros, whereas
911,n(s) and gaz ,(s) have single zeros at 211, = —4.05
and z11,, = —20.05, respectively, which means that they
represent minimum-phase dynamical subsystems.

4.2.1. Frequency- and time-domain responses. As
mentioned in Section 3.4] it is possible, based on the
boundary transfer functions g(s) and §(s) obtained from
the PDE and high-dimensional ODE models, respectively,
to compare their dynamical properties, expressed both in
the frequency and the time domain. Insights obtained
from the frequency and time responses can be useful for
the analysis of the impact of the model order on the
approximation quality.
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Fig. 7. Nyquist frequency response gi2(s) of the PDE model vs.
frequency responses g12(s) of the approximation models
for the parallel-flow heat exchanger.

[ N=1 ===~ N=10 N=100 N=1000 — PDE

%10
T

9,,(0)
o

0 1‘0 2‘0 3‘0 ‘Z(’) 5;0 - ;30 70 8‘0 9‘0 100
t[s]
Fig. 8. Impulse response g12(t) of the PDE model vs. impulse

responses §12(t) of the approximation models for the
parallel-flow heat exchanger.

Figure [7] shows the Nyquist plots of the frequency
responses for the transfer function channel g;2(s) of the
considered parallel-flow heat exchanger. It contains both
the boundary frequency response g12(iw) for the original
PDE model and the responses §i2(iw) of its rational
approximations with different numbers N of sections.
One can observe characteristic “loops” on the Nyquist plot
which are associated with the resonance-like phenomena
taking place inside the heat exchanger. Such dynamical
behavior is reported in the literature on heat exchangers
as well as it is known from the real-plant experiments
(Bartecki, 2015b; Lalot and Desmet, 2019). As in the
case of the previously analyzed constant steady-state

Fig. 9. Nyquist frequency response g11(s) of the PDE model vs.
frequency responses g11(s) of the approximation models
for the parallel-flow heat exchanger.

[ N=1 - N=10 N=100 N=1000 — PDE

06
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0.4

02K

01

t[s]

Fig. 10. Impulse response g11(t) of the PDE model vs. impulse
responses g11(t) of the approximation models for the
parallel-flow heat exchanger.

responses, it can be stated that the larger the order
of the approximation model, the better the mapping
of the original frequency response, together with the
above-mentioned oscillations.

Similar conclusions can be drawn based on the
analysis of boundary the impulse responses gi2(t) for
the same input-output channel (Fig. B). In order to
correctly map the fairly steep slopes of the original
impulse response of the PDE model, a relatively high
order ODE-based model is needed which is able to
correctly approximate its high-frequency modes.

The analogous plots for the transfer function channel
g11(s) are presented in Figs. Bland[[0] As can be seen
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Fig. 11. Approximation error magnitudes |e12 (iw)| for different
numbers of sections V.

Table 1. Boundary magnitude values and norm estimates
of e12(iw) for w € [107%,107].

| N llexzlu—10-4[lerzlu—to2 [ ller2llae | llerallp. wp |

[ N2t === N=10 - - - -N=100 N=1000

-4 -3 -2 -1 0 1 2

Fig. 12. Approximation error magnitudes |e1 (iw)| for different
numbers of sections V.

Table 2. Boundary magnitude values and norm estimates
of e11 (iw) for w € [107*,107].

| N leatlozio—s[lentlwotoz [llent llae [ lerillae, . wp|

1 2951072 [1.15-107%| 1.11 |5.51-1072,0.12
10 | 4.01-1073 |1.15-107*| 0.24 [1.59-1072,0.19
100 | 4.16-107% |1.15-10~%| 0.07 |4.85-1073,0.79

1000| 4.18-107° |1.15-10~%| 0.02 [1.53-1073,2.36

here, the approximation models of increasing orders try
to fit the responses of the infinite-dimensional system.
However, due to the dominating time-delay nature of this
channel, which results in the original frequency response
having no limit at infinity (see Fig. and the impulse
response containing Dirac’s delta distribution at ¢ =
L/vy = 5 s (see Fig. [10), the approximation task is
definitely more difficult here than in the previous case.

4.2.2. Approximation error analysis. The analysis
below is based on the considerations presented in
Section 34l  Figures [[1] and [[2] shows the magnitude
plots of the approximation errors ej2(iw) and eq (iw),
respectively, obtained for different N based on (103).
More detailed data concerning the error magnitude and
Hs- and Hoo-norm values given by (I06) and (109,
respectively, estimated numerically for w € [107%,10?]
are presented in Table [I] for e12(iw) and in Table (2] for
e11(iw). At first glance, it is evident that for gia(s)
the approximation is better for higher frequencies than
for lower ones, whereas for g11(s) the opposite is true.
More specifically, it can be stated that for the case
of the “crossover” transfer function channel g12(s), the
magnitude of the approximation error tends to zero as
the frequency tends to infinity, and its maximal value
decreases as the number of sections N increases (Fig. [[T).
Consequently, both approximation norms, ||e12(iw)||2,
given by (T08) and ||e12(iw)||3.. given by (I09) seem to
tend to zero as N goes to infinity.

In contrast, for the “straightforward” transfer
function channel ¢11(s), the magnitude of the
approximation error stabilizes, with increasing frequency,

1 |2.95-1072 0.78 20.80 | 1.00,0.82
10 | 4.01-1073 0.78 18.11 | 0.80,2.03
100 | 4.16-10~4 0.78 15.66 | 0.78,7.97

1000| 4.18-107° 0.78 12.83 | 0.78, 34.08

to a non-zero constant level which does not depend on
N (Fig.[[2). Consequently, its Ho-norm is infinite and
its Hoo-norm does not decrease as /N increases. The
results for the transfer function channels go;(s) and
g22(s), which are not shown here due to limited space,
were similar, in qualitative terms, to the ones obtained for
g12(s) and g11(s), respectively.

To sum up, the MOL-based approximation of
the “straightforward” transfer function channels g11(s)
and ga2(s) produces significantly worse results than
approximation of the “crossover” channels gi2(s) and
g21(s). The main reason is the time-delay nature of the
first two transfer functions, for which, as is well known,
the rational approximation makes sense only over a finite
frequency band. It should be noted that for both types of
input—output channels, increasing the number of sections
of the approximation model contributes to the increase
in the model accuracy in the low and medium frequency
ranges.

5. Summary

In this paper we have discussed some results concerning
finite-dimensional approximation of DPSs described by
linear hyperbolic equations with boundary conditions
representing collocated external inputs to the system. The
approximation model has been considered here in the
form of a cascade interconnection of a number of sections
expressed both in the state-space and the transfer function
domains, resulting in a high-order, finite-dimensional
model. The quality of such models of different orders
has been verified by comparing their boundary frequency-
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and time-domain responses and measured using Ho- and
Hoo-norms of the approximation error.

It has been shown here that for the same DPS there
may exist transfer functions with different approximation
properties which depend on the boundary conditions.
Referring to the specific case considered in the paper,
all the irrational transfer functions of the original 2x?2
hyperbolic system have the same denominators, since they
are based on the same resolvent of the state space operator
A. However, they differ in their numerators which largely
depend on the boundary input—output configuration.
Consequently, for the “crossover” input—output channels
the in-domain effects prevail which are easier to
approximate using rational transfer functions, whereas for
the “straightforward” channels the time-delay phenomena
dominate which make the approximation task more
difficult.

The obtained approximate state-space and
transfer function models can be used to accomplish
controller design for the 2x2 hyperbolic systems, using
conventional control schemes, without recourse to
complex DPS theory. However, the main drawback of the
presented approach is that the resulting approximation
models can be of a very high order—even in thousands,
as presented in the paper. Therefore, the next step to be
performed is to obtain a lower-order model, using, e.g.,
a balancing realization approach. Another option is to
use a different approximation approach than the MOL
strategy presented here, e.g., one of the techniques which
have been found effective in the model reduction of
time-delay systems. These include, i.a., Fourier—Laguerre
series, Padé approximants, shift-based approximations,
Malmquist bases, partial fractions, wavelet-based
techniques, Hankel-norm approximants and truncated
state-space realizations (see Partington, 2004).

Another task to be performed is to develop similar
approximate state-space and transfer function models
for the anti-collocated boundary input configuration,
occurring, e.g., in counter-flow heat exchangers. An even
more general approach could consist in a generalization
of the presented results to m X m hyperbolic systems,
i.e., systems with n equations convecting in one direction
and m equations convecting in the opposite direction, as
considered by Hu ef al. (2016) and Anfinsen et al. (2017).
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